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Abstract. This paper presents a deep learning approach to Kaggle Carvana Image 

Masking Competition, which aims at extracting the car objects in high quality images 

with the background removed. We formulate the background extraction problem as an 

image segmentation problem. In this challenge, we have evaluated different U-Net 

architectures. We have explored two different techniques in combining encoder 

downsampling features with decoder upsampling features. In addition, we have 

experimented replacing different pre-trained networks to accelerate the training process. 

Finally, we have trained different models at different image scales and predicted the final 

result with the ensemble method. Our final method has placed us at top 4% in the 

challenge and achieved a dice coefficient score of 0.99694.  
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1   Introduction 

Background subtraction is an important technique in surveillance, video analysis, and 

many other applications. This problem can be formed as a semantic segmentation problem 

where each pixel is classified into either object or background class. Figure 1 shows a picture 

of image segmentation in the car masking challenge.  

Most approaches to image segmentation in the past are based on conditional random 

fields(CRF) that leverages the relationship between pixels [6]. Recent years, deep learning has 

dominated computer vision, speech recognition and many other areas. One popular network 

architecture is convolutional neural networks(CNNs) that can learn discriminate features from 

image data automatically [9]. Many network architectures have been proposed to improve the 

learning ability such as VGG [15], Inception network [17], and ResNet [4]. There are many 

existing work that address image segmentation using variants of these network architectures 

which have drastically improved segmentation results compared to traditional methods. This 

paper focuses on utilizing and modifying these existing network architectures to tackle Kaggle 

Carvana Image Masking Competition which requires to extract cars from background in high 

resolution images. This competition provides several challenges  
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Fig. 1. Example of image segmentation in the car masking challenge.  

The left image is the image to be segmented and the right one is the segmentation. 

to the existing work: 1. although high resolution images provide finer details of objects, 

directly applying deep learning models on high resolution requires high computational cost 

which slows down training speed and 2. it requires the network to predict an accurate image 

mask which is challenging e.g. in Figure 1, differentiating the shadow from the chassis. To 

address these challenges, we propose four variants of U- Net [14] and RefineNet [10] with 

different pre-trained CNN models [4], [15] to speed up training as well as retain accurate 

predictions. In addition to binary classification loss, we also use focal loss [11] and soft dice 

loss to stabilize training process. To alleviate high computational cost and keep accurate 

predictions, the four networks are trained on different scales of images: 1280 × 1920, 1280 × 

1536, 1280 × 1280, 1024 × 1024 respectively. The final predictions on the test set are 

produced by the ensemble of these models which placed us at rank 29 out of 735 participants.  

In our experiments, we analyzed the performance of single network during training on 

training and validation sets. We also checked the performance of each model qualitatively by 

visualizing segmentation results.  

In Section II, we briefly introduce deep learning and image segmentation. Section III 

gives detailed explanations of our network architectures, training process, and loss functions. 

Experiments and final results are given in Section IV. Finally, Section V summarizes the 

proposed approach.  

2   Related Work 

This section discusses popular CNN architectures and deep learning in semantic 

segmentation.  



 

 

 

 

 

AlexNet [8] was the pioneering deep learning architecture that won the ILSVRC-2012 

image classification challenge. It consists of five convolutional layers with max-pooling layers 

and nonlinearities. Three fully-connected layers are applied to predict class predictions. VGG-

16 [15] used a stack of convolutional layers and small receptive fields compared to AlexNet. 

This allows the model to have less parameters, but more layers with nonlinear transformations 

which makes the model learn more discriminative features. ResNet [4] builds upon residual 

blocks that allow training a deeper model with more than 100 layers. The residual block uses 

identity mapping to learn the residual between input and output. Our work utilizes pre-trained 

ResNet and VGG-16 on ImageNet dataset [3] in the encoder. The usage of pre-trained neural 

networks is called transfer learning and it is proven that transfer learning works better than 

random initialization [19].  

Semantic segmentation has been extensively studied in the literature. It is a dense 

classification or per-pixel labeling problem where each pixel in the input image is assigned 

with a class label. Fully convolutional network (FCN) has been proposed to use convolutional 

layers to replace all fully-connected layers to produce a per-pixel prediction map instead of an 

array of class predictions [12]. It leverages the ability of CNNs as powerful models that are 

able to learn abstract features from input images. Because CNNs use downsampling method 

that reduces the spatial dimension, it loses important details such as boundaries that are crucial 

for semantic segmentation. This makes FCN not able to output accurate segmentation maps. 

To overcome this problem, encoder-decoder variants of FCN are proposed such as U-Net [14], 

SegNet [1], and RefineNet [10]. Instead of using downsampled feature maps directly for 

prediction, these models combine them with feature maps generated from decoder upsampling 

step. Another line of work uses dilated convolutions [20] and conditional random field(CRF) 

to sovle the problem of loss of crucial features. Dilated convolutions expand the convolution 

filters exponentially that make the use of upsampling features. DeepLab uses this operation 

and CRF as post-processing [2].  

