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ABSTRACT
This work proposes a search amount control method on each search
part of the Pareto front in decomposition based evolutionary multi-
objective optimization. The conventional MOEA/DC decomposes
the Pareto front with a set of weight vectors and pairs one solution
with each weight vector to approximate the entire Pareto front with
the set of solutions. Well-matched pairs of weight vector and so-
lution contribute to uniformly approximating the Pareto front, and
mismatched pairs having a long distance between weight vector
and solution in the objective space deteriorate the approximation
quality and the search. To eliminate mismatched pairs and improve
the search performance, this work proposes affinity based search
amount control method for MOEA/DC. Experimental results using
continuous WFG4 test problems with 2-5 objectives show that the
proposed method improves the well-matched pair ratio in all pairs
of weight vector and solution and the search performance.

CCS Concepts
•Computing methodologies → Optimization algorithms; •Ar-
tificial intelligence → Search methodologies;
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1. INTRODUCTION
Most of real-world optimization problems are multi-objective

optimization problems involving several objectives. In the multi-
objective problems, there is no single optimal solution generally
since objectives are conflicted. Therefore, the goal of multi-objective
problems is to find a set of solutions approximating the Pareto 
front which is the optimal trade-off among conflicting objectives. 
The population-based evolutionary algorithms are suited to solve 
multi-objective problems since a set of solutions to approximate 
the Pareto front can be obtained from the population in a single run 
[1, 2].

MOEA/D [3] is one of effective evolutionary algorithms for solv-
ing multi-objective problems and an important framework in recent
algorithmic studies. MOEA/D uses a set of weight vectors to search
the Pareto front. Each weight vector specifies a part of the Pareto
front. One solution is assigned to each weight vector. In other
words, each weight vector is paired with one solution. Each solu-
tion has the role to approximate a part of the Pareto front specified
by the paired weight vector. Therefore, it is desirable that gener-
ated offspring (solutions) during the search process are paired with
their nearest weight vectors in the objective space. MOEA/D de-
termines pairs of weight vector and solution based on the scalariz-
ing function values. However, since MOEA/D predetermines the
target solutions to be updated before offspring generations, gen-
erated offspring might not be paired with their near weight vec-
tors, and it causes an inefficient search. To overcome this prob-
lem, MOEA/DC (MOEA/D with Chain-reaction update) has been
proposed [4]. MOEA/DC adaptively determines the target solu-
tion order to be updated based on positions of offspring in the ob-
jective space after each of offspring generated. Concretely, this
method tries to update existing solutions paired with weight vectors
near to the offspring in the objective space. As the results, match-
ing relations between weight vector and solution are improved,
and the search performance is also improved. The previous study
[4] reported that MOEA/DC achieves higher search performance
than the conventional MOEA/D and NSGA-III [7] on combinato-
rial multi-objective knapsack problems [5] having discrete variable
spaces and WFG problems [6] having continuous variable spaces.

MOEA/DC is able to improve the matching relations of weight
vector and solution, however, mismatched pairs having a long dis-
tance between weight vector and solution in the objective space
remain. If the mismatched pairs of weight vector and solution can
be further eliminated, the approximation performance of the Pareto
front is further improved since the solution distribution close to the
uniformly distributed weight vectors. To overcome this problem,
this work focuses on the number of offspring generations on each
weight vector.

