
Merging By Decentralized Eventual Consistency
Algorithms

Ahmed-Nacer Mehdi1,∗, Pascal Urso1, François Charoy1

1Université de Lorraine

INRIA, LORIA.

Abstract
Merging mechanism is an essential operation for version control systems. When each member of collaborative
development works on an individual copy of the project, software merging allows to reconcile modifications
made concurrently as well as managing software change through branching. The collaborative system is in
charge to propose a merge result that includes user’s modifications. T h e u s e rs n o w h a v e t o c h e ck a n d adapt
this result. The adaptation should be as effort-less as possible, otherwise, the users may get frustrated and will
quit the collaboration.

This paper aims to reduce the conflicts d u r ing t h e c o l laboration a n d i m p rove t h e p r o ductivity. I t h a s three
objectives: study the users’ behavior during the collaboration, evaluate the quality of textual merging results
produced by specific a lgorithms a nd p ropose a s olution t o i mprove t he r esult q uality p roduced b y t he default
merge tool of distributed version control systems.

Through a study of eight open-source repositories totaling more than 3 million lines of code, we observe the
behavior of the concurrent modifications d uring t he m erge p rocedure. We i dentified wh en th e ex isting merge
techniques under-perform, and we propose solutions to improve the quality of the merge. We finally compare
with the traditional merge tool through a large corpus of collaborative editing.

Received on 27 February 2015 accepted on 19 January 2015; published on 21 December 2015

Keywords: Operational Transformation, Commutative Replicated Data Types, collaborative editing, merging interfering,
merge procedure, conflicts.

Copyright © 2015 Ahmed-Nacer Mehdi et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.21-12-2015.150817

1. Introduction

Nowadays, many collaborative editing systems are
developed and available to users online. Such systems
allow users to edit shared documents as easily as
one edits a single author document. To achieve
high responsiveness and to support disconnected
collaboration in such systems, data are optimistically
replicated [16, 44]; i.e. each user has a local copy of the
document that can be modified independently of the
other replicas. In addition, to achieve high availability,
locking mechanism to handle concurrent operations
is prohibited. In peer to peer collaborative editing,
the systems allow replicas to diverge temporarily, but
must eventually reach the same value if no more
mutations occur. This consistency model is called
Eventual Consistency (EC) [54].

∗Email: mehdi.ahmed-nacer@loria.fr

Usually, the collaborative editing systems integrate
a synchronizer tool that is in charge to propagate and
merge the changes between different copies of the
data. In order to provide a comfortable environment
for collaboration, the synchronizer tool must merge
correctly the modifications. Merging totally concurrent
modifications on large scale collaboration is impossible.
However, the system must reduce the human effort to
obtain a correct merge. In the other case, the users
correct by themselves the conflicts. If there is too much
correction, the users may get frustrated and will quit
the collaboration.

The synchronization algorithms are classified into
state-based and operation-based synchronizers. State-
based synchronizer sees only the current versions of the
replicas to be reconciled, together with an archive of the
last state they had in common. While, operation-based
synchronizers work by keeping track of the complete
sequences of operations that have been applied to
each replica and, during reconciliation, attempting to
synthesize a single unified view of the data structure’s
edit history [22].

1

EAEAI Endorsed Transactions
on Collaborative Computing Research Article

EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

mailto:<mehdi.ahmed-nacer@loria.fr>
mailto:<pascal.urso@loria.fr>
mailto:<charoy@loria.fr>

In asynchronous collaboration mode, e.g Distributed
Version Control System (DVCS) softwares, users modify
their document in isolation and synchronize after to
establish a common view of the document. Usually,
these kind of systems manages the modifications as a
set of state (state-based approach) as on git system [52]
or So6 [32]. When a replica receives a remote state,
it computes the difference between the local state of
the document and the received one before merging the
modifications. If there are modifications in the same
part of the document in both versions, the system can
return a conflict information to the user and let him
resolve them. The conflict is generated when the system
cannot merge the concurrent modifications.

Many solutions have been proposed to improve
automatic merge. A distinction can be made between
textual [37], syntactic [19] and semantic [13] merging.
The textual approaches consider documents as a list of
elements (characters or lines) and can be used in any
context while the others uses grammatical, semantic or
structural information specific to the type of document.
DVCS as git system supports any type of collaboration.
The users can collaborate to produce XML files or a
simple text document or software source code. For this
purpose, in this paper we focused only of on textual
merging.

Git system uses state − based approach to manage the
concurrent modifications. During the merge procedure,
git merge compares the local state with the remote
one. If the document is modified at the same position,
git merge produces a conflict. On the other hand,
many operation − based approaches were suggested to
solve concurrency control in collaborative editing [1,
12, 53]. Unlike git merge, these approaches represent
the modifications as a sequence of operations that
are integrated automatically in the document. Both
approach kinds are designed to reduce the effort of
users during the collaboration. However, study what
degree their result satisfy the users on real collaboration
is never established.

In [30], Mens recognize that “In general, we need
more empirical and experimental research [...], not only
regarding conflict detection, but also regarding the amount
of time and effort required to resolve the conflict.”. A
solution would be to conduct user studies to measure
user satisfaction. However, such studies are time
consuming and hardly reproducible. They are also
difficult to evaluate automatically since one need to
know both concurrent modifications and their correct
merge result. In addition, the effort that the developer
will make to produce the final code depends on
the result of the merge. Automated diff and merge
techniques [30] help in resolving direct conflicts [6], but
often require manual intervention [6, 14, 45].

In addition, to reduce the conflicts during the
collaboration and improve the productivity, study only

how merge tools manage the modifications is not
sufficient. Indeed, study the users’ behavior during the
collaboration is necessary. Until now, there is no tool
that allows us to track a pattern of users’ collaboration.

In this regard, this paper proposes a methodology
to study the users’ behavior during the collaboration,
to compute the effort made by developers to correct
their document when conflicts occur and evaluate the
quality of merge produced by specific algorithms. We
strive to understand the behavior of users during the
collaboration, optimize the developer’s time and effort,
minimize conflicts occurrence, and thus improve the
development team’s productivity. To achieve this goal:

• we designed and implemented an open source
tool1 to measure the quality of any merging tool
using large-scale software merges;

• we analyzed the users behavior through eight
open-source repositories and more than 3 million
lines of code from repositories containing thou-
sands of commits made by hundreds of devel-
opers. In these repositories, merge conflicts are
solved manually by the developer;

• using the previous information, we diagnosed
important class of conflicts and offered a solution
to improve the merge result.

However, to track the pattern of users’ collaboration
and compute the effort made by users in case of conflict,
we need to know what the users want as the final
result before starting the collaboration. The history of
Distributed Version Control System (DVCS) contains
the results that the user corrected. Thus, in the histories,
the merge result is the result intended by the users. This
paper, focuses on the history of Git system.

The basic idea is to develop a tool that replays the
same editing sessions as in git DVCS history by using
state-based and operation-based merging tools. Since
git’s histories are generated by state-based tools. We
transform them into operations in order to simulate
execution of operation-based tools. To evaluate the
quality of the merge tools, we compute the difference
between the result computed by the tools and the
merged version available in the git history. We use the
size and the composition of the difference as a metric
of user effort using a given merge tool. This difference
is the effort made by users in case where Git system
uses op-based approaches. To reduce the users effort
and improve the development team’s productivity, we
observe the common cases that create a conflict during
the merge procedure to understand how the users
collaborate. Then, we adapt a solution to solve them by
using operation-based approach.

1 https://github.com/score-team/replication-benchmarker.git

2

Ahmed-Nacer Mehdi et al.

EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

We validate our contribution by several experiments
on large scale histories and perform a statistical test
of significance. The experiments simulate traditional
tool used for merging and the solution proposed. We
measure the effort made by users in the document
when a conflict is generated. Afterward, we compare
our approach with traditional tool used for merging.

This paper is organized into eight sections. Section
2 describes the merge management by using existing
approaches. Then, in Section 3 we describe our
methodology and tool which allowed us to observe
the different patterns of collaboration, to detect the
different conflicts and to compute the effort made
by users during merging procedure. Section 5 studies
how users manage the important class of concurrent
behavior which are considered as conflict by existing
merge tools. Then in Section 6, we propose a solution
to correct these specific conflicts and present the
results of the experimental evaluation of our approach.
Finally, we cite the related work and we finish with a
conclusion.

2. Merge Management
The merge result depends strongly on the type
of algorithms used. In state-based systems as in
git [52], the modifications are executed by states, while
using operation-based algorithms the modifications are
executed by operations. In the following, we describe
how the modifications are managed in both approaches
state-based and operation-based.

2.1. State-Based Algorithm: Git Merge Tool
In distributed collaborative software development [15],
developers work on separate workspaces that they
modify locally. They edit, compile and test their own
version of the source code. Submission of developer
modifications on their code is a “commit”. A developer
decides when to commit, when to publish their commits
to others and when to incorporate other developer
commits. Different developers submissions appear on
different branches. When incorporating other developer
commits, in the absence of the local commits, the action
is made silently, and the git recorded history is linear.
If the user had produced a commit, git uses git merge
to produce a best effort merge of the concurrently
modified files. When concurrent modifications occur at
the same position in the document, git merge produces
a conflict. The developers have to resolve these conflicts
before committing the result of the merge [52]. To help
them to resolve these conflicts, the git software can be
configured to call an interactive visual mergetool such as
emerge, gvimdiff or kdiff3.

During a merge, the working tree files are updated
to reflect the result of the merge. Among the changes
made to the common ancestor’s version, if both sides

made changes to the same area, git cannot randomly
pick one side over the other, and asks users to resolve
it by leaving what both sides did in that area.

