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ABSTRACT
A Physarum machine is a biological computing device im-
plemented in the plasmodium of Physarum polycephalum,
a one-cell organism able to build large and manifold net-
works of protoplasmic veins for solving different computa-
tional tasks. In the paper, we propose to use complex net-
works as an underlying model of plasmodium propagation in
Physarum machines. For such models, we define a measure,
derived from rough set theory, for quantitative assessment
of the cohesion of plasmodium connections between distin-
guished regions of interest. Rough sets are an appropriate
tool to deal with some ambiguities which appear in plas-
modium propagation.
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1. INTRODUCTION
There are a lot of systems composed by a large number of

highly interconnected dynamical units. Biological and chem-
ical systems, neural networks, social interacting species are
the examples of them (see [2]). To model some properties
of such systems, we can use graphs whose nodes represent
the dynamical units, and whose links describe the interac-
tions between them. In case of a large and manifold wiring
architecture, the graphs are considered in terms of complex
networks, i.e., networks whose structures are irregular, com-
plex and dynamically evolving in time.

biological computing device experimentally implemented in
the plasmodium of Physarum polycephalum. The Physarum
machine comprises an amorphous yellowish mass with net-
works of protoplasmic veins (see Figure 1), programmed by
spatial configurations of attracting and/or repelling stimuli.
The networks of protoplasmic veins show properties related
to irregularity, complexity and dynamical evolution in time.

Figure 1: An amorphous yellowish mass with net-
works of protoplasmic veins.

In the literature, a variety of measures describing proper-
ties of complex networks has been proposed (see [2]). In the
paper, we propose to use rough set theory for defining some
measure characterizing ambiguities in plasmodium propaga-
tion in Physarum machines modeled by complex networks.
This measure can be used for quantitative assessment of the
cohesion of plasmodium connections between distinguished
regions of interest.

The measure is defined analogously to the measure, pro-
posed in [3], for assessment of the cohesion of saccade con-
nections between object components in visual stimuli used in
eye-tracking techniques. Rough sets theory proposed by Z.
Pawlak is a mathematical tool to deal with rough (ambigu-
ous, imprecise) concepts in the universe of discourse (cf. [6]).
A rough set approach seems to be a suitable tool in case of
behavior of Physarum machines whilst one can notice some
ambiguities in plasmodium propagation (cf. [5], [8]). The

In the paper, we propose to use complex networks as
an underlying model of plasmodium propagation in the so
called Physarum machines. A Physarum machine [1] is a
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presented approach refers to a general framework for the
study of approximation using the notion of neighborhood
systems proposed by T.Y. Lin (cf. [4]).

2. RUDIMENTS OF ROUGH SETS
The idea of rough sets proposed by Z. Pawlak (see [6])

consists of the approximation of a given set by a pair of
sets, called the lower and the upper approximation of this
set. In this section, we recall only necessary definitions, no-
tions and notation concerning rough sets. For more detailed
information, we refer the readers to [7] and [10].

Let U �= ∅ be a finite set of objects we are interested in
and R be any binary relation over U . The image of u ∈ U
under R is defined as R(u) = {u′ ∈ U : (u, u′) ∈ R}. With
each subset X ⊆ U and any binary relation R over U , we
associate two subsets:

• R(X) = {u ∈ U : R(u) ⊆ X},
• R(X) = {u ∈ U : R(u) ∩X �= ∅},

called the R-lower and R-upper approximation of X, respec-
tively (cf. [9]). The R-lower approximation of X consists of
each element u ∈ U whose image is wholly included in X.
The R-upper approximation of X consists of each element
u ∈ U whose image is partly included in X, i.e., each ele-
ment u ∈ U such that there exists at least one element of
the image of u that belongs to X. If R(X) ⊂ R(X), then
the set X is rough, otherwise (i.e., R(X) = R(X)), the set
X is sharp.

Roughness of a set can be characterized numerically. To
this end, the accuracy of approximation of X with respect
to R is defined as:

αR(X) =
card(R(X))

card(R(X))
,

where card denotes the cardinality of the set and X �= ∅.
Some relaxed definition was proposed by W. Ziarko in the

Variable Precision Rough Set Model (VPRSM) [10]. The
standard set inclusion is replaced with the majority set in-
clusion in definitions of approximations. Let 0 ≤ β < 0.5
and card denote the cardinality of the set. The Rβ-lower
approximation of X is defined as:

Rβ(X) = {u ∈ U : R(u)
β

⊆X},
where

R(u)
β

⊆X if and only if 1− card(R(u) ∩X)

card(R(u))
≤ β.

The R-lower approximation of X consists of each element
u ∈ U whose image is mostly included in X, i.e., each ele-
ment u ∈ U such that a majority of elements of the image
of u belongs to X.