3 Methodology 

3.1   Segmentation Models 

 

This section shows how we rebuild U-Net encoder with two different pre-trained models 

in Section III-A1. In addition, we also explore two different techniques to combine encoder 

and decoder feature maps which is explained in details in Section III-A2. The overall 

architectures of our models are shown in Fig. 5. Since VGG-16 and ResNet-50 both have five 

blocks, Fig. 5 represents a unified version of our model.  



 

 

 

 

 

 

1) Encoder: We use ResNet-50 and VGG-16 as encoders in our segmentation models as 

shown in Fig 5. We discard all fully-connected layers in the pre-trained models because they 

are used for image classification. Encoder networks are used for extracting features from an 

input image. These features are called feature maps. They are produced by sets of convolution, 

batch normalization [7], non-linear operations, and downsampling operations (spatial max 

pooling or strided convolution operation). These feature maps can be viewed as low-

dimensional representations of the image that is separable by a linear classifier in image 

classification tasks. The decoder network upsamples the feature maps to predict the final 

segmentation result. Since these feature maps do not retain accurate boundary details because 

of downsampling operations, we use two different operations in decoder network to overcome 

this lossy representation [1]. 

 

  

Fig. 2 Example of concat operation on two 1-

channel feature maps resulting a two-channel 

feature map. 

 

Fig. 3 Example of add operation on two 1-channel 

feature maps resulting a one-channel feature map 

which values are addition of the two input feature 

maps. 

 

In all models, Convolutional Layer is a stack of convolution, batch normalization, and 

ReLU [13] operations. In ResNet-50, the first layer is a Convolutional Layer followed by 

max-pooling layer. After the first layer, there are four ResNet blocks with variant numbers of 

residual blocks. For a detailed architecture explanation of ResNet layers, please refer to [4]. 

Instead of using max pooling layers to reduce feature map spatial dimensions, ResNet uses 

strided convolution. This replacement shows the improved performance empirically in [16]. 



 

 

 

 

 

VGG-16 variant of the encoder consists of five blocks with 13 convolutional layers. Max 

pooling operation is applied between each block to reduce the spatial dimension of the feature 

maps. In both models, the feature map produced by the last encoder layer is fed into a middle 

Convolutional Layer with 1 × 1 convolution operation to increase the depth of the feature map 

but reserve the spatial dimension [18].  

 

Fig. 4: A residual convolutional unit.  

 

2) Decoder: Decoder is used for upsampling feature maps produced from the middle layer 

and output the final segmentation result. Instead of using single convolutional layers in the 

decoder, we use residual convolutional unit (RCU) as shown in Fig.4. It has been shown that 

adding an identity mapping allows training deeper networks and overcome vanishing gra- 

dient problem [5]. After each residual block, the channel size of each feature map is reduced 

by a factor of 2, but the spatial dimension is increased by the same factor due to upsampling. 

The last layer in the decoder is a convolutional layer with 1 × 1 convolution operation 

followed by a sigmoid operation. It produces a single channel image. Each pixel in the image 

represents the probability of it belongs to a car. The final segmentation map is produced by 

thresholding the probability at each pixel. Because each encoder downsampling step has one 

corresponding decoder upsampling step, we preserve the dimensionality at the final dense 

segmentation result. In order to reduce the effect of lossy feature representation caused by 

downsampling, we combine encoder and decoder features. In this paper, we explore two 

different strategies of combing these features: adding or concatenating. Fig. 3 and 2 illustrate 

these two strategies. Concatenation operation concatenates two feature maps along the depth 

dimension resulting in a new feature map that has the number of channels equal to the addition 

of the number of channels of the two inputs. Add operation adds the values of each feature 

map element-wise. In Section IV, we analyze the different performance of these two 

operations.  

 

3.2 Multi-Loss Training 

 



 

 

 

 

 

Instead of using a single binary classification loss to train our models, we combine three 

losses together to stabilize and accelerate training process.  

1) Binary cross entropy loss: since segmentation is a dense classification problem, we use 

the standard binary cross entropy loss as the primary loss function. It is written as  

BCE = (−ylog(p) + (1 − y) log(1 − p)),                                     (1) 

where y is the ground truth label of the pixel and p is the output of our model.  

2) Focal loss: focal loss is a variant of cross entropy loss that puts more weight on hard 

and misclassified examples [11]. In binary classification case, it is defined as:  

FL =  −(ylog(p)(1 −  p)γ +  (1 −  y)log(1 −  p)pγ ),                   (2) 

where γ is the focusing parameter that controls the weight assigned to different examples. 