In the conventional MOEA/D and MOEA/DC, each weight vec-
tor has the equal number of offspring generations. In other words,
the rights to generate offspring are uniformly allocated to each
weight vector. However, what should be uniform for all weight
vectors is the optimality of solutions for each weight vector but the
number of offspring generations. For example, if we have an op-
timal solution well-matched with a weight vector, the necessity to
generate new offspring around its well-matched weight vector is
lower than mismatched weight vectors. There is possibility that the
approximation performance of the Pareto front is improved by al-
locating more search amount for mismatched weight vectors rather
than spending search amount for well-matched weight vectors.
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To improve the search performance of MOEA/D based algo-
rithms, this work focuses on MOEA/DC and proposes a method
to control search amount for each weight vectors. To generate a
new offspring, we focus on a weight vector. In the cases of the con-
ventional MOEA/D and MOEA/DC, the focused weight vector has
the right to generate offspring around it. On the other hand, the pro-
posed method considers to transfer rights to generate offspring of
well-matched weight vectors to mismatched weight vectors. Con-
cretely, when mismatched weight vectors exist in the neighboring
weight vectors of the focused weight, its right to generate offspring
is transferred to the mismatched weight vector. In this way, the pro-
posed method enhances the elimination of mismatched pairs and
the improvement of pair matchings of weight vector and solution.
The proposed method is combined with MOEA/DC, and its effec-
tiveness is verified on continuous WFG4 test problems with 2-5
objectives.

2. MOEA/DC: AN IMPROVED MOEA/D

2.1 MOEA/D
MOEA/DC (MOEA/D with Chain-reaction update) is designed

based on MOEA/D [3]. The basic MOEA/D decomposes a multi-
objective optimization problem into a number of single-objective
scalarizing function optimization problems using a set of weight
vectors L = {λ1,λ2, . . . ,λN} and simultaneously optimizes them
to approximate the Pareto front. Each weight vector λi is paired
with one solution xi, the set of solutions becomes the population
P = {x1,x2, . . . ,xN}. To generate one offspring (new solution),
MOEA/D focuses on a weight vector λi. According to T -neighbor
weight vector indices Bi = {i1, i2, . . . , iT } of the focused weight
vector λi, MOEA/D randomly selects two parents from the set of
solutions xi1 ,xi2 , . . . ,xiT and generates an offspring y by apply-
ing crossover and mutation operators. Then, MOEA/D tries to re-
place the existing solutions xi1 ,xi2 , . . . ,xiT with the newly gen-
erated offspring y based on their scalarizing function values using
the focused weight vector λi. MOEA/D searches the entire Pareto
front by repeating the above process while sequentially changing
the focused weight vector λi among the set of weight vectors L =
{λ1,λ2, . . . ,λN}.

2.2 MOEA/DC
MOEA/DC (MOEA/D with Chain-reaction update) [4] is a vari-

ant of MOEA/D employing an alternative existing solution update
mechanism with generated offspring. The original MOEA/D fo-
cuses on a weight vector λi, selects parents, generates an offspring
and tries to update the existing solution set xi1 ,xi2 , . . . ,xiT paired
with T -neighbor weight vectors of the focused weight λi. Actually,
the appropriate weight vector should be paired with each offspring
is unknown before it is generated and evaluated. However, the orig-
inal MOEA/D predetermines the target existing solutions tried to be
updated with each offspring before it is generated and evaluated. It
causes inefficient search.

MOEA/DC also randomly selects parents by sequentially focus-
ing on each of weight vectors in the same manner as the original
MOEA/D. However, the solution update mechanism of MOEA/DC
is different from the original MOEA/D. MOEA/DC adaptively de-
termines the existing solution order tried to be updated with each
generated offspring based on its location in the objective space
while the original MOEA/D predetermines the existing solutions
tried to be updated before each offspring is generated and evalu-
ated. Concretely, for each generated offspring y, MOEA/DC calcu-
lates the objective balance vector b(y) of objective function value

vector f(y) as follows.

bj(y) =
fj(y)− zj∑m

�=1 {f�(y)− z�} (j = 1, 2, . . . ,m) (1)

where, z is the obtained ideal vector, and each element zj (j =
1, 2, . . . ,m) is the best (minimum) objective value obtained during
the search for the j-th objective function. Then, MOEA/DC cal-
culates Euclidean distances between b(y) and each of all weight
vectors L = {λ1,λ2, . . . ,λN} and tries to update solutions in-
creasing order of the paired weight distance.