The basic idea is presented in Figure 1. Git merge
compares the versions that have diverged from the
origin version (let be version A and version B) with the
original version (let be O). First, git compares versions
A and B with O to find the maximum matchings
between O and A and between O and B. It then
parses the results and identifies the region where
the original version O differs from A and B. When
the region are different the modifications are applied
automatically, otherwise a conflict block containing
both modifications is produced.

By default, git uses the same style as the one used by
the "merge" program from the RCS [51] as presented
in Figure 1. These markers called awareness [10] are
useful, especially if the size of the document is large.
It specifies exactly the position of conflict, in addition
to other information, like the modifications made by
other users and the original document. The users are
invited to make corrections on their document to solve
the conflict and add modifications if necessary.

(1) commit

(2) Merge

(3) diff

(4) return merge
to user

int a;

int a;
int b=0;

int a=0;
int b;

int a=0;
int b;

int b;

<<<<<<< user 2

int b;

int b=0;

========

>>>>>>>> user 1

int a;

int a=0;

O

A
B

user 1 user 2

Figure 1. Conflict in state-based systems for collaborative
editing

Following git merge result, the modifications can be
merged successfully or unsuccessfully and then create a
conflict. However, a successful merge successfully does
not mean that the document is correct. For example,
if two users modify collaboratively a project, user 1
makes call to the method when another user changes
concurrently the name of this method. Git merge
does not detect a conflict since both users modify the
document in different part of the document. This kind
of problem is also called false negatives merge (or indirect
conflict). When the users modify the same document
concurrently at the same position as in figure 1, the
merge conflicts but it could be avoided by the users, the
conflict is called false positives merge (or direct conflict).

2.2. Operation-Based Algorithms: OT & CRDTs
Many operation-based algorithms are proposed and
claim to integrate correctly the operations in the
document. These algorithms respect the Eventual

3 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

Consistency (EC) model; i.e, the systems allow replicas
to diverge temporarily, but must eventually reach the
same value if no more mutation occurs. In this paper,
we assume that a granularity of operations is a line. So,
the modifications are executed per lines.

Operational Transformation (OT). [12, 32, 42] algorithms
are operation-based are designed for collaborative
editing context. They have been proposed to maintain
the consistency of the shared document. For textual
collaborative editing, they usually apply the insert and
delete operations, and sometimes update operations.
To apply the operations at the correct position and to
preserve the user’s intention, OT algorithms transform
the operation received before its execution with the
concurrent one, to take into account the changes made
on the document by other executed operations. In
Figure 2, two users shared the same document initially
"sstems" and work together to produce the document
"system". User 0 inserts "y" at position 2 which
intends to produce the document "systems", when
concurrently, user 1 deletes the character at position 6
which intends to produce the document "sstem". When
user 0 receives op2, it is transformed to take into
account the effect of the concurrent operation op1, then
op2 is transformed to del(7) instead of del(6) since the
position of the concurrent operation (op1) is before
the position of op2. While, on site 1 the operation
op1 has not been transformed since the position of
the concurrent operation (op2) is after the position of
op1. Finally, both users produce the same document
"system".

sstems sstems

Op1 = ins(2, y) Op2 = del(6)

 T1 = ins(2, y) T2= del(7)

 T1 = T(Op1, Op2)=ins(2,y)

 T2 = T(Op2, Op1)=del(7)

Site 0 Site 1

systems sstem

system system

Figure 2. Integrate operation in OT algorithms

Although, OT algorithms allow to order the opera-
tions, problems can happen when two users modify
concurrently the text at the same position since there is
no order between the operations.

However, deploying such algorithm on real system
should not merge automatically every concurrent
operation silently. It is more appropriate to inform
the users and let him check the result. For example,
So6 [32] that is similar to git merge upon on OT
algorithm, cannot merge silently the modifications
when two concurrent operations are generated. the
result is returned to the user and let him to solve the
conflicts.

Commutative Replicated Data Types (CRDT). [34, 39, 43,
56] ensures consistency of highly dynamic contents on
peer-to-peer networks emerged. Unlike OT algorithms,
CRDTs require no history of operations, and no
detection of concurrency in order to ensure consistency.
Instead, they are designed for concurrent operations
to be natively commutative by actively using the
characteristics of abstract data types.

sstems sstems

Op1 =
ins(2, y, id7) Op2 = del(6, id6)

Op1Op2

Site 0 Site 1

systems sstem

system system

s s t e m s

id6id1 id2 id3 id4 id5

s y s t e m

id7id1 id2 id3 id4 id5

Figure 3. Integrate operation in CRDT algorithms

Instead of the previous example 2, in Figure 3
each character is identified by a unique identifier.
The identifiers are ordered for instance following the
lexicographic order. During the insertion of Op1, the
user generates a unique identifier id7 for this operation.
When user at site 1 receives this operation, it inserts
the content and the identifier at the correct position.
However, when a user in site 1 deletes at position 6,
it deletes the content of the identifier id6. Then, when
user in site 0 receives this operation, it deletes also the
content of id6. Finally, both users converge to the same
document.

3. Methodology
In order to detect the merge behaviors that create
conflicts, we deploy a framework2 which allows us
to observe the merge procedure and locate easily the
conflicts. In addition, this tool replays the collaboration
as on DVCS histories and computes the effort made
by users in the conflicting document by using the
traditional algorithms git merge – state-based – and by
using other operation-based algorithms. The difference
is the gain in a user’s effort.

However, to compute the effort made by users in case
of conflict, we need to know what the users want as
the final result before starting the collaboration. The
history of Distributed Version Control Systems (DVCS)
contains the results that the user corrected. Thus, in the
histories, the merge result is correct.

Assume that the modifications made by users to
correct their document, when the conflict occur is the
ground truth for merging procedure. The methodology
consists of reproducing the same collaboration as on the
histories of DVCS and observe through a tool the effort

2https://github.com/score-team/replication-benchmarker

4 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

https://github.com/score-team/replication-benchmarker

made by users when conflicts occur. Firstly, by using the
traditional algorithms (git merge), afterward by using
our operation-based algorithms. Then, we compute the
number of corrections performed to reproduce the same
document as generated manually by the users.

In textual merging [31], the most common approach
is to use line-based merging. Thus, operation-based
algorithms evaluated in this paper manage the
modifications per lines. They create a new operation for
each line modified.

3.1. Corpus available
A large number of available Distributed Version
Control Systems (DVCS) history publicly available
constitutes a very interesting corpus of distributed
asynchronous editing traces. DVCS are widely used
to manage large scale asynchronous collaborative
editing. For instance, the Linux kernel is developed
by thousands of programmers around the world
using Git [52]. Several web-based hosting services
for software development projects provide large
DVCS history such as GitHub (3.4M developers and
6.5M repositories)3, Assembla (800,000 developers and
more than 100,000 projects)4, or SourceForge(3.4M
developers and 324,000 projects)5. In this paper, we
selected traces from the most used system: Git.

3.2. Conflicts in Practice
Bird and colleagues [5], explored the “promise and
peril of mining Git [histories]”. They point out that
git histories can be rewritten, and commits can be
reordered, deleted or edited. For instance, the Git’s
“rebase” command reorder merged branches into a
linear history. Moreover, we do not have access to
each developer private repository that may contain a
very rich and complex history. Thus, publicly available
git histories do not represent the entire history of
collaboration. Still, users are the authors of the conflict
resolutions that are available in these histories.

We consider the merge state available in git history
as the user expected result. Of course, the merge may
generate problems. For instance, git merge command
may commit source code which does not compile. Bruno
et al. [6] investigated direct and indirect conflicts. They
found in three open source project studied, 33% of the
399 automatic merges that the version control system
reported as being a clean merge, actually were a build
or test conflict. Moreover, 16% of merges resulted in a
textual conflict, 1% of merges resulted in build failure
and 6% of merges resulted in a test failure. Still, nearly

3https://github.com/about/press
4https://www.assembla.com/about
5http://sourceforge.net/about

all of the problems introduced by the merge are quickly
detected since they produce compiling errors [23]. With
git, the developer can manually revert the commit to
correct the problem. Due to the graph structure of git
histories, a reverted commit does not appear in the
paths.

However, even if automatic clean merge can be
problematic they may not be present in the studied
master histories, since they may be reverted. To evaluate
the number of problematic merge commit in histories,
we studied the git software repository6. We measured
the number of non-compiling merge commit, and the
number of reverted merge.

• 30 of the 10, 000 most recent commits of the
master branch in the repository don’t compile. Of
these 10, 000, 3, 085 are merge commits and only
1 merge commit does not compile.

• On the entire history, only 4 commits have the
default message for reverting a merge
– “Revert "Merge ...\"“ – compared to 7, 231
commits with the default message for a merge.

These measures shows that the manual merge present
in the histories are most of the time done very properly,
at least in the repository of the git software.

3.3. Framework
To replay the same collaboration as in the history
of git by using operation-based algorithms, we need
to transform the states of the document extracted
from the Git history to the whole of operations
ready to be used by operation-based algorithms.
Thus, we provide a framework which is the base of
our experiment. The framework implements also the
operation-based algorithms and computes the size of
modifications made by users to correct their document.
The framework is open source and publicly available in
order to let researchers evaluate their own algorithms.
It is developed in Java, and reveals the source on GitHub
platform7 under the terms of the GPL license.

After retrieving the traces and implementing
the framework, we replay the collaboration using
operation-based algorithms and we compute the user’s
effort.

