
EAI Endorsed Transactions
on Future Internet Research Article

1

Implementation of Network Cards Optimizations in
Hadoop Cluster Data Transmissions

Okta Nurika1 , Mohd Fadzil Hassan2 and Nordin Zakaria3

1, 2, 3High Performance Cloud Computing Centre (HPC3), Universiti Teknologi PETRONAS

Abstract

In this paper, the previously invented new methods of network card optimization are applied in a Hadoop cluster, where
data transfers occur from the Master to the slave node. The slave node's network card setting is optimized subjective to the
characteristics of the incoming data transmissions, which are indicated by the overall transmission size and packet size.
The throughput comparisons between the optimized network card settings and the default setting conclude that the
optimized versions always generate higher throughputs. Synchronously, the optimized settings also minimize CPU cycles
utilization as they deploy timer-based polling (passive wait mode), in order to process the received data packets. This
novel practice within Hadoop cluster may be replicated by other data cluster vendors, thus improving their data transfer's
throughput and efficiency.

Keywords: Hadoop DataTransferProtocol; HDFS; Network Card Optimization.

Received on 16 December 2017, accepted on 18 December 2017, published on 21 December 2017

Copyright © 2017 Okta Nurika et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.21-12-2017.153506

1. Introduction

This paper is an extension of the previous research about
Genetic Algorithm (GA) assisted simultaneous multiple
network cards optimization in a data centre [1], which is
based on mathematical models described in [2]. The
results of the simulations in [1] have been implemented in
real physical network cards as published in [3] with the
data transmissions sent using Hping3 software. As a
diversification of implementations, the optimal network
card settings for specific data transmissions would be
sought and implemented in network cards residing in a
Hadoop cluster. The Hadoop DataTransferProtocol would
transmit the data from the storage server that could be the
Master node itself to the slave node.

The throughputs of data transmissions from the
optimized network cards and the default version are to be
compared as a validation of methods proposed in [2],
when implemented in a Hadoop data transfer
infrastructure.

2. Hadoop Optimization Practices

According to our knowledge, network card based Hadoop
data transfer/transmission optimization has not been done.
Until recently, the optimizations within Hadoop focus on
data compression/encryption, MapReduce, and Hadoop
Distributed File System (HDFS).

Some researches related to data
compression/encryption optimization in Hadoop cluster
are presented by [4 - 10].

Another common Hadoop optimization area is within
its MapReduce framework that distributes large scale data
processing to slave nodes. A Hadoop with optimized
MapReduce called HaLoop was developed and presented
in [11] and [12]. Additionally, several other MapReduce
optimization methods are accomplished by [13 - 20].

Furthermore, optimizations about HDFS within
Hadoop ecosystem, which is based on Google File System
(GFS) have also been conducted. For examples, optimized
versions of HDFS have been developed by [21] and [22].

EAI Endorsed Transactions on

Future Internet
 12 2016 - 12 2017 | Volume 4 | Issue 12 | e3

O. Nurika, M. F. Hassan and N. Zakaria

2

In a Hadoop cluster, there are regular data
transmissions from the storage server or Master node to
the slave nodes. This currently unoptimized segment of
the cluster operation is the focus of this paper. The
network card optimization methods explained in [1] are to
be implemented in a Hadoop cluster to investigate if the
intended higher throughputs in data transmissions could
be achieved by the Hadoop DataTransferProtocol. The
network card configuration of the slave node would be
optimized according to the data transmission
specifications (overall size and packet size). This
proposed practice is expected to increase the data
transmission throughput and concurrently reduces CPU
cycles utilizations, as a beneficial effect of kernel
interrupt minimization.

3. Hadoop Cluster Set-Up and
Experiments

A working Hadoop cluster version 2.7.1 on Linux Ubuntu
16.04 LTS machines consisting of Master server and slave
node was set to work as described in [23]. The network
cards at both Master and slave nodes have 1Gbps of speed
specification. Data transmissions of benchmark data
would occur from the Master to the slave, by utilizing
Hadoop command of 'hadoop fs -put'. The slave's network
card was optimized according to the received data
transmission characteristics. In this implementation, the
network card setting could be configured either through
the configuration files located under '/proc/sys/net/core'
directory or using the 'sysctl' Linux command [24]. For
example, in order to activate passive wait mode of 20 ms,
both 'busy_read' and 'busy_poll' files inside
'/proc/sys/net/core' directory must be changed to 20,000
because it accepts the polling duration in microseconds
instead of milliseconds. Configuring these values via
'sysctl' Linux command would be to type 'sysctl
net.core.busy_read=20000' and 'sysctl
net.core.busy_poll=20000'. While for changing the
watermark value is by altering the 'rmem_default' file
under the same directory.

The ad-hoc chosen GA properties were based on the
previous statistical analysis on GA convergence [1] that
concludes population size of 50 and generation size of
100 to be having the highest average fitness value for all
produced solutions, therefore they were taken as
population size and generation size respectively. Mutation
probability was 0.2 and crossover probability was
maintained at 0.9 with single point crossover. Tournament
selection method continued to be used.