2.3 Problem: Mismatched Pair of Weight Vec-
tor and Solution

MOEA/DC tries to update existing solutions by considering not
only the scalarizing function value but also matching relation be-
tween weight and solution in the objective space. Since MOEA/DC
preferentially updates existing solutions paired with close weight
vectors to the objective balance vector of newly generated offspring,
the decrease of distances between weight vectors and their paired
solutions are enhanced compared with the original MOEA/D. MOEA/DC
is able to improve the matching relations between weight vector
and solution, however, it is difficult to make the all pairs the best
matchings. That is, mismatched pairs of weight vector and solution
having a long distance in the objective space remain. If the num-
ber of mismatched pairs of weight vector and solution could be
decreased, the approximation performance of the Pareto front will
be improved since the solution distribution approaches uniformly
distributed weight distribution.

The both MOEA/D and MOEA/DC generate offspring by se-
quentially focusing on each weight vector to uniformly search each
part of the entire Pareto front. Therefore, the equal number of off-
spring generations is allocated to each weight vector. However,
what should be uniform for each weight vector will not be the num-
ber of offspring generations but the optimality for the specified part
of the entire Pareto front. Generally, the optimal levels of solutions
for their paired weight vector are not uniform. Therefore, to uni-
formly improve the optimal levels of solutions all over the entire
Pareto front, allocating more chances to generate offspring for mis-
matched weight vectors would be effective rather than allocating
chances to generate offspring for well-matched pairs.

As a method to dynamically control the number of offspring gen-
erations for each weight vector, MOEA/D-DRA (MOEA/D with
Dynamical Resource Allocation) using the convergence level of
the scalarizing function value has been proposed so far [8]. How-
ever, the convergence detection equation and its time window pa-
rameter would depend on problems. In this work, we do not use
them and design a search amount control method compatible with
MOEA/DC.

3. PROPOSAL: AFFINITY BASED SEARCH
AMOUNT CONTROL

3.1 Concept
On the basis of MOEA/DC, this work proposes a search amount

control method for each weight vector. Concretely, the proposed
method finds out mismatched pairs of weight vector and solution,
and gives more chance to generate offspring to them with high pri-
ority. In this work, pairs of weight and solution can be divided into
two types. They are well-matched pairs and mismatched pairs. If
a solution is paired with its nearest weight vector, they are a well-
matched pair. If a solution is not paired with its nearest weight
vector, they are a mismatched pair. Fig. 1 shows an example. x5
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(b) The proposed method

Figure 1: Rights to generate offspring for well-matched and mismatched pairs of weight vecotor and solution

and λ5 are the mismatched pair because the nearest weight vector
of x5 is λ4 but x5 is paired with 2nd nearest λ5. Other pairs of
weight vector and solution are the well-matched pairs since all the
solutions are paired with their nearest weight vectors. In the con-
ventional MOEA/D and MOEA/DC, as shown in Fig. 1 (a), rights
to generate new offspring are evenly assigned to each weight vec-
tor even if both well-matched and mismatched weight vectors ex-
ist in the set of weigh vector. In the proposed method, although
each weight vector has its own right to generate offspring, well-
matched weight vectors transfer their right to generate offspring to
mismatched weight vectors in T -neighbor weight vectors. Fig. 1
(b) shows a conceptual figure of the proposed search amount con-
trol with T = 3-neighbors. Since λ5 is mismatched weight vector,
neighbors λ4 and λ6 transfer their rights to generate offspring to
mismatched λ5 to find more appropriate x5.

This work proposes two algorithms MOEA/DC-CS and MOEA/DC-
CST respectively employing different parent selections. MOEA/DC-
CS (MOEA/DC with Controlling Search amount) randomly se-
lects parents from the existing solution set paired with T -neighbor
weight vectors of the focused weight vector. On the other hand,
MOEA/DC-CST (MOEA/DC with Controlling Search amount and
Tournament) selects parents by using g-tournament selection [9]
based on scalarizing function value for the focused weight vector.

Algorithm 1 shows the pseudo-code of the proposed MOEA/DC-
CS and MOEA/DC-CST. They are based on MOEA/DC [4]. Red
lines indicate the codes for proposed search amount control pro-
cess.