3.4. Operation-based simulation
To replay git histories with any operation-based
merge tool, we need to let the tool produce these
operations. When modifications occur on different
branches of the history, they affect different version

6https://github.com/git/git, starting from commit 0da7a53a
7http://github.com/PascalUrso/ReplicationBenchmark

5 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

https://github.com/about/press
https://www.assembla.com/about
http://sourceforge.net/about
https://github.com/git/git
http://github.com/PascalUrso/ReplicationBenchmark

of the document. We replay this branching history by
simulating collaborative editing replicas.

However, the git software does not manage replica
information in its data storage. It stores only the
email of the user who produced a given commit. The
user’s email is not reliable since a same user may
work on several replicas, or change his email while
working on the same replica. To simulate replicas, the
framework creates a graph of the merge/commit node
based on history. Then, it parses the graph and assigns a
replica identifier to each node. Since on merge, different
parents are different replicas, the framework assigns
different replica identifiers to the parent of the merge
as in figure 4.

Figure 4. Each node is labeled by its replica identifier

For performance reasons, the framework heuristi-
cally minimizes the number of replicas. Thus, the num-
ber of simulated replica is much lower than reality
were each developer works on its own (or even sev-
eral own) replica – e.g. 60 replicas simulated against
583 developers that participated to the history of the
git software itself. The number of replicas does not
affect the quality of the merge. The merge result only
depends on the concurrent operations. Since replica
identifiers are selected without a priori, we ensure that
all concurrent modifications have the same impact on
the merge result. Thus, the algorithms evaluated must
be independent from the replicas priority to obtain
good results. To ensure the same concurrency history
as in the traces, the simulator assigns to each commit
a vector clock [29] that represents the partial order of
modifications given by the DVCS graph history.

States to operations Some operation-based merge
tools are able to detect modifications by themselves.
We provide them with the successive versions using
the above concurrency information. The framework is
in charge to distribute the operations produced to the
other replicas.

The framework can also provide textual modifica-
tions to the operation-based merge tools. For each com-
mit that has only one parent the framework computes
the diff [33] between the two states. The diff result is a
list of insert, delete or replace modifications concerning
blocks of lines. The framework stores the state of the
resulting merge commit. All commits (diffs and merge

states) and their vector clocks, are stored in an Apache
CouchDB database in order to be used by all the runs of
different algorithms.

Example In figure 5, the git history contains a merge:
a commit with two parents. The framework assigns two
different identifiers to the parents: replica 1 and replica
2. Both replicas initially share the same document
"A", replica 1 commits "AC" and replica 2 commits
"AB". Based on the diff retrieved from the history, the
framework asks to the replica 1 to handle insert("C",2) and
asks to replica 2 to handle insert("B",2).8 The framework
obtains from the replicas the operations corresponding
to these modifications. The content and the format of
the operations depends on the merge tools evaluated.
They can be textual, syntactic, semantic or structural
operations [30].

Figure 5. Imitate human merge correction

Depending on the replica’s identifiers assignment, the
merge can occur on any replica (1, 2 or a third one),
with the same behaviour. The operations produced by
replicas 1 and 2 are distributed by the framework to
the replica where the merge occurs. In our example,
the result obtained by the merge is "ABC". However,
in the Git history of Git, the merged version is "AXC".
To correct the document, the framework asks to the
merging replica to handle replace(2, "X") to modify
"B" in "X". In other words, our framework imitate
human merge checking and correction.

3.5. Merge computation
Our merge quality metrics represent the effort that
a developer would make if he used a given merge
tool to produce the manually merged version. They
are computed using the difference between the
automatically merged document – “computed merge” –
and the version in the Git history – “user merge”. We
use the Myers difference algorithm [33] to calculate this
difference. The algorithm returns a list of modifications:
insertions and deletions of text blocks. The framework
calculates two metrics:

8The framework checks if the replica “obeys”, i.e. if the replica
presents the intended result.

6
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

Merge blocks the number of modifications in the
difference.

Merge lines the number of lines manipulated by these
modifications.

These metrics are a classical Levenshtein distance
between the computed merge result and the user merge
with two levels of granularity, the line and the block of
lines. The two levels are important : a developer spends
more effort in identifying and updating, ten lines in ten
separate blocks than ten lines in one contiguous block.
To obtain valid measures, substitution edits are counted
as one insertion plus one deletion. Elsewhere, for a
given conflict, a merge that randomly presents one of
the conflicting version will obtain better result that the
same merge that presents the two versions. Assuming
that the two versions are of same size n, and just one
is correct, our measure for both merges will be n in
average.

Whatever the nature (textual, syntactic, semantic, . . .)
or the mechanics (state-based or operation-based) of
the evaluated merge tool, we compute these metrics in
the same way. The framework can also manage merge
tools that present to the developer conflicts when they
are unable to merge some concurrent modifications, as
well as fully automatic merge tools. We consider every
difference between the computed merge and the user
merge as requiring the users effort.

Since not all the studied approaches introduce
conflict markers (lines beginning by “>>>>>>>>”,
“<<<<<<<<” and “========”) into the merge result,
we remove them before measuring the metrics. For
instance, in figure 6, the git merge tool produces a
conflict between two modifications. In git merge result,
the order of appearance of the conflict block depends on
the replica that executes the merge. When we remove
the conflict markers, the difference with the user merge
is either one block and two lines or three blocks and
four lines.

<<<<<<<< user 1!
int a = 0;!
int b;!
========!
int a;!
int b = 0;!
>>>>>>>>> user 2!

<<<<<<<< user 2!
int a;!
int b = 0;!
========!
int a = 0;!
int b;!
>>>>>>>>> user 1!

int a = 0;!
int b = 0;!

Correction
- int a;!
+ int a = 0;!
- int a = 0;!
- int b;!

3 blocks, 4 lines!

-  int b;!
- int a;!
!
1 block, 2 lines!

Figure 6. Computation of the metrics

The order in the presentation of conflict blocks
impacts our metric. However, both orders are simulated
with the same probability in our framework. Also, every

evaluated merge tools will face the same issue when
merging concurrent modifications, whether they mark
the conflicts or silently merge both modifications.

4. Experimental Evaluation
In order to improve the textual merge result, we
evaluate and compare the different operation-based
algorithms and git merge in different DVCS repositories,
and we observe their behaviors. In the following,
we present the algorithms evaluated, the experiments
performed and after we present the results.

4.1. Algorithms Evaluated
Since the git system is based on peer to peer architec-
ture, the algorithms evaluated have the particularity
that support peer to peer collaboration. We evaluated
in this experiment:

Git Merge Tool. the default git merge algorithm
(described in Section 2.1) used by git system.

We evaluated also the usual textual algorithm used
for collaborative editing: Operational Transformation
(OT) algorithms and Commutative Replicated Data
Type (CRDT) algorithms [35, 39, 43, 56].
The most OT algorithms that exist, use a central
component. Some others do not require a central server
such as SOCT2[47], MOT2[7] and Goto [50]. However,
these algorithms require some property that only TTF
[36] approach ensures. In addition, the impact of these
algorithms on merge result is same since they apply
the same transformation functions. For this reason, we
evaluated only SOCT2 among OT algorithms.

SOCT2/TTF. SOCT2 [47] algorithm is a representative
Operational Transformation (OT) algorithm that do
not make any assumption on using a central server
for a total order of operations. The principle of this
algorithm is illustrated in Figure 7. When a causally
ready operation is integrated on a site, the whole log of
operations is traversed and reordered. After reordering,
causally preceding operations come before concurrent
ones in the history buffer. Finally, the remote operation
has to be transformed according to the sequence of all
concurrent operations.

Unfortunately, many proposed transformation func-
tions fail to satisfy the concurrency control, as shown
in [18]. To our best knowledge, the only existing trans-
formation functions for collaborative editing that sat-
isfy the concurrency control are the Tombstone Trans-
formation Functions (TTF) [36]. To overcome problems,
TTF approach keeps all characters in the model of
the document, i.e. deleted characters are replaced by
tombstones.

WOOT. WOOT [35] is the first CRDT algorithm which
was proposed. In WOOT algorithm, the elements are

7
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

Figure 7. Integrate a remote operation in SOCT2

uniquely identified. An insertion is defined by speci-
fying the new element identifier, the element content
and the identifiers of the preceding and following ele-
ments. Concurrent operations determine partial orders
between elements. The merging mechanism can be seen
as a linearisation of the partial order to obtain a total
order. In Figure 8, two users shared the same document
initially ABC. User 1 inserts X between A and B to
produce AXBC, when concurrently user 2 deletes B and
produces AC. The element deleted is just marked as
invisible to users. When user 2 receives the operation
from user 1, it is executed in a correct order. Since,
each element has a unique identifier, when user 1
receives the operation from user 2, the correct element
is deleted. However, if two concurrent insertions are
generated at the same position, the merged operations
can generate a conflict document.

WOOTH [1] is a new version of WOOT that improves
its performance by using a hash table.

ABC ABC

ins(A X B)
del(B)

AXBC

del(B)

AX CB

ins(A X B)

A CB

AX CB

user 1 user 2

Figure 8. Integration in WOOT

Logoot. Logoot [56] is another CRDT approach that
ensures consistency of textual documents. Logoot
associates to the list of elements of the structure, an
ordered list of identifiers. Identifiers are composed of
a list of positions. Positions are 3-tuples formed with a
digit in specific numeric base, a unique site identifier
and a clock value. When inserting an element, Logoot
generates a new identifier. Identifiers have unbounded
lengths and are totally ordered by a lexicographic order.
So a new identifier can always be generated between

two consecutive elements. Different strategies can be
adopted to produce the new identifier [57], all of
them using randomness to prevent different replicas to
produce concurrently close identifiers.