3. PHYSARUM MACHINES
In the Physarum machines, the plasmodium of Physarum

polycephalum looks for attractants, propagates protoplasmic
veins towards them, feeds on them and goes on. A net-
work of protoplasmic veins, connecting the original points of
plasmodium and those attractants, is formed. Each original
point of plasmodium, and each attractant occupied by plas-
modium, is called an active point in the Physarum machine.

Activated repellents can avoid or annihilate propagation of
protoplasmic veins towards activated attractants.
Formally, a structure of the Physarum machine can be

described as a triple PM = (Ph,Attr, Rep) (cf. [5]), where:

• Ph = {ph1, ph2, . . . , phk} is the set of original points
of plasmodium,

• Attr = {attr1, attr2, . . . , attrm} is the set of attrac-
tants;

• Rep = {rep1, rep2, . . . , repn} is the set of repellents.

Let us consider a structure PM = (Ph,Attr, Rep) of the
Physarum machine given in Figure 2. It is worth noting

Figure 2: A structure PM = (Ph,Attr, Rep) of the
Physarum machine.

that, in the graphical presentation of structures of Physarum
machines, we use the following symbols:

• filled circles corresponding to original points of plas-
modium,

• empty circles corresponding to attractants,

• empty rectangles corresponding to repellents.

One can see that the components of the structure PM =
(Ph,Attr, Rep) are as follows:

• Ph = {ph1, ph2, ph3},
• Attr = {attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8},
• Rep = {rep1, rep2, rep3, rep4}.
Attractants and repellents can be activated/deactivated in

time. Therefore, the network of protoplasmic veins changes
in time. In general, a dynamics (behavior) of the Physarum
machine PM can be described by the family

V = {V t}t∈{t0,t1,t2,... }

of the sets of protoplasmic veins formed by plasmodium dur-
ing its action and observed at discrete time instants t0, t1, t2,
. . . , where V t = {vt1, vt2, . . . , vtcard(V t)} is the set of all pro-
toplasmic veins of plasmodium present at the time instant t
in PM. Each vein vti ∈ V t, where i = 1, 2, . . . , card(V t), is
a pair 〈πt

is , π
t
ie〉 of active points in PM, i.e., πt

is ∈ Ph∪Attr
and πt

ie ∈ Ph ∪Attr.



4. ASSESSMENT OF THE COHESION OF
PLASMODIUM CONNECTIONS

Formally, a complex network can be presented as a graph
either undirected or directed. In the proposed approach,
we consider complex networks represented by undirected
graphs. It means that we are not interested in directions
of edges.

An undirected graph G = (N,E) consists of two sets N
and E such that N �= ∅ and E is a set of unordered pairs
of elements of N . The elements of N = {n1, n2, . . . , nq} are
the nodes of G, while the elements of E = {e1, e2, . . . , er}
are the edges of G.

To build a model, in a form of a complex network, of be-
havior of the Physarum machine, we take into consideration
a stable state of PM, i.e., the state at a given time instant
t, when the set of all protoplasmic veins formed by plasmod-
ium is fixed, i.e., V = {v1, v2, . . . , vcard(V )} (note that the
superscript t has been omitted).

Let PM = (Ph,Attr, Rep) be the Physarum machine and
G = (N,E) be a complex network modelling behavior of
PM. The following bijective functions are used:

• ν : Ph ∪ Attr → N assigning a node to each original
point of plasmodium as well as to each attractant,

• ε : V → E assigning an edge to each protoplasmic vein.

In the set of nodes of the complex network, we can dis-
tinguish some regions of interest (ROIs), i.e., selected sub-
sets of nodes identified for a particular purpose. Let Ω =
{ω1, ω2, . . . , ωs} be a set of all regions of interest identified
in the complex network. N = {Nω1 , Nω2 , . . . , Nωs} denotes
a family of sets of nodes corresponding to regions of interest.

For each node n ∈ Nω1 ∪ Nω2 ∪ · · · ∪ Nωs , we define its
inter-region neighborhood:

IRN(n) =
= {n′ : (n, n′) ∈ E and ∃

ω∈Ω
(n′ ∈ Nω and n /∈ Nω)}.

On the basis of the complex network modeling behavior
of a given Physarum machine PM, we define a measure,
derived from rough set theory, for quantitative assessment
of the cohesion of connections between regions of interest
(cf. an analogous approach proposed in [3]).
Let G = (N,E) be a complex network modeling behav-

ior of a given Physarum machine PM and ωi, ωj be two
distinguished regions of interest. The lower approximation
IRN(ωi → ωj) of the inter-region neighborhood, from ωi to
ωj , is defined as:

IRN(ωi → ωj) =
= {n ∈ Nωi : IRN(n) �= ∅ and IRN(n) ⊆ Nωj}.

The upper approximation IRN(ωi → ωj) of the inter-region
neighborhood, from ωi to ωj , is defined as:

IRN(ωi → ωj) = {n ∈ Nωi : IRN(n) ∩Nωj �= ∅}.
The lower approximation IRN(ωi → ωj) of the inter-

region neighborhood consists of all nodes Nωi which are
connected by inter-region edges with nodes from Nωj only.