3.2 Controlling Search Amount: Transfer of
Offspring Generation Authority

To control the search amount for each weight vector, the pro-
posed method introduces the set of the well-matched pair flags
Wm = {wm1, . . . , wmN} at 2nd line of Algorithm 1. wmi =
true indicates the nearest weight vector of xi is λi, and they are
the well-matched pair. On the other hand, wmi = false indicates
the closest weight vector of xi is not λi, and they are mismatched
pair.

To generate an offspring, we focus on a weight vector λi (8th
line). Then, the proposed method sequentially checks the well-
matched pair flags wmi1 , wmi2 , . . . , wmiT of T -neighbor weight
vectors of the focused weight λi. If a mismatched weight vec-
tor (false) is founded, the focused weight to generate an offspring

Algorithm 1 The Proposed MOEA/DC-CS and MOEA/DC-CST

Input: the number of objectives m, the decomposition parameter H ,

the number of weight vectors and solutions in the population N ,

the neighborhood size T
Output: the non-dominated set of solutions

1: L = {λ1, . . . ,λN} ← Generate weight vectors (H , m)

2: Wm = {wm1, . . . , wmN} ← {false, false, . . . , false}
3: for each λi ∈ L do
4: Bi = {i1, . . . , iT } ← Find nearest neighbor weight indices

5: end for
6: P = {x1, . . . ,xN} ← Randomly generate the population

7: repeat
8: for each i ∈ {1, 2, . . . , N} do
9: for each j ∈ {i1, . . . , iT } = Bi do

10: if wmj is false then
11: i ← j
12: break
13: end if
14: end for
15: xp,xq ← Select parents (i)
16: � Algorithm 3 for MOEA/DC-CS

17: � Algorithm 4 for MOEA/DC-CST

18: y ← Generate offspring (xp,xq)

19: Chain-Reaction Solution Update (y, i) � Algorithm 2
20: end for
21: until The termination criterion is satisfied

22: return The non-dominated solutions picked from P

is changed to it (9-14th lines). Thus, the proposed method con-
trols the search amount on each weight vector by transferring rights
to generate offspring for mismatched weight vector. Note that,
T -neighbor weight vectors λi1 ,λi2 , . . . ,λiT are ordered in as-
cending order of distance from the focused weight vector λi, and
λi = λi1 .

The well-matched pair flags are set in the solution update pro-
cedure at 19th line. Algorithm 2 shows the pseudo-code of the
solution update procedure with a newly generated offspring y. Red
lines indicate the codes for proposed search amount control pro-
cess. The objective balance vector b(y) of the offspring y is cal-



Algorithm 2 Chain-Reaction Solution Update

Input: solution y

1: procedure CHAIN-REACTION UPDATE (y)

2: b ←Calculate balance of objective values (y)

3: D ← {d1, d2, . . . , dN} � Distances from all weight vectors

4: for each i ∈ {1, 2, . . . , N} do
5: di ← Calculate Euclidean distance (b,λi)

6: end for
7: D ← Sort elements in ascending order (D)

8: for each dj ∈ D do
9: if g(y|λj) is better than g(xj |λj) then

10: tmp ← xj � Preserve temporally

11: xj ← y

12: if dj is the minimum in D then
13: wmj ← true

14: Else
15: wmj ← false

16: End if
17: CHAIN-REACTION UPDATE (tmp) � Call recursively

18: break
19: end if
20: end for
21: end procedure

culated at 2nd line. Next, we calculate distances d1, d2, . . . , dN

between the objective balance vector b(y) and all weight vectors
and sort the distances in ascending order (4-7th lines). Then, we try
to update the existing solutions paired with weight vectors in order
of sorted weight vector distances by comparing their scalarizing
function values. In the case that the offspring y updates an exist-
ing solution xj , if λj is the nearest weight vector to b(y) among
all weight vectors, true is set to the well-matched pair flag wmj .
If λj is not the nearest weight vector to b(y), false is set to the
well-matched pair flag wmj since y and λj are mismatched pair
(12-16th lines).