Treedoc. [39] is a CRDT algorithm that represents the
document by a binary tree structure. The element
identifier is the path to the element in the tree. If two
users insert concurrently at the same position, Treedoc
creates a major-node that contains the two elements.

4.2. Empirical Study
We analyzed eight open source projects (see Table 1).
We chose these projects from GitHub and Gitorious web
services, based on the following criteria: (1) popularity
of the projects 9 from GitHub, (2) activity of the projects
from Gitorious, (3) the project is developed by using
git in Github/Gitorious, and not a mirror of another
system repository such as SVN. We also selected the git
repository of the git software it-self, since it contains
more commits and merges than these projects and since
we think that it contains the best merge result since they
are done by specialists of the tool.

Since there is no collaboration when the files are not
merged, the framework replays only histories of files
that are merged at least one.

In Table 1, we present the characteristics of eight
projects. The head commit sha1 used to run our
experiments is presented above the name of each
repository. The characteristics are computed per file.
Based on these files we compute the total number of
commits and merges that affected the files, the number
of operations and the maximum users that collaborate
on each file of the project.

During the simulation of the collaboration, the frame-
work computes number of corrections (Merge blocks and
merge lines). Depending on the algorithms used and how an
operation is generated, the order of blocks and lines in the
document will be different. Thus, the number of correction
changes from one algorithm to another.

4.3. Results
Figure 9a and 9b present respectively the percentage of
merge blocks and merge lines for git merge, TTF, WOOT,
Logoot and TTF. Since git merge is the default algorithm
used in git system to merge the modifications, we use
its results as the reference (=100%).

Difference between state-based and operation-based
merges During the merge procedure, git merge detects
which part of the document is changed. It analyzes
also the modifications made by each user. If two

9https://github.com/popular/starred, April 2013

8
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

https://github.com/popular/starred

Table 1. Projects characteristics

Project cloud/backbone twitter/bootstrap mbostock/d3 git/git gitorious/mainline rails/rails statusnet/mainline
Head sha1 6ac7704c 37d0a30 d1d71e1 8c7a786b c1105eb 36f7732 d7880c1

Files with merge 11 69 38 558 72 352 213

Commits 2293 6009 2192 32958 4136 28895 12057
Merge 274 434 282 5646 151 1153 1218

Num.Operation 2605 7626 2352 33084 3915 26899 11953
Max. Replica 13 10 30 59 5 6 11

Merge block by git merge 155 1614 648 3184 489 442 1159
Merge line by git merge 895 14658 4658 10159 2303 3899 4783

0

50

100

150

200

250

300

Git Merge
WootH
Logoot
Treedoc
TTF

backbone bootsrap d3 git gitorious rails status

(a) Merge blocks on git projects

0

20

40

60

80

100

120

140

Git Merge
WootH
Logoot
Treedoc
TTF

backbone bootsrap d3 git gitorious rails status

(b) Merge lines on git projects

Figure 9. Merge blocks and merge lines

users insert concurrently the same content at the same
position for instance, git merge merges correctly the
updates. In addition, git merge tool asks users to
correct their document each time the merged document
conflict. While, operation-based algorithms merged
automatically the modifications. When two users insert
concurrently the same content at the same position, a
unique identifier is generated for each line by using
CRDTs, and two duplicated operations are generated
by using TTF algorithm. Then, all operation-based
algorithms generate a duplicated text and needs an
additional effort for users to correct their document.
For this reason, git merge outperforms operation-based
algorithms in some repositories.

Another difference is due to a very common type of
collaboration: concurrent edits done on two consecutive
blocks. Indeed, git merge requires more correction in
this case than operation-based algorithms. For instance,
when two users modify concurrently two consecutive
blocks, git merge detects that both users modify the
same part of the document. Then, it returns a conflict
even if is not. This case is managed well by operation-
based algorithms. The edits are merged automatically,
and no conflict detected.

To understand more the difference between state-
based and operation-based merges, we study in the next
section the different collaboration patterns by using git
merge and operation-based algorithms.

Difference between operation-based merges Even if
OT and CRDT algorithms have a completely different
behavior to merge the operations, the result of TTF and
WOOT are almost the same in merge block and merge
line. So, change the manner of operations’ generation is
not sufficient to improve the quality of the merge and
reduce the users effort.

The main difference occurs when concurrent edits
affect the document at the same position. Logoot uses
randomness to generate its identifier. So it will more
frequently interleave the lines added concurrently. If
the developer must keep only one of the edits, he has
to remove each interleaving lines separately, instead of
removing a single block. Thus, Logoot obtains a worse
block metric than other operation-based approaches
but a similar line metric. In the scenario illustrated
in Figure 10, two developers insert concurrently at
the same position two different blocks. Since Logoot
identifies each line by a random – but successive –
identifier, the different lines of blocks can be mixed.

9
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

Consequently, the developer has to edit 4 blocks and 4
lines to correct their document. However, using other
algorithms such as WOOTH, Treedoc or TTF, the order
between lines inserted concurrently is determined
first by the replica identifier and the two blocks are
contiguous. The developer has to edit 1 block and 4
lines.

Merge

private int a;

Origin

private int a;

user 2:
insert("public int sum(int x, int y)
{

 return x+y;
}"; 1)

private int a;private int a;
public int sum(int a, int b)
{

 return a+b;
}

public int sum(int x, int y)
{

 return x+y;
}

user 1:
insert("public int sum(int a, int b)
{

 return a+b;
}"; 1)

private int a;

- public int sum(int x, int y)
- {
- return x+y;
- }

1 block, 4 lines

4 block, 4 lines

Merge User

Correction
Other algorithm

public int sum(int a, int b;
public int sum(int x, int y)
{
{
 return a+b;
 return x+y;
}
}

public int sum(int a, int b;
{

 return a+b;
}

Logoot

public int sum(int x, int y)
{

 return x+y;
}

private int a;

public int sum(int a, int b;
{

 return a+b;
}

public int sum(int x, int y)
{

 return x+y;
}

- public int sum(int x, int y)
- {
- return x+y;
- }

Figure 10. Different merge in operation-based approaches

Gitorious repository For both metrics – blocks and
lines –, the behavior of operation-based algorithms on
Gitorious repository is different from other repositories.
All operation-based algorithms are less efficient than
git merge. Half of the block and line values are
due to a specific collaboration pattern on one file
“diff_browser.js”. The collaboration on this file
begins with the merge of two branches that have
no common ancestor. However, these two branches
contains code with many lines in common that git merge
is able to merge. This pattern is known as a “accidental-
clean-merge” by the VCS community, and is not well
handled by existing operation-based merge.

We analyzed, in the different projects, the history of
the files where git merge outperforms the operation-
based merges. We also noticed that the number of
commits that Revert other commits can be high in
the studied repositories (sometimes half the number
of merge commit). This can lead to well-known undo
puzzles [49]. For instance, a developer deletes the
element A when concurrently another developer deletes
the same element A and then undoes this deletion. Git

merge manages well this case to obtain the document
without A, while others reinsert the element.

5. Conflicts in Practice
To improve the merge procedure in asynchronous
systems and understand more the results obtained ,
we launch the experiment and we observe through the
framework which part of the document conflict, and
detect where the user’s effort is the most important.
This allowed us to understand the conflicts and propose
solutions to solve them automatically.

The behavior of users during the collaboration is
different from one project to another. Several factors can
influence the collaboration such as, number of users,
type of project, proximity between users, latency in
networks ...etc. For this reason, it is difficult to detect
and know what are the most common cases that create
conflicts during the collaboration. The framework helps
us to extract these scenarios.

Addition at the same position. This kind of conflict
happens when two users modify concurrently the text
at the same position (not necessarily the same content)
since there is no order between the operations.

Origin

- int advice_status = 1;
- int advice_status = 1;

1 block, 2 lines

Merge User

Correction

git merge

operation-based

int advice_push = 1;

<<<<<<<<< user1
int advice_resolt= 1;
===========
int advice_commit = 1;
int advice_status = 1;
>>>>>>>>> user2

int advice_push = 1;
int advice_status = 1;

int advice_push = 1;
int advice_commit = 1;
int advice_status = 1;

int advice_push = 1;
int advice_resolt= 1;

int advice_push = 1;
int advice_resolt = 1;
int advice_commit = 1;

int advice_push = 1;
int advice_resolt = 1;
int advice_commit = 1;

user 1
user 2

Merge

update("int advice_resolt= 1;", 2)
 =

del(1) + ins("int advice_resolt= 1;", 2)

ins("int advice_commit = 1;", 2)

Figure 11. Addition at the same position

In this kind of concurrency and on textual merge,
operation-based algorithms can outperform state-based
approach when an update operation falls in con-
currency with insert operation as shown in Fig-
ure 11. Initially, both users shared the same doc-
ument. afterward, user 1 updates the first line by
"int advice_resolt=1;" when concurrently user 2
inserts "int advice_commit=1;" at the same posi-
tion. Git system cannot merge the documents since
both users make modifications at the same position.
On the contrary, operation-based approach merges

10
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

the document correctly. Indeed, it transforms the
update operation to a delete followed by an inser-
tion. When user 2 receives the delete, it deletes
"int advice_status=1;" and after it inserts "int

advice_resolt=1;", while user 1 executes the received
insertion "int advice_commit=1;" in the correct posi-
tion. Since there is no order between the concurrent
operation , operation-based algorithm may also inte-
grate the operations in the wrong order and force
users to make corrections. However, in the worst case,
operation-based algorithm requires 2 modifications
(one delete and one insert). Depending how git merge
presents the conflict result for users (user1/user2 or
user2/user1), the users require at least one modifi-
cation, and in the worst case three modifications to
produce the correct document. In this example, the
difference between the approaches is not very large, but
this difference is larger in real collaboration since users
produce many copy/paste operations.