It penalizes more on the examples that gives high probability on the misclassified 

examples. This gives the ability of our model to refine the edge prediction since edge 

pixels are harder to segment. 

3) Soft dice loss: Since the competition ranking is based on dice coefficient, it is 

reasonable to use dice coefficient to train our models. Dice coefficient is given by:  

Dice =  2 ×
|X∩Y|

|X|+|Y|
,                                                         (3) 

where X is the prediction and Y is the ground truth label of each pixel. We modify the dice 

coefficient so that it can be used by gradient descent for training. The modified version is 

called soft dice loss and is given by:  

SoftDice =  
2×∑ ∑ 𝑃ℎ𝑤𝑌ℎ𝑤

𝑊
𝑤=1

𝐻
ℎ=1

∑ ∑ 𝑃ℎ𝑤
𝑊
𝑤=1

𝐻
ℎ=1 +∑ ∑ 𝑌ℎ𝑤

𝑊
𝑤=1

𝐻
ℎ=1

,                                   (4) 

where P is the prediction map of our model. Each pixel value in the prediction map is the 

probability of it is a car. The final loss is given by:  

Loss =  BCE +  FL +  SoftDice +  γ||W||
2
,                             (5)  

where W is the weight parameters and γ controls the regularization strength.  



 

 

 

 

 

 

Fig. 5: The overall model architecture.  

 

4 Experiements 

 
Fig. 6 Images of one car are captured from different viewpoints. 

The training dataset consists of 5088 car images. Each car has 16 images corresponding to 

16 different captured angles as shown in Fig. 6. Each image has resolution of 1280×1918. 

Because all the car images are captured at the same angles, training with these images will 

make the models overfit to the dataset quickly. However, this is not a concern in this 

competition because the testing dataset also consists of the images captured using the same 

method but with different cars. We want our models to overfit on the position not colors or 

shapes of the cars, so we only use two types of augmentation methods: cropping and color 



 

 

 

 

 

adjusting. Cropping makes smaller cars look bigger and color adjusting makes cars to have 

different colors.  

Fig. 7 Dice coefficient of five models. 

We randomly split the dataset into 4788 images used for training and 300 images used for 

validation. Instead of training all models on 1280×1918 resolution, we train different models 

on different resolutions as shown in Table I. We trained five models by using different 

resolution and different encoder networks. We only use batch size of 8 for training the model 

with input resolution larger than 1280 × 1280 because of memory constraint. We trained all 

models with learning rate 0.01 in 10 epochs. Regularization strength γ is set to 0.0001 to all 

models. The dice coefficient is shown in Fig. 7.  

Table 1.  Five configurations of our models 

Encoder Combining method Training resolution Batch size 

VGG-16 Concat 1024 x 1024 16 

ResNet-50 Concat 1280 x 1280 16 

ResNet-50 Concat 1280 x 1536 8 

ResNet-50 Concat 1280 x 1920 8 

ResNet-50 Add 1024 x 1024 16 

 

Based on Equation 3, dice coefficient represents how similar the models’ segmentation 

results with the ground truth results, thus the higher the coefficient, the better the model pre- 

dictions are. Although all the models perform similarly during the training process, validation 

results vary a lot. Encoder with VGG-16 overfits the training data after the seventh epoch. We 

hypothesize this is because VGG-16 has more parameters than ResNet50 and trained with 

small number of data makes the network overfitting. ResNet-50 with concat operation trained 

 
 

(a) Dice coefficient for validation dataset. (b) Dice coefficient for training dataset. 



 

 

 

 

 

on resolution of 1280 × 1280 gives the best result over all the models. This is because 1280 × 

1280 preserves a finer detail than 1024 × 1024 resolution and it is trained with batch size of 16 

which gives a better estimate of running variance and running mean than higher resolution 

models trained with batch size of 8.  

In addition to analyzing single models, we also use majority vote to ensemble the 

segmentation predictions of each model. The qualitative results are shown in Fig 8. Compared 

to VGG-16 encoder, ResNet-50 encoder is able to predict more accurate boundaries and 

details such as antenna. In addition to these findings, we can also see that add operation has 

the similar results compared to concat operation though it requires less parameters in each 

decoder upsampling step. The final ensemble model gives smoother boundaries.  

5 Conclusion 

In this work, we form the background subtraction problem as a semantic 

segmentation problem. We found that ResNet-50 has better performance than VGG-16 in 

image segmentation problem. In addition, add operation achieves comparable result with 

concat operation but with fewer computation. We use majority voting method to ensemble 5 

single models which places our team in the top 4% (29 out of 735) of the Kaggle private 

leaderboard.  

 

 
(a) Input images. 

 
(b) Output segmentation maps of five models and majority voting ensemble. 

Fig. 8 The results of five single models and their ensemble. 
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