3.3 Parent Selection: Two methods
This work combines the proposed search amount control with

two kinds of parent selections at 15th line of Algorithm 1.

Random Selection (for MOEA/DC-CS)
The random selection [3] is employed in the conventional MOEA/D
and MOEA/DC. Its pseudo-code is shown in Algorithm 3. In this
method, two solutions are randomly selected from solutions paired
with T -neighbor weight vectors of the focused weight vector as
parents.

g-Tournament Selection (for MOEA/DC-CST)
The g-tournament selection [9] is alternative parent selection which
can be used with MOEA/D based algorithms. Its pseudo-code is
shown in Algorithm 4. This method first randomly selects four
candidate solutions from solutions paired with T -neighbor weight
vectors of the focused weight vector. For the first two candidate
solutions, we compare their scalarizing function values for the fo-
cused weight vector and select the winner as the first parent. For
the other two candidate solutions, we select the second parent in
the same manner. Since appropriate parents for the focused mis-
matched weight vector can be selected compared with the random
selection, it enhances to eliminate mismatched pairs and improves
pair relations of weight vector and solution.

Algorithm 3 Random Selection [3] (for MOEA/DC-CS)

Input: The focused weight vector index i
Output: Two parents xp,xq

1: p, q ← Randomly select two indices (Bi)

2: return xp,xq

Algorithm 4 g-Tournament Selection [9] (for MOEA/DC-CST)

Input: The focused weight vector index i
Output: Two parents xp,xq

1: p1, p2, q1, q2 ← Randomly select four indices (Bi)

2: if g(xp1 |λi) is better than g(xp2 |λi) then
3: p ← p1
4: else
5: p ← p2
6: end if
7: if g(xq1 |λi) is better than g(xq2 |λi) then
8: q ← q1
9: else

10: q ← q2
11: end if
12: return xp,xq

4. EXPERIMENTAL SETUP

4.1 Four Algorithms
To verify the effectiveness of the proposed search amount con-

trol for each weight vector, in this work, we compare four algo-
rithms summarized in Table 1. The basis of the four algorithms is
MOEA/DC, and four algorithms are combinations of with/without
the proposed search amount control method and the g-tournament
selection, respectively. The first one is the conventional MOEA/DC,
the second one is MOEA/DC-T employing only the g-tournament
selection, the third one is MOEA/DC-CS employing only the pro-
posed search amount control, and the last one is the proposed MOEA/DC-
CST employing both the proposed search amount control and the
g-tournament selection.

The four algorithms use the same parameters and settings. All al-
gorithms use the reciprocal weighted Tchebycheff scalarizing func-
tion [10, 4]. The decomposition parameters are set to H = {200, 19,
9, 6} for m = {2, 3, 4, 5} objective problems, respectively. There-
fore, the population sizes become N = {201, 210, 220, 210} for
m = {2, 3, 4, 5} objective problems, respectively. The neigh-
borhood size is set to T = 20. To generate offspring, the SBX
crossover [11] with a crossover ratio 0.8 and a distribution index
ηc = 20 and the polynomial mutation with a mutation ratio 1/n
and the distribution index ηm = 20 are employed. Also, the termi-
nation condition of algorithms is set to totally 3,000 generations.

4.2 Test problems
This work uses WFG4 problem framework [6]. In this problem

framework, the difficulty to obtain spread solutions to approximate
the entire Pareto front is increased with increasing the position pa-
rameter k. In this work, WFG4 problems with k = {2, 6, 10} are
employed. Also, the number of objectives m is varied from two to
five. The distance parameter is set to l = 10, and the total number
of variables becomes n = l + k + (m− 1)− k mod (m− 1).