We notice also that this case of conflict is very
common on real collaboration.

Concurrent consecutive modifications. This conflict hap-
pens when two users modify concurrently the docu-
ments in two consecutive position. Using state-based
approach, git merge considers that both users modify
concurrently the same area of text and then produce
a conflict. The users verify the merged documents and
choose one of both version proposed by git merge.
However, using operation-based approach, this case is
not considered as a conflict and the modifications are
merged correctly.

Origin

- size += 16;
- if (count >= size) {

1 block, 2 lines

Merge User

Correction

git Merge

operation-based

<<<<<<<<< user2
if (count == size) {

 size += 16;
=========
if (count >= size) {

 size += 20;
>>>>>>>>>>>> user1
}

if (count >= size) {
 size += 16;
 }

user 1 user 2

Merge

if (count == size) {
 size += 16;
 }

if (count >= size) {
 size += 20;
 }

if (count == size) {
 size += 20;
 }

if (count == size) {
 size += 20;
 }

update("size += 20;", 2) update("if (count == size) {", 1)

Figure 12. Concurrent consecutive modifications

In Figure 12, user 2 updates the first line by
"if (count == size)", while concurrently user 1

updates the second line by "size+=20". Even if both
users modify the document in different position, git
merge detects that the modifications are made in
the same area. Then, it returns a conflict result to
users. In contrast, operation-based algorithms merge
automatically and correctly the modifications.

Accidental Clean Merge (ACM). When users insert the
same content at the same position, this is called
accidental clean merge. Git merge manages well
this kind of conflict as presented in Figure 13.
Using operation-based algorithms that consider the
modifications per line, a new operation is generated
for each line, thus a duplicated line is inserted in the
document and users must to correct line per line.

origin document

public int method(int a, int b)
{

 if(a > b)
 return a;

 return c;
}

user 1 user 2

Merge

- else

1 blocks, 1 lines

Correction

public int method(int a, int b)
{

 if(a > b)
 return a-b;

 else
 return b-a;

}

public int method(int a, int b)
{

 if(a > b)
 return a-b;

 else
 return b-a;

}

public int method(int a, int b)
{

 if(a > b)
 return a-b;

 else
 return b-a;

}

operation-based

public int method(int a, int b)
{

 if(a > b)
 return a-b;

 else
 else

 return b-a;
}

public int method(int a, int b)
{

 if(a > b)
 return a-b;

 else
 return b-a;

}

git merge

ins("else",6)

ins("else",6)

Figure 13. Accidental clean merge

In Figure 13, both users insert concurrently the same
element at the same position, "else" at position 6.
Git merge detects that two lines are identical. Thus, git
merge merges correctly the document. While operation-
based algorithm produces duplicated lines "else;"

"else;" since it generates a different operation for each
line.

Undo/Redo. The undo/redo operations are very useful
on collaborative editing systems. They allow any user to
correct any edit operation at any time. On git system the
undo/redo operations are generated when users revert
their modifications to one of the previous states10.

10Command “git revert”

11 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

However, using the operation-based algorithms can
produce a conflict document.

origin document

Merge

- int b = 0;

1 blocks, 1 lines

Correction

operation-based

git Merge

int a = 0;
int b = 0:

int a = 0:int a = 0:

int a = 0;
int b = 0:

int a = 0:int a = 0;
int b = 0:

int a = 0;

Commit

 revert(op2)
 =

 redo(op2)

op1 = delete(2)
op2 = delete(2)

user 1
user 2

Figure 14. undo/redo operation

Figure 14 illustrates an example where state-
based approaches manage well undo operations while
operation-based algorithm creates a conflict. Initially
sites 1 and 2 shared the same document "int

a=0;""int b=0;". Site 1 deletes line 2 which intends to
produce the document "int a=0;", while concurrently,
site 2 deletes the same line and undo its operation.
Then, site 2 does not change the initial document.
During the merge operation, git merge merges both
states and produces a correct document "int a=0;".
While, operation-based algorithm creates a conflict
in the user’s documents. When site 1 receives the
operations from site 2, it has reinserts "int b=0;" since
site 2 cancels its deletion. Thus both users produce
"int a=0;" "int b=0;" document. To have the same
document as in the history of git, both users must delete
"int b=0;" from their document.

6. Improve Textual Merge
To improve the performance of operation-based algo-
rithms in asynchronous systems, we propose some
improvement to avoid the "most" common cases that
create conflicts: accidental clean merge and undo/redo
conflicts. We adapt the Tombstone Transformation
Functions (TTF) approach [36] to avoid these kind of
conflicts. Before explaining our method we describe
TTF algorithm.

6.1. TTF algorithm
TTF approach [36] was proposed to solve the
problems occurred on Operational Transformation (OT)

algorithms (described in section 2.1). OT approaches
are based on the transformation property C1 and
C2 [42] and some transformation functions. C1
ensure that the execution of any pair of concurrent
operations obtains the same result on all replicas.
Using a central server, C1 is sufficient. However, on
peer to peer collaboration the system require C2 [55].
These functions change the index of the operation
to take into account the effects of the concurrent
operations. Imine et al. [18] have shown that few
operational transformation algorithms proposed fail
to satisfy C1 and C2 conditions. In this context,
Tombstone Transformation Functions (TTF) approach
was introduced [36]. It overcomes the problems by
keeping all characters in the model of the document.
When user deletes an element, it is not physically
removed from the document, but just marked as
invisible to users, i.e. deleted elements are replaced by
tombstones. However, TTF approach does not solve the
conflict described previously.

6.2. Clean Merge Undo Algorithm (CMUndo)
To improve TTF approach on asynchronous systems we
add some transformation functions to take into account
the case of undo/redo and accidental clean merge.

• undo/redo:
Undo/redo operations in collaborative editing are
very useful but considered as difficult problem
[8, 26, 28, 55, 57]. They allow users to correct
any edit operation at any time. In git system, the
only information that can be useful to detect a real
undo/redo operation, is the message introduced
by users when they revert their modifications.
Unfortunately, not all users specify on their
messages that is a revert operation. For this
reason, it is difficult to manage this kind of
conflict by a revert mechanism. To simplify the
operation, we assume that all delete operations are
considered as undo of insert operation. Moreover,
before inserting an element in the model we test
if this operation is a redo or a simple insert as
shown in algorithm 1. The algorithm receives two
arguments: position of insertion and the content
of insertion. it returns the operation to be applied
in the document and to be sent to other replicas.
In line 1, the algorithm tests if it can find the
element as a tombstone (invisible to users) at
the same position. In this case this operation
is considered as redo, in the other case it is
considered as a simple insertion. 11

11 The user can delete an element, and after reinserts the same
element in the same position without an explicit redo operation.
During the collaboration there is a little chance to have this case.

12
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

Algorithm 1: LocalInsertion(pos, content)
Input: The content and the position on the

document
Output: operation
if ((getDoc(pos).visibility = false) and1

(getDoc(pos) == content) then2

return redo(position, content);3

else4

return insert(position, content);5

However, to manage the undo/redo operations,
the algorithm uses the computation of line
visibility degree [57]. When a line is created, it has
a visibility of 1. Each time the line is deleted, the
algorithm decreases its visibility degree. When
a delete is undone or an insert is redone, the
algorithm increases its line visibility degree. The
line is visible only if its visibility degree is greater
than 0.

• Accidental Clean Merge (ACM):
ACM [27] happens when users insert concurrently
the same content at the same position. During
the merge procedure, the merged document may
contain a duplicated element. OT algorithms
(described in section 2.2) can be used to
avoid these conflicts. They detect during the
transformation phases the ACM cases and might
transform them to noop operations (nil value).
To ensure consistency of the document when
two concurrent operations made in the same
position, TTF and other OT algorithms use site
id as a priority [41, 48]. Using this solution
with ACM transformation may create a divergence
as presented in Figure 15. Three sites shared
the same document initially "ABC". Site 0 and
site 2 inserts concurrently the same element "X"
at position 1 and produce "AXBC" document.
While, site 1 inserts concurrently "Y" at position
2 and produces "AYBC" document. To avoid the
ACM conflict, when site 0 receives the operation
from site 2, it does not execute the operation
since both users insert the same content at the
same position. However, when site 0 receives
the operation from site 1, it detects that both
operations have the same position. Since OT
algorithms give the priority to replica number,
op2 is transformed with op1. It is transformed to
insert at position 2 instead of position 1. Finally,
site 0 produces "AXYBC" document. On the other
hand, when site 1 receives op1 from site 0, it
is not transformed, since the priority is given to
site 0. Thus, site 1 produces "AXYBC" document.
Afterward, when site 1 receives the operation

from site 2, it transforms it to insert "X" at position
3 and produces "AXYXBC" document. On site 1,
ACM is not detected and replicas diverge.