The upper approximation IRN(ωi → ωj) of the inter-region
neighborhood consists of all nodes Nωi which are connected
at least by one inter-region edge with nodes from Nωj .

The accuracy of approximation of the inter-region neigh-
borhood can be defined analogously to the accuracy of ap-
proximation in rough set theory, i.e.:

αIRN (ωi → ωj) =
card(IRN(ωi → ωj))

card(IRN(ωi → ωj))
.

We treat αIRN (ωi → ωj) as a measure of the cohesion of
connections from the region of interest ωi to the region of
interest ωj . If αIRN (ωi → ωj) = 1, then the connection is
the most coherent one.
In general, a measure of the cohesion of connections be-

tween regions of interest is not symmetrical, i.e.:

αIRN (ωi → ωj) �= αIRN (ωj → ωi),

for i, j = 1, 2, . . . , s and i �= j.
Let us consider a complex network (see Figure 3) modeling

behavior of the Physarum machine PM = (Ph,Attr, Rep)
shown in Figure 2. The labels of edges have been omitted

Figure 3: A fragment of a complex network model-
ing behavior of a given Physarum machine PM.

for better legibility. For instance, four regions of interest are
identified with the following nodes:

• Nω1 = {n1, n2, n3, n4},
• Nω2 = {n5, n6, n7},
• Nω3 = {n8, n9, n10},
• Nω4 = {n11}.

A measure of the cohesion of connections from the region of
interest ω1 to the region of interest ω3:

αIRN (ω1 → ω3) = 1

because:



• IRN(n1) = ∅,
• IRN(n2) = {n9} ⊆ Nω3 ,

• IRN(n3) = {n9} ⊆ Nω3 ,

• IRN(n4) = {n9} ⊆ Nω3 ,

and

• IRN(ω1 → ω3) = {n2, n3, n4},
• IRN(ω1 → ω3) = {n2, n3, n4}.

A measure of the cohesion of connections from the region of
interest ω3 to the region of interest ω1:

αIRN (ω3 → ω1) = 0

because:

• IRN(n8) = {n6} � Nω1 , IRN(n8) ∩Nω1 = ∅,
• IRN(n9) = {n2, n3, n4, n6} � Nω1 , but IRN(n9) ∩

Nω1 = {n2, n3, n4},
• IRN(n10) = {n6, n7, n11} � Nω1 , IRN(n10)∩Nω1 = ∅

and

• IRN(ω3 → ω1) = ∅,
• IRN(ω1 → ω3) = {n9}.

One can see that αIRN (ω1 → ω3) �= αIRN (ω3 → ω1).
We slightly modify the definition of the lower and upper

approximation of the inter-region neighborhood in case of
the Variable Precision Rough Set Model (VPRSM).

Let G = (N,E) be a complex network modeling behavior
of a given Physarum machine PM, ωi, ωj be two distin-
guished regions of interest, and 0 ≤ β < 0.5. The β-lower
approximation IRN(ωi → ωj) of the inter-region neighbor-
hood, from ωi to ωj , is given by:

IRNβ(ωi → ωj) =

= {n ∈ Nωi : IRN(n) �= ∅ and IRN(n)
β

⊆Nωj}.
Now, one can see that the β-lower approximation of the

inter-region neighborhood IRN(ωi → ωj) consists of all
nodes Nωi which are connected by inter-region edges, in
most cases (i.e., in terms of the majority set inclusion), with
nodes from Nωj .

A relaxed measure of the cohesion of connections from the
region of interest ωi to the region of interest ωj has the form:

αβ
IRN (ωi → ωj) =

card(IRNβ(ωi → ωj))

card(IRN
β
(ωi → ωj))

for 0 ≤ β < 0.5.
Let us consider a complex network, modeling behavior

of a given Physarum machine PM, shown in Figure 3. A
measure of the cohesion of connections from the region of
interest ω3 to the region of interest ω2:

αIRN (ω3 → ω2) =
1

3

because:

• IRN(ω3 → ω2) = {n8},
• IRN(ω3 → ω2) = {n8, n9, n10}.

Let β = 0.5, a relaxed measure of the cohesion of connections
from the region of interest ω3 to the region of interest ω2:

α0.5
IRN (ω3 → ω2) =

2

3

because:

• IRN0.5(ω3 → ω2) = {n8, n10},

• IRN
0.5

(ω2 → ω2) = {n8, n9, n10}.

5. CONCLUSIONS
We have proposed a measure for quantitative assessment

of the cohesion of plasmodium connections between distin-
guished regions of interest based on rough set theory. The
proposed measure reflects some ambiguities which appear
in plasmodium propagation. We can distinguish two main
directions of the further research. The first one will con-
cern comparing the proposed measure with classic measures,
based on graph theory, describing properties of complex net-
works. The second one will concern extending the spectrum
of measures by applying various rough set approaches.
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