4.3 Performance Metric
To evaluate the obtained solutions approximating the Pareto front,

this work uses Hypervolume (HV ) [5]. HV is m-dimensional
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Figure 2: Transition of HV on WFG4 with the problem difficulty parameter k = 2
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Figure 3: Transition of HV on WFG4 with the problem difficulty parameter k = 6
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Figure 4: Transition of HV on WFG4 with the problem difficulty parameter k = 10

Table 1: Four algorithms

Controlling g-Tournament
Search Amount Selection

Conventional MOEA/DC - -
Conventional MOEA/DC-T - �

Proposed MOEA/DC-CS � -
Proposed MOEA/DC-CST � �

volume enclosing the obtained solutions and the reference point
r. HV is increased when the obtained solutions approach to the
Pareto front and widely cover the Pareto front. That is, HV in-
volves the contributions of both the convergence of the obtained
solutions toward the Pareto front and the diversity of them to widely
approximate the Pareto front simultaneously. Therefore, the higher

HV , the better approximation performance of the Pareto front.
Since each objective function value in the WFG4 problems has

different range, we normalize them as f ′
i(x) = fi(x)/2i (i =

1, 2, . . . ,m) and calculate HV with the normalized objective value
vector and the reference point r = {1.1, 1.1, . . . , 1.1}.

5. RESULTS AND DISCUSSION

5.1 Search Performance
The transitions of average HV values obtained by the four algo-

rithms are shown in Fig. 2-4.
From the results on m = 2 objective problems, we can see that

the proposed MOEA/DC-CS achieves higher HV than the conven-
tional MOEA/DC in the early generations but the difference dis-
appears at the final generation. Also, we can see that the conven-
tional MOEA/DC-T and the proposed MOEA/DC-CST with the
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Figure 5: Transiton of well-matched pair ratio among all pairs of weight vector and solution on WFG4 with k = 2
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Figure 6: Transiton of well-matched pair ratio among all pairs of weight vector and solution on WFG4 with k = 6
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Figure 7: Transiton of well-matched pair ratio among all pairs of weight vector and solution on WFG4 with k = 10

g-tournament selection achieve higher HV than the conventional
MOEA/DC and the proposed MOEA/D-CS with the random se-
lection especially on WFG4 problems with k = {6, 10}. Thus,
in m = 2 objective problems, although the effectiveness of the
g-tournament selection can be observed, the effectiveness of the
proposed search amount control cannot be observed enough.

From the results on m = 3 objective problems, differences of
HV among the four algorithms become significant. In the cases
with the random selection, we can see that the proposed MOEA/DC-
CS achieves higher HV than MOEA/DC. This result reveals that
the proposed search amount control contributes to improving the
search performance by transferring rights to generate offspring for
mismatched weight vectors. Also, we can see that MOEA/DC-T
and MOEA/DC-CST with the g-tournament selection show better
HV than the MOEA/DC and MOEA/DC-CS with the random se-
lection. Furthermore, we can see that the proposed MOEA/DC-

CST shows higher HV than the conventional MOEA/DC-T. This
result reveals that the effectiveness of the proposed search amount
control giving more chance to generate offspring for mismatched
weights is further enhanced by selecting appropriate parents for
mismatched weight vectors based on the g-tournament selection.
As the general tendency, the contribution of the g-tournament se-
lection (T) for HV is higher than the one of the proposed con-
trolling search amount control (CS). However, note that the high-
est HV is achieved by MOEA/DC-CST using both of them. That
is, the combination of the proposed search amount control and the
g-tournament selection contributes to improving the search perfor-
mance.

Finally, from the results on problems with {4, 5} objectives, we
can see that the proposed MOEA/DC-CST achieves the highest
HV among the four MOEA/DC based algorithms. This is the
similar tendency observed on problems with m = 3 objectives.
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Figure 8: The total number of focuses on each weight vector for offspring generations on WFG4 with k = 2
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Figure 9: The total number of focuses on each weight vector for offspring generations on WFG4 with k = 6
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Figure 10: The total number of focuses on each weight vector for offspring generations on WFG4 with k = 10

In the problem with m = 4 objectives and k = 6, the proposed
MOEA/DC-CS shows better HV than MOEA/DC-T. In this case,
the contribution of the proposed search amount control becomes
higher than the one of the g-tournament selection. These results
reveal that the proposed search amount control combined with the
g-tournament selection improves the search performance.