ABC ABC

Op1 = ins(X, 2)

Site 0 Site 1

AXBC

AXYBC

ABC

Op3 = ins(X, 2)

Site 2

AXBC

AXBC

Op2 = ins(Y, 2)

AYBC

AXYXBCAXYBC

Figure 15. ACM divergence by using traditional OT

For this purpose, we propose a solution to use
the element of operation as a priority. As an
example, in this paper we chose the content’s hash
code. During the transformation, we add a new
test to detect the accidental clean merge cases.
Indeed, the algorithm 2 tests in lines 4 and 5 if
there are two concurrent insertions at the same
position with the same content. In this case, it
returns a noop operation, in the other case it
makes a traditional transformation by comparing
the position and the content’s code. Applying
algorithm 2 in Figure 15, the problem is resolved.
Indeed, when site 1 receives an operation from
site 2, the insertion of "X" is transformed into
position 2 instead of position 3 since the hash
code of "X" is less than hash code of "Y". Thus,
the algorithm detects that two "X" are inserted at
the same position. Site 1 detects ACM and does
not execute op3. Finally, all replicas converge and
produce "AXYBC" document.

In the following, we provide an experiment to
compare our solution with git merge and the existing
operation-based approaches.

6.3. Adapted merge evaluation
To observe the merge results improvement produced
by our solution, we replay the same experiment made
above (Section 4.2), only this time by using our solution.

During the experiment, the framework computes the
number of accidental clean merge and undo/redo cases.
Table 2 presents the number of accidental clean merge
and the number of undo/redo operations produced in
git repositories.

13
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

Algorithm 2: Transform(op1, op2)
Input: operations to transform : op1 and p2
Output: operation applied on the document : op
Let c1 and c2 respectively the content of op1 and1

op2
Let t1 and t2 respectively the type of op1 and op22

Let p1 and p2 respectively the position of op1 and3

op2
if (t1 = insert) and (t2 = insert) then4

if (c1=c2) and (p1=p2) then5

return noop();/* An operation that6

returns null value */

else7

if (p1 > p2) or (p1=p2 and8

HashCode(c1) > HashCode(c2)) then9

return insert(c1, p1+1,Sitei);10

else11

return insert(c1, p1,Sitei);12

Table 2. ACM and Undo/Redo in git repositories
XXXXXXXXProject

Features
Accidental Clean Merge undo redo

backbone 271 1357 1137
bootstrap 563 7210 3957

d3 7 19877 218
Git 1272 42734 1614

Gitorious 750 932 513
rails 426 5329 16172

status 2297 9060 6352

6.4. Results
Figure 16a and 16b represent respectively the percent-
age of merge blocks and merge lines for TTF, git merge
algorithms and CMUndo. To observe how undo/redo
and accidental clean merge operations impact on merge
results, we present also Clean Merge (CM) algorithm
that detects only accidental clean merge cases (without
undo/redo operations). We consider the merge blocks
and merge lines produced by git merge presented in
Table 1 as the reference (=100%).

The number of merge blocks and merge lines
correlates well with the number of accidental clean
merge and undo/redo operations represented in Table
2. Indeed, more accidental clean merge and undo/redo
operations detected in repositories and more the
difference between our solution and other algorithms
grows. For example, in git repository we detected a
large accidental clean merge and undo operations, so
the gain of user’s effort obtained by our solution is
around 54% in git repository. In Gitorious repository,
git merge is more efficient than all algorithms in merge
block, This is due to a specific collaboration pattern
in the file “diff_browser.js”. The users collaborate

independently and each one produces almost the same
document. During the merge procedure git merge
manages well this kind of collaboration.

CMUndo algorithm implements more functions to
detect the accidental clean merge and undo/redo
operations. It reduces in all cases the effort of users,
except in Gitorious repository.

In Figure 16a and on repositories that contain much
accidental clean merge and undo/redo operations,
git merge algorithm outperforms TTF algorithm but
remains worse than CMUndo algorithm. Indeed,
TTF algorithm does not manage the accidental clean
merge operations (see Figure 13), while git merge
algorithm can merge them correctly and can retrieve
some identical lines when two concurrent blocks are
inserted. CMUndo is more efficient than all other
algorithms except on Gitorious repository. Indeed,
CMUndo takes the advantage of git merge since it
detects accidental clean merge operations and takes
the advantage of operation-based algorithms since
it manages well the concurrent addition at the same
position. Except for Gitorious repository, CMUndo
algorithm is the best.

In Gitorious repository git merge is more efficient than
all algorithms on merge block, This is due to a specific
collaboration pattern on the file “diff_browser.js”.
The collaboration in this file begins with the merge
of two branches that have no ancestor in common.
However, these two branches contain states with
common lines that the git merge tool is able to merge.

However, the impact of accidental clean merge
operations on merge result is greater than undo/redo
operations. Indeed, CM algorithm that manages only
accidental clean merge cases and CMUndo algorithm
that manages accidental clean merge and undo/redo
cases improve almost the same merge result. The
difference is only 3%.

Using git merge algorithm in asynchronous system
creates more conflicts that CMUndo algorithm, Con-
sequently, the document cannot be merged and users
make more correction on their document. Comparing
git merge and CMUndo algorithms, the later gain 54%
on git repository and 59% on bootstrap repository.
However, it loses just 1% on Gitorious repository.

In Figure 16b, it is clearly that CMUndo algorithm
is the best. It outperforms widely all other algorithms
and especially git merge algorithm. More algorithm
generates merge blocks and more the document require
corrections. In Figure 16a we found that CMUndo
generate less blocks than git merge algorithm, for this
reason the users introduce many lines by using git merge
algorithm than CMUndo algorithm.
In addition, when a conflict occurs there is a high
probability to generate a large block in state-based than

14
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

0

20

40

60

80

100

120

140
Git merge
CM
CMUndo
TTF

backbone bootsrap d3 git gitorious rails status

(a) Merge blocks on git projects

20

40

60

80

100

120

140

Git merge
CM
CMUndo
TTF

backbone bootsrap d3 git gitorious rails status
0

(b) Merge lines on git projects

Figure 16. Merge blocks and merge lines

operation-based approaches. Indeed, using operation-
based approach, some operations can be inserted
correctly, while on state-based approaches, the merge
procedure depends on blocks. Then, when states are
mixed the users require much correction. For this
reason, TTF algorithms outperform git merge algorithm
on merge lines. In Gitorious repository and precisely in
“diff_browser.js’ file, two users insert concurrently
a large block with a content almost the same. During
the merge procedure, git merge can merge correctly
the identical lines while operation-based approaches
do not. for this reason, git merge outperform TTF
algorithms. We notice that, this kind of collaboration is
specific and rarely comes.
Using CMUndo algorithm on asynchronous system, the
users require few corrections, while git merge algorithm
creates more conflict and require more corrections.
Comparing git merge and CMUndo algorithms, the
later gain 52% of lines on git repository and 57% on
bootstrap repository.

To summarize the experiment, we compute the total
merge blocks and merge lines on all repositories. We
found that for 1335 files, we compute 5799 accidental
clean merge, 118409 undo/redo operations, a gain
of 3583 blocks and 21675 lines by using CMUndo
algorithm. Figure 17 presents the total merge blocks and
merge lines. In addition, we separate both algorithms
(accidental clean merge –CM– and undo/redo) from our
approach to observe the effect of each one on the result.
TTF gains 26% in blocks and 23% on lines, while our
solution gains 43% blocks and 50% lines. Moreover,
accidental operations have the greatest effect on the
document with a gain of 40% in blocks and 45% on
lines. While undo/redo operations represent a gain of
only 5% on blocks and lines.

Statistical analysis. We also perform a statistical test
of significance. Since the dataset used is independent,

0

20

40

60

80

100

120

140

Git merge
CM
CMUndo
WootH
Logoot
Treedoc
SOCT2

Blocks Lines

Figure 17. Total merge block and merge line

a non-parametric analysis method would be the most
adapted approach for analysis. Using Kruskal-Wallis
test12, we observe that all operation-based algorithms
outperform git merge, and all results obtained are very
significant (p-value<0.05).

For the block metric, the average gain is between 31%
and 33% and p-value is 0.004 for all operation-based
merge except Logoot. Even if the average gain in Logoot
is 5%, the result remains significant (p-value=0,00019).
In addition, the difference between all operation-based
merge (including Logoot) is in average between 26%
and 27% and very significant (p-value < 0.001).

For the line metric, the average gain is between 32%
and 35% for all operation-based algorithms including
Logoot. This difference is very significant since p-value
= 0. The difference between the operation-based merge
is below 3% but also significant (p-value = 0,00235).

12The Kruskal-Wallis test does NOT assume that the data are
normally distributed.

15
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

We present here aggregated results, but our frame-
work produce results detailed per file. Analyzing these
results, we were able to understand in which collabo-
ration pattern difference occurs. In the following, we
explain why such a difference exists between the algo-
rithms and why on Gitorious repository we obtain a
different outcome.

7. Related Work
As presented in this paper, evaluate software merg-
ing by using operation-based algorithm during a con-
current collaboration plays an important role in the
software development process. Indeed, understand the
conflicts and resolve them, improve the productivity of
the development team. Here we discuss some related
work on evaluation of merge results.

Textual, syntactic and semantic merging is widely
studied in [13, 19, 21, 31, 37, 40]. However, the
git system deploys a generic model to allow any
collaboration. The users can collaborate to produce
XML files or a simple textual collaboration such as
software source code. For this purpose, it is difficult
to implement semantic and syntactic algorithms on git
system. Thus, in this paper we focused only on textual
merging.

In [27], many policies are proposed to solve conflict in
structured documents such as XML files or file systems.
These policies can be applied with our methodology to
manage the files of git system. In this manuscript, we
focused only in a simple linear text such as software
development.