The GA assisted simultaneous multiple network cards
optimization program was then run and the resulted
optimal network card settings for every benchmark data
transmission were compiled. They were finally
implemented in Hadoop slave node's network card and the
data transmission throughputs were compared against the
ones resulting from default network card setting of the
slave node. The throughputs were calculated by dividing

the benchmark data transmission size over the duration of
data transfer, and the unit would be converted from
Bytes/seconds to Megabits/seconds (Mbps) to make it
more familiar. The data transmission itself was done by
Hadoop DataTransferProtocol. The duration of it was
known by observing the Hadoop's log file of the slave
node. The start of data transmission was indicated by the
initial string of 'Receiving BP-' and the end of it was
marked by the last string of 'PacketResponder'. The time
information of the start and the end of data transmission
were recorded so the duration of data transmission could
be calculated. The benchmark data names, specifications,
and their discovered optimal network card settings by GA
are listed in the next table.

Table 1. Benchmark Data Specifications and Their
Optimal Network Card Settings

Benchmark
Data

Real Data
Size
(Byte)

Packet
Size
(Byte)

Optimal
Network
Card Setting

data1.txt 50,331,64
6,500 1500 Passive wait

30 ms

data2.txt 110,673,4
48,640 1500 Passive wait

140 ms

data3.txt 222,445,7
65,200 1500 Passive wait

30 ms

data4.txt 64,107,77
7,780 1500 Passive wait

130 ms

Table 2. Throughput Performances of Default
Network Card Setting in Hadoop Cluster Data
Transmissions

Benchmar
k Data

Default Network Card Setting
Performances

Transmission
Duration

(seconds)

Throughput
(Mbps)

data1.txt 914 440.5

data2.txt 1523 581.3

data3.txt 3106 572.9

data4.txt 880 582.8

EAI Endorsed Transactions on

Future Internet
 12 2016 - 12 2017 | Volume 4 | Issue 12 | e3

Implementation of Network Cards Optimizations in Hadoop Cluster Data Transmissions

3

Table 3. Throughput Performances of Optimized
Network Cards in Hadoop Cluster Data
Transmissions

Data Optimal Network Card
Setting Performances

Improvement
Rate from
Default (%)

Transmission
Duration
(seconds)

Throughp
ut (Mbps)

data1.txt 825 488.06 10.8
data2.txt 1505 588.3 1.2
data3.txt 2878 618.3 8
data4.txt 842 609.8 4.6

The improvement rates contained in Table 3 display
the higher throughputs from all the optimized versions of
Hadoop slave node's network card, compared to the
performances of the default setting in Table 2.
Furthermore, since the optimized versions implemented
timer-based polling, they also required less kernel
interrupt generations, which led to lower power
consumption and lower heat production. These conditions
are supportive for the network hardware's longevity.

The overall improvement of Hadoop cluster's data
transfer has proven the practicality and workability of the
proposed optimization methods in a data cluster.
Especially with the generic implementation technique that
only requires minor network card's configuration change
via several command lines, this brings potential for other
data cluster vendors to apply the same network card
optimization methods to improve their data transfer and
maintain their network hardwares' shelf lives. This is also
a positive effect for the data centre's financial
preservation. The improved data transmission may
subsequently accelerate the data analytic process, when
the data need to be transferred to the slave nodes before
analysis. Considering the regular occurrences of data
replications from the master node to the slave node in a
data cluster analytic system, network card optimization
forms a catalyst part of the data cluster infrastructure.

4. Conclusions

An ad-hoc implementation of the proposed network card
optimization methods in Hadoop data cluster, with GA
properties set as recommended by the previous
experiments' convergence analysis in [1] has been
accomplished. The benchmarked data transfers became
faster and consumed less CPU cycles. This opens the
prospect of other data cluster systems to follow the similar
optimization path, in order to increase data replication
speed from the master to the slave node, which will
ultimately expedite the data analytic phase.

Acknowledgements.
We are grateful towards Universiti Teknologi PETRONAS
(UTP) High Performance Cloud Computing Centre (HPC3) for
providing the necessary equipments to conduct the experiments.

References
[1] Nurika, O., Hassan, M. F., Zakaria, N., and Jung, L. T.

Genetic Algorithm Optimized Network in Cloud Data
Centre. Advanced Science Letters. 22 (2016), 2705-2709.

[2] Nurika, O., Hassan, M. F., Zakaria, N., and Jung, L. T.
Mathematical models for network card simulation and their
empirical validations. In Proceedings of the International
Symposium on Mathematical Sciences and Computing
Research (iSMSC). (2015), 66-71.

[3] Nurika, O., Hassan, M. F., Zakaria, N., and Jung, L. T.
REAL THROUGHPUT MEASUREMENTS
COMPARISON BETWEEN UNOPTIMIZED AND
OPTIMIZED NETWORK CARDS. Science International.
29 (2016), 87-91.