5.2 Well-Matched Pair Ratio
Fig. 5-7 show transitions of well-matched pair ratio of weight

vector and solution. MOEA/D has N pairs of weight vector and
solution. If a solution is paired with its nearest weight vector, the
pair is a well-matched one. If a solution is not paired with its near-
est weight vector, the pair is a mismatched one. Therefore, the ideal
well-matched pair ratio is 1.0. That means all solutions in the pop-
ulation are paired with their nearest weight vectors, and there is no
mismatched pair.

From the results on m = 2 objectives, the well-matched pair ra-
tios of the four algorithms close to 1.0 on problems with any k af-
ter about 500 generations, and almost all solutions are paired with
their nearest weight vectors. Next, from the results on problems
with k = 2 shown in Fig. 5 (a)-(d), we can see a tendency that
the well-matched pair ratio is decreased with increasing the num-
ber of objectives m. The lowest well-matched pair ratio is observed
by the conventional MOEA/DC, and the highest well-matched pair
ratio is observed by the proposed MOEA/DC-CST. Also, we can
see that each of the proposed search amount control and the g-
tournament selection contributes to improving the well-matched
pair ratio among all pairs of weight vector and solution. The well-
matched pair ratios of the proposed MOEA/DC-CST close to 1.0 at
the final generation, and almost all solutions are paired with their
nearest weight vectors.

Next, from the Fig. 6 and 7, we can see that the well-matched



pair ratios are decreased with increasing the problem parameter
k. Also, in these cases, we can see that the proposed MOEA/DC-
CST achieves the highest well-matched pair ratio among the four
MOEA/DC based algorithms.

5.3 Number of Offspring Generation on Each
Weight Vector

To observe the number of offspring generations on each weight
vector, Fig. 8-10 show the total number of focused times on each
weight vector in offspring generation process. In these figure, the
horizontal axis indicates weight vector numbers, and the vertical
axis indicates the total number of focused times on each weight
vector. To facilitate visualization, weight vectors on the horizontal
axis are sorted in descending order of the total number of focused
times.

From the results, first we can see that the total number of fo-
cused times on all weight vectors of the conventional MOEA/DC
and MOEA/DC-T without the proposed controlling search amount
method are the same, and it is 3,000 times which is equivalent
to the total number of generations. On the other hand, the total
number of focused times on each weight vector of the proposed
MOEA/DC-CS and MOEA/DC-CST with the proposed controlling
search amount method are different. In the case of m = 2 objective
problems, the bias of the total number of focuses on each weight
vector is relatively small. However, in the cases of m = {3, 4, 5}
objective problems, the bias becomes large. It will contribute to im-
proving both the pair matchings and the search performance. Also,
we can see the tendency that MOEA/DC-CST shows lower bias of
focused times on each weight vector than MOEA/DC-CS. That is,
the g-tournament selection has effects to generate good solutions
for mismatched weight vectors and decrease the number of mis-
matched pairs among all pairs of weight vector and solution.

6. CONCLUSIONS
To improve the search performance of MOEA/D based algo-

rithms, this work focused on MOEA/DC and proposed the con-
trolling search amount method finding out mismatched pairs of
weight vector and solution and transferring rights to generate off-
spring from well-matched weight vectors to mismatched ones. To
verify the effectiveness of the proposed method, we used WFG4
problems. As the results, we showed that the proposed controlling
search amount improved the search performance of MOEA/DC es-
pecially on problems with more than two objectives. Also, we
showed that the proposed method combined with the g-tournament
selecting appropriate parents for mismatched weight vectors further
improved the well-matched pair ratio and the search performance.

As future works, we will verify the effectiveness of the proposed
method on problems with many-objectives and discrete variable

space. Also, although this work combined the four MOEA/DC
based algorithms with the reciprocal weighted Tchebycheff scalar-
izing function, we had other options in scalarizing functions. There-
fore, we will verify the search performance of the proposed method
with other scalarizing functions.
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