Palantir [45], Crystal [6] and CollabVS [9] propose a
solution to detect and resolve the conflicts earlier. They
anticipate the actions a developer may wish to perform
and execute them in the background. The conflict can
only be detected after the conflict has already developed
in background. Cassandra [20] proposes a novel conflict
minimization technique that evaluate task constraints
in a project to recommend optimum task orders for
each developer. However, all methodology has been
proposed just to measure the size of the conflict and the
quality of the merges. Among them, no paper published
to understand the conflicts and using operation-based
merge.

Bayou [38] proposed a technique to maintain
the consistency of the shared document. It used
an epidemic algorithm to propagate modifications
between weakly consistent replicas. If the merge
procedure cannot find a solution, conflict resolution
is delegated to the user. However, the authors do not
compute the conflicts and the efforts made by users.
D.Perry et al. [37] studied the various aspects of parallel
development in the context of a large scale software
development. They observed a large collaboration and
studied some interfering changes. However, they do not

offer a solution to merge correctly the modifications.
In [24, 37] the authors specify that 90% of the
modifications can be merged without detection conflict
and only 10% cannot be merged automatically, since
the tool does not consider any syntactic or semantic
information. The authors do not study the effort made
by users to correct the conflicts.

In [32], the authors propose an operational transfor-
mation algorithm that realizes a file system synchro-
nization. However, The only operational transformation
designed for collaborative editing and respect the trans-
formation property C1 and C2 [42] is TTF approach
evaluated in this paper.

On the other hand, operation-based algorithms
designed for concurrency control such as Operation
Transformation (OT) algorithms are widely studied
on [1, 12, 53]. All the studies are focused on
synchronous systems and they are focused on execution
time or memory occupation. Recently new approaches
called Commutative Replicated Data Type (CRDT) are
proposed [35, 39, 43, 56] to be a substitution of
OT algorithms. As OT algorithms, these approaches
are evaluated only on execution time and memory
occupation in [1] and [2]. Git merge algorithm that is
widely considered as the gold standard for merging
document on asynchronous systems. It is widely
studied and presented by many researchers in [11, 22,
25, 46]. However, study the merge result to reduce the
user’s effort in asynchronous system by using operation-
based approaches are never studied.

An awareness mechanism can be independently
added upon the same kind of merge algorithm
without affecting their result [4, 17]. So, an awareness
mechanism can be added in system upon CMUndo
algorithm. If a conflict occurs, the system proposes to
users an automatic merge and they can accept it without
efforts. It is possible also to add modifications in the
automatic merge if necessary.

In this regard, this paper studies for the first time a
decentralized solution that can offer a better merge than
usual tool.

Threats to validity To help users to detect and resolve
conflicts, merge tools usually add awareness [10]
mechanism such as git markers “»»»”. We removed
these markers to obtain comparison results. However,
all other studied merge tools evaluated can integrate an
awareness mechanism without modify their results as
in [45]. For instance, the so6 tool [32], used in the web
software forge Libresource, adds conflict markers on
top of a traditional operational transformation merge
mechanism.

Another threat is the metric used in this paper.
We presented the number of lines that a user must
modify but not differentiate the kind of modification
(insertion or deletion). While, an effort made by users to

16
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

delete a line can be considered as more disturbing than
insertion of a new line. However, our framework allows
to capture separately these kinds of modifications. In
this paper, due to space limitation, we focused on
presenting a first automatic measurement of the merge
result quality.

The operation-based algorithms presented do not
treat move operations. Therefore, move operations
are treated as deletions following by insertions in
another position. However, our framework is able
to detect move operations. In [3], we explain how
move operations are detected and their affect on the
automatic merge.

Moreover, depending on the historical data, an
automatic merge procedure better than git’s one
may paradoxically be badly evaluated. The merge
committed by a developer is influenced by the git merge
procedure. With another procedure, he or she may
produce a different result that is just as satisfactory
to the developer. We consider that the closer result of
merge procedure on average is the result of the merge
produced manually after a conflict generated by merge
tool, the better it is.

Finally, we limit our study to DVCS histories
that contain source code. The merge decision may
be different for other kind of documents. We have
conducted the evaluation on several repositories that
contain source code written in various programming
languages to limit the impact of the language syntax
on the evaluation. Some DVCS histories also contain
more “human-oriented” documents such as html files,
software documentation or wiki files.

8. Conclusion

This paper presents an evaluation of eventual consis-
tency algorithms in asynchronous systems, designed for
collaborative editing. Firstly, we proposed a method-
ology to measure the quality of the merge algorithms
in asynchronous collaborative editing systems. Then,
we observe the users’ collaboration to understand the
common conflicts. Finally, we presented a solution
to overcome the most cases of conflicts that can be
occur during the collaboration by using a decentralized
eventual consistency algorithms. Our contributions are
made through an open-source framework which allow
us to observe the collaboration and detect the real
conflicts. The tool simulates a real collaboration as on
the history of git repositories by using state-based and
operation-based approaches. It computes the number
of conflicts and the number of corrections requires by
users to merge correctly their document.

Merging automatically the modifications can help
users during the collaborations. When concurrent mod-
ifications occur, the merge tool can create conflicts. The

users make an effort to correct their document. Reduc-
ing the user’s effort improve the quality of collaboration
and encourage users to work collaboratively.

In this paper, we observed the collaboration and
studied the case where concurrent modifications inter-
fere. We evaluated operation-based algorithms on asyn-
chronous corpus. We found that, the existing operation-
based algorithms perform well in asynchronous sys-
tems, but they do not manage any specific conflicts such
as accidental clean merge and undo/redo operations.
While, git merge algorithm handles these cases without
problem.

For this purpose, we defined a new solution to avoid
these kinds of conflicts and generate an operation-based
algorithm that can be used correctly in asynchronous
systems, reduce the conflicts and human interactions. It
also outperforms the existing tool used in asynchronous
systems: git merge.

Our experiments demonstrate in which cases
operation-based algorithms are suitable for
asynchronous systems and outperform the git merge
tool, the default merge tool used in git systems.
We investigate first on the collaboration to detect
the problems of merging procedure. Thus, we give
guidelines to improve such OT algorithms to take into
account the most common cases that create conflicts
when accidental clean merge and undo/redo operations
are generated. Finally, we proposed a solution to handle
these kinds of conflicts, make an experiment on
asynchronous corpus, improve the quality of the merge
and reduce the user’s effort.

Acknowledgment
The authors would like to thanks following people for
their contributions to the algorithms implementation :
G. Oster (SOCT2), M. Zawirski (TreeDoc) and S. Martin
(Git Walker).

References
[1] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh,

and P. Urso. Evaluating crdts for real-time document
editing. In ACM, editor, ACM Symposium on Document
Engineering, page 10 pages, San Francisco, CA, USA,
september 2011.

[2] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, and P. Urso.
8émes journées francophones mobilité et ubiquité. In
ACM, editor, ACM Symposium on Document Engineering,
page 12 pages, IUT de Bayonne âĂŞ Pays Basque, FR, jun
2012.

[3] M. Ahmed-Nacer, P. Urso, V. Balegas, and N. Preguica.
Concurrency control and awareness support for multi-
synchronous collaborative editing. In Collaborative Com-
puting: Networking, Applications and Worksharing (Collab-
oratecom), 2013 9th International Conference Conference
on, pages 148–157, 2013.

17 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

[4] S. Alshattnawi, G. Canals, and P. Molli. Concurrency
awareness in a p2p wiki system. In Collaborative
Technologies and Systems, 2008. CTS 2008. International
Symposium on, pages 285–294, 2008.

[5] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and
P. Devanbu. The promises and perils of mining git. In
Mining Software Repositories, 2009. MSR ’09. 6th IEEE
International Working Conference on, pages 1–10, 2009.

[6] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Proactive detection of collaboration conflicts. In
Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 168–178, New York,
NY, USA, 2011. ACM.

[7] M. Cart and J. Ferrie. Asynchronous reconciliation based
on operational transformation for P2P collaborative
environments. In Proceedings of the 2007 International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, pages 127–138. IEEE
Computer Society, 2007.

[8] R. Choudhary and P. Dewan. A general multi-user
undo/redo model. In ECSCW’95: Proceedings of the fourth
conference on European Conference on Computer-Supported
Cooperative Work, pages 231–246, Norwell, MA, USA,
1995. Kluwer Academic Publishers.

[9] P. Dewan and R. Hegde. Semi-synchronous conflict
detection and resolution in asynchronous software
development. In ECSCW, pages 159–178, 2007.

[10] P. Dourish and V. Bellotti. Awareness and coordination
in shared workspaces. In Proceedings of the 1992
ACM conference on Computer-supported cooperative work,
CSCW ’92, pages 107–114, New York, NY, USA, 1992.
ACM.

[11] D. M. P. Eggert and R. Stallman. Comparing and Merging
Files with GNU diff and patch. Network Theory Ltd,
January 2003.

[12] C. A. Ellis and S. J. Gibbs. Concurrency Control in
Groupware Systems. SIGMOD Record : Proceedings of the
ACM SIGMOD Conference on the Management of Data -
SIGMOD ’89, 18(2):399–407, May 1989.

[13] M. Fowler. Refactoring: Improving the Design of Existing
Code. 1999.

[14] M. L. Guimarães and A. R. Silva. Improving early
detection of software merge conflicts. In Proceedings of
the 2012 International Conference on Software Engineering,
ICSE 2012, pages 342–352, Piscataway, NJ, USA, 2012.
IEEE Press.

[15] C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
Proceedings of the 2004 ACM conference on Computer
supported cooperative work, pages 72–81. ACM, 2004.

[16] O. A.-H. Hassan and L. Ramaswamy. Message
replication in unstructured peer-to-peer network. In
CollaborateCom, pages 337–344, 2007.