[4] Xiang, L. -H., Miao, L., Zhang, D.-F., and Chen, F.-P.
Benefit of Compression in Hadoop: A Case Study of
Improving IO Performance on Hadoop. In Proceedings of
the 6th International Asia Conference on Industrial
Engineering and Management Innovation. (2016), 879-890.

[5] Lin, H.-Y., Shen, S.-T., Tzeng, W.-G., and Lin, B.-S. P.
Toward data confidentiality via integrating hybrid
encryption schemes and Hadoop distributed file system.
Advanced Information Networking and Applications
(AINA) 2012 IEEE 26th International Conference on.
(2012), 740-747.

[6] Shen, Q., Yang, Y., Wu, Z., Yang, X., Zhang, L., Yu, X., et
al. SAPSC: Security architecture of private storage cloud
based on HDFS. Advanced Information Networking and
Applications Workshops (WAINA), 2012 26th International
Conference on. (2012), 1292-1297.

[7] Park, S. and Lee, Y. Secure hadoop with encrypted HDFS.
In Proceedings of International Conference on Grid and
Pervasive Computing. (2013), 134-141.

[8] Haider, A., Yang, X., Liu, N., Sun, X.-H., and He, S. Ic-
data: Improving compressed data processing in hadoop. In
Proceedings of High Performance Computing (HiPC) 2015
IEEE 22nd International Conference. (2015), 356-365.

[9] Anuradha, D. and Bhuvaneswari, S. A Detailed Review on
the Prominent Compression Methods Used for Reducing
the Data Volume of Big Data. Annals of Data Science. 3
(2016), 47-62.

[10] Usama, M. and Zakaria, N. Chaos-Based Simultaneous
Compression and Encryption for Hadoop. PloS one 12
(2017).

[11] Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D.
HaLoop: Efficient iterative data processing on large
clusters. In Proceedings of the VLDB Endowment. 3 (2010),
285-296.

[12] Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. The
HaLoop approach to large-scale iterative data analysis. The
VLDB Journal—The International Journal on Very Large
Data Bases. 21 (2012), 169-190.

[13] Zhang, Y., Gao, Q., Gao, L., and Wang, C. imapreduce: A
distributed computing framework for iterative computation.
Journal of Grid Computing. 10 (2012), 47-68.

[14] Zhang, Y., Gao, Q., Gao, L., and Wang, C. PrIter: a
distributed framework for prioritized iterative

EAI Endorsed Transactions on

Future Internet
 12 2016 - 12 2017 | Volume 4 | Issue 12 | e3

O. Nurika, M. F. Hassan and N. Zakaria

4

computations. In Proceedings of the 2nd ACM Symposium
on Cloud Computing. (2011), 13.

[15] Zhang, Y. and Chen, S. i 2 mapreduce: incremental
iterative mapreduce. In Proceedings of the 2nd
International Workshop on Cloud Intelligence. (2013), 3.

[16] Elnikety, E., Elsayed, T., and Ramadan, H. E. iHadoop:
asynchronous iterations for MapReduce. In Proceedings of
2011 IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom). (2011),
81-90.

[17] Guo, L., Sun, H., and Luo, Z. A data distribution aware task
scheduling strategy for mapreduce system. Cloud
Computing. (2009), 694-699.

[18] Fu, J. and Du, Z. Load balancing strategy on periodical
mapreduce job. Computer Science. 40 (2013), 38-40.

[19] Abdullahi, A. U., Ahmad, R. B., and Zakaria, N. M.
Proposed adaptive indexing for Hive. In Proceedings of
2015 International Symposium on Mathematical Sciences
and Computing Research (iSMSC). (2015), 226-231.

[20] Abdullahi, A. U., Ahmad, R., and Zakaria, N. M. Big data:
Performance profiling of Meteorological and
Oceanographic data on Hive. In Proceedings of 2016 3rd
International Conference on Computer and Information
Sciences (ICCOINS). (2016), 203-208.

[21] Lai, L., Shen, L., Zheng, Y., Chen, K., and Zhang, J.
Analysis for REPERA: A Hybrid Data Protection
Mechanism in Distributed Environment. International
Journal of Cloud Applications and Computing (IJCAC). 2
(2012), 71-82.

[22] Li, X., Dai, X., Li, W.-j., and Cui, Z. Improved hdfs
scheme based on erasure code and dynamical-replication
system [j]. Journal of Computer Applications. 32 (2012),
2150-2153.

[23] Borthakur, D. HDFS Architecture Guide. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
(2013).

[24] Terrehon, B. B. B., Jorge, N., Shen, F. Documentation for
/proc/sys/net/*. Available:
https://www.kernel.org/doc/Documentation/sysctl/net.txt.
(2009).

EAI Endorsed Transactions on

Future Internet
 12 2016 - 12 2017 | Volume 4 | Issue 12 | e3