[17] C.-L. Ignat, S. Papadopoulou, G. Oster, and M. C. Norrie.
Providing awareness in multi-synchronous collaboration
without compromising privacy. In Proceedings of the 2008
ACM conference on Computer supported cooperative work,
pages 659–668. ACM, 2008.

[18] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving
correctness of transformation functions in real-time

groupware. In Proceedings of the eighth conference on
European Conference on Computer Supported Cooperative
Work, ECSCW’03, pages 277–293, Norwell, MA, USA,
2003. Kluwer Academic Publishers.

[19] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In Proceedings
of the International Conference on Software Maintenance,
ICSM ’94, pages 243–252, Washington, DC, USA, 1994.
IEEE Computer Society.

[20] B. K. Kasi and A. Sarma. Cassandra: Proactive conflict
minimization through optimized task scheduling. In
Proceedings of the 2013 International Conference on Soft-
ware Engineering, ICSE ’13, pages 732–741, Piscataway,
NJ, USA, 2013. IEEE Press.

[21] A.-M. Kermarrec, A. I. T. Rowstron, M. Shapiro, and
P. Druschel. The IceCube approach to the reconciliation
of divergent replicas. In Proceedings of the twentieth
annual ACM symposium on Principles of distributed
computing - PODC’01, pages 210–218. ACM Press, 2001.

[22] S. Khanna, K. Kunal, and B. C. Pierce. A formal
investigation of diff3.

[23] D. B. Leblang. The cm challenge: Configuration
management that works. In Configuration management,
pages 1–37. John Wiley & Sons, Inc., 1995.

[24] D. B. Leblang. Configuration management. chapter The
CM challenge: configuration management that works,
pages 1–37. John Wiley & Sons, Inc., New York, NY, USA,
1995.

[25] T. Lindholm. A three-way merge for xml documents.
In Proceedings of the 2004 ACM symposium on Document
engineering, DocEng ’04, pages 1–10, New York, NY, USA,
2004. ACM.

[26] J. Maeda. The laws of simplicity. MIT Press, 2006.
[27] S. Martin, M. Ahmed-Nacer, and P. Urso. Controlled

conflict resolution for replicated document. In
CollaborateCom, pages 471–480, 2012.

[28] S. Martin, P. Urso, and S. Weiss. Scalable xml
collaborative editing with undo. In R. Meersman,
T. Dillon, and P. Herrero, editors, On the Move to
Meaningful Internet Systems: OTM 2010, volume 6426
of Lecture Notes in Computer Science, pages 507–514.
Springer, 2010.

[29] F. Mattern. Virtual time and global states of distributed
systems. In M. C. et al., editor, Proceedings of
the International Workshop on Parallel and Distributed
Algorithms, pages 215–226, Château de Bonas, France,
October 1989. Elsevier Science Publishers.

[30] T. Mens. A state-of-the-art survey on software merging.
Software Engineering, IEEE Transactions on, 28(5):449–
462, 2002.

[31] T. Mens. A state-of-the-art survey on software merging.
IEEE Trans. Softw. Eng., 28(5):449–462, May 2002.

[32] P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the
transformational approach to build a safe and generic
data synchronizer. In Proceedings of the ACM SIGGROUP
Conference on Supporting Group Work - GROUP 2003,
pages 212–220, Sanibel Island, Florida, USA, November
2003. ACM Press.

[33] E. W. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1(2):251–266, 1986.

18
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1EAI
European Alliance
for Innovation

Ahmed-Nacer Mehdi et al.

[34] G. Oster, P. Urso, P. Molli, and A. Imine. Data
Consistency for P2P Collaborative Editing. In
Proceedings of the ACM Conference on Computer-Supported
Cooperative Work - CSCW 2006, pages 259–267, Banff,
Alberta, Canada, nov 2006. ACM Press.

[35] G. Oster, P. Urso, P. Molli, and A. Imine. Data
Consistency for P2P Collaborative Editing. In
Proceedings of the ACM Conference on Computer-Supported
Cooperative Work - CSCW 2006, pages 259–267, Banff,
AB, Canada, November 2006. ACM Press.

[36] G. Oster, P. Urso, P. Molli, and A. Imine. Tombstone
transformation functions for ensuring consistency in
collaborative editing systems. In The Second International
Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom 2006),
Atlanta, Georgia, USA, November 2006. IEEE Press.

[37] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in
large-scale software development: an observational case
study. ACM Trans. Softw. Eng. Methodol., 10(3):308–337,
July 2001.

[38] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible update propagation for
weakly consistent replication. In Proceedings of the
sixteenth ACM symposium on Operating systems principles
- SOSP’97, pages 288–301. ACM Press, 1997.

[39] N. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia.
A Commutative Replicated Data Type for Cooperative
Editing. In Proceedings of the 29th International
Conference on Distributed Computing Systems - ICDCS
2009, pages 395–403, Montreal, QC, Canada, June 2009.
IEEE Computer Society.

[40] N. M. Preguiça, M. Shapiro, and C. Matheson.
Semantics-based reconciliation for collaborative and
mobile environments. In On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM
Confederated International Conferences, CoopIS, DOA, and
ODBASE 2003, volume 2888 of Lecture Notes in Computer
Science, pages 38–55. Springer, November 2003.

[41] M. Ressel and R. Gunzenhäuser. Reducing the problems
of group undo. In GROUP ’99: Proceedings of the
international ACM SIGGROUP conference on Supporting
group work, pages 131–139, New York, NY, USA, 1999.
ACM.

[42] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser.
An integrating, transformation-oriented approach to
concurrency control and undo in group editors. In
CSCW, pages 288–297, 1996.

[43] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated
abstract data types: Building blocks for collaborative
applications. Journal of Parallel and Distributed
Computing, 71(3):354 – 368, 2011.

[44] Y. Saito and M. Shapiro. Optimistic replication. ACM
Computing Surveys, 37(1):42–81, 2005.

[45] A. Sarma, D. Redmiles, and A. van der Hoek. Palantir:
Early detection of development conflicts arising from
parallel code changes. Software Engineering, IEEE
Transactions on, 38(4):889–908, 2012.

[46] R. Smith. distributed with gnu diffutils package, GNU
diff3 (1988) Version 2.8.1, April 2002.

[47] M. Suleiman, M. Cart, and J. Ferrié. Serialization of
Concurrent Operations in a Distributed Collaborative
Environment. In Proceedings of the ACM SIGGROUP
Conference on Supporting Group Work - GROUP ’97, pages
435–445, Phoenix, AZ, USA, November 1997. ACM
Press.

[48] M. Suleiman, M. Cart, and J. Ferrié. Serialization
of concurrent operations in a distributed collaborative
environment. In Proceedings of the international ACM
SIGGROUP conference on Supporting group work: the
integration challenge, GROUP ’97, pages 435–445, New
York, NY, USA, 1997. ACM.

[49] C. Sun. Undo as concurrent inverse in group edi-
tors. ACM Transactions on Computer-Human Interaction
(TOCHI), 9(4):309–361, December 2002.

[50] C. Sun and C. A. Ellis. Operational transformation
in real-time group editors: Issues, algorithms, and
achievements. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work - CSCW’98, pages
59–68, New York, New York, États-Unis, November
1998. ACM Press.

[51] W. F. Tichy. Rcs—a system for version control.
Softw. Pract. Exper., 15(7):637–654, July 1985.

[52] L. Torvalds. git, (April 2005). http://git-scm.com/.
[53] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies

convergence in a distributed real-time collaborative
environment. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, CSCW ’00, pages
171–180, New York, NY, USA, 2000. ACM.

[54] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, January 2009.

[55] S. Weiss, P. Urso, and P. Molli. An Undo Framework
for P2P Collaborative Editing . In CollaborateCom, pages
529–544, Orlando, USA, November 2008.

[56] S. Weiss, P. Urso, and P. Molli. Logoot: A scalable
optimistic replication algorithm for collaborative editing
on p2p networks. In 29th IEEE International Conference
on Distributed Computing Systems (ICDCS 2009), pages
404 –412, Montréal, Québec, Canada, jun. 2009. IEEE
Computer Society.

[57] S. Weiss, P. Urso, and P. Molli. Logoot-undo: Distributed
collaborative editing system on p2p networks. IEEE
Transactions on Parallel and Distributed Systems, 21:1162–
1174, 2010.

19 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e1
EAI

European Alliance
for Innovation

Merging by Decentralized Eventual Consistency Algorithms

	1 Introduction
	2 Merge Management
	2.1 State-Based Algorithm: Git Merge Tool
	2.2 Operation-Based Algorithms: OT & CRDTs
	Operational Transformation (OT)
	Commutative Replicated Data Types (CRDT)

	3 Methodology
	3.1 Corpus available
	3.2 Conflicts in Practice
	3.3 Framework
	3.4 Operation-based simulation
	3.5 Merge computation

	4 Experimental Evaluation
	4.1 Algorithms Evaluated
	Git Merge Tool
	SOCT2/TTF
	WOOT
	Logoot
	Treedoc

	4.2 Empirical Study
	4.3 Results

	5 Conflicts in Practice
	Addition at the same position
	Concurrent consecutive modifications
	Accidental Clean Merge (ACM)
	Undo/Redo

	6 Improve Textual Merge
	6.1 TTF algorithm
	6.2 Clean Merge Undo Algorithm (CMUndo)
	6.3 Adapted merge evaluation
	6.4 Results
	Statistical analysis

	7 Related Work
	8 Conclusion

