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Abstract. The Spotlight Synthetic Aperture Radar (SSAR) is capable of producing 

high quality images with very high resolution in both the azimuth and range when 

operated with long duration pulses. Long duration pulses also allow high power to be 

transmitted using miniaturized radar transmitters, thus also extending the radar range. 

The major drawback to the use of long duration radar pulses is the need for a large 

radar memory and the reduction in processing speed. Segmentation of the radar data 

and its parallel processing addresses the limitation of memory and processing speed. 

However, the recombination of processed segments reduces the image quality due to 

recombination errors. The use of both Fast Fourier transformation (FFT) and Discrete 

Cosine transformation (DCT) in SSAR data processing eradicates the errors 

associated with sub-image reconstruction.  

Keywords: Long duration pulses, Spotlight SAR, Data Segmentation, Parallel 

processing, Sub-image recombination, discrete cosine transformation.  

1   Introduction 

   Spotlight Mode Synthetic Aperture Radar (SSAR) offers very high image geometric 

resolution in both the azimuth and range direction when long duration pulses are 

employed. This is attributable to the continuous steering of the airborne or space-

borne antenna so that the transmitted beam remains focused on the target scene of 

interest thereby increasing the radar viewing angle. The longer the duration of the 

radar pulse, the wider the bandwidth and the better image range resolution. Long 

duration radar pulses offer improved signal to noise ratio of the transmitted and 

received pulses, higher transmitted energy and extended radar range. This presents the 

opportunity to miniaturize radar transceivers yet producing the required transmit 

power. Major limitation of long duration pulse data is the need for large memory and 

more processing time, which slows down the SSAR processing system. Segmentation 

or partitioning of the received SSAR data in 1 or 2 dimension and parallel processing 
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eradicates processing time challenges. In this research, 2-D segmentation is employed 

prior to parallel processing. The recombination of sub-images poses a challenge 

through errors that tend to compromise image quality. We present in this paper, a 

technique that can help eradicate sub-image reconstruction errors through use of both 

Fast Fourier transformation (FFT) and Discrete Cosine transformation (DCT).   

2   SSAR Data Generation 

   The choice of a particular waveform in radar and its processing technique depends 

on the radar’s specific mission and role [1]. The system can use either continuous 

wave form or pulsed waveform, with or without modulation. The modulation 

technique can be analog or digital. In SAR, a 2-D terrain reflectivity function can be 

assumed rather than a more general 3-D reflectivity function [2], [3]. For convenience 

sake, a rectangular shape of the transmitted LFM pulse is selected and the amplitude 

of the pulse is modified to A
o

.

      So, the radar transmits an LFM chirp signal with chirp rate γ, inter-pulse period T 

and centre frequency f
c

. The pulses exit the transmitter with a signal ( , )s n t
tx

. When

^
t t nT   the transmitted signal becomes: 

2^^
[2 ]

( , )
j f t tt cs n t A rect e

tx o T
p
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The received signal from a point scatterer at ( , , )X Y Z
t t t

at pulse n  is given by: 

^ ^
2[2 ( )] ( )

( , )
t j f t j td c d ds n t a rect e e

rx t T
p
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where a
t t

  , 
t

  is reflectivity or radar cross-section area (RCS)  and 
d
 is the total 

delay time of the pulse from the transmit antenna to the target and back to the receive 

antenna. The total delay time can be approximated as 2R
t

d c
  where  R

t
 is slant range to 

target. The received signal can be viewed as a 2-D signal in the coordinates n  and t.  

The received signal becomes: 

^ ^2 2 2 2[2 ( )] ( )
( , )

R R Rt t tt j f t j t
cc c cs n t a rect e e
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After de-ramping, the intermediate frequency (IF) is a base-band signal given by: 

^
^ 2 4 2 2( )4 ( )( )^ 2
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R f tt c j R Rt j R R t ot oc c cs n t a rect e e
IF t T

p




  
   

 
 
  
 

.   (4) 

304



 Or can conveniently be expressed as follows: 

^^ 22 44 2 2( )( )( )^ 2
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The motion compensated 2-D digital signal for the received N
p

radar pulses and each 

pulse sampled by K samples can therefore be represented by: 
1

1 ( , )
1( , )

0 0

N
p K j n k

S n k a e
d t

n k





  
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where; 4 4 2( , ) ( )( ) ( )
1 0 022 2

Tf Tk pc sn k R R R R
t tc F cs

 



       .              (7) 

0
R is radar antenna phase centre to scene centre;  k =sample number; T

s
=sampling 

period ;  T
p

=pulse width or duration;   F
s

=sampling frequency. 

The last term 4 2( )
02

R R
t

c


  in (7) represents the residual video phase (RVP) responsible 

for the quadratic phase error [2], [4]. This unwanted phase term arises from the range 

dechirping process and does not positively contribute to geometric positioning or 

resolution of scatterers in either range or cross-range. Usually the RVP is small and 

can be safely ignored in image formation without any serious impact on image 

quality. The phase of the stabilized signal then becomes: 

4
( , ) ( )( )

1 02 2

Tf Tk pc sn k R R
tc F

s





       (8) 

   In SSAR phase history data, signal phase is more important than magnitude. For 

this reason, SSAR system analysis often concentrates on the phase of the signal 

backscattered from a single idealized point scatterer at some location within an image 

scene [4]. The idea is to analyze a point target. Although the transmitted and received 

radar signals are real quantities, for acceptable convenience, these signals are 

expressed in complex exponential form. Point target analysis allows the modeling of 

all signal phase contributions from signal generation, transmission and reception. The 

model takes care of demodulation, real-time motion compensation, pre-summing and 

digitization.  The stabilized received SSAR expression of equation 7 above was used 

to simulate data of size 128 x 1989 which was used in this research. The SSAR raw 

data generated is as shown in fig. 1 below. It is observed that the two images differ 

slightly in texture with the noiseless image being smoother than the noisy image. 
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Noiseless SSAR Raw Data
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a. Noise-Free Raw Data     (b) Noisy Raw Data 

     Fig. 1. SSAR Raw Data 

Fig. 2 below shows the real target locations from the simulated SSAR data in three 

dimension. 

Fig.2. SSAR target locations in 3-dimension 

3 Characteristics of SSAR Data 

     From the expression for the 2-D sampled and stabilized (motion compensated) 

SAR signal, the related phase was developed. Each sample in the data includes the 

quantized amplitude and phase components. Each element of the array therefore 

represents an image pixel with amplitude related to the strength of a backscatter 

coefficient in the corresponding scene area [3]. The corresponding scene center 

frequency is zero since it is also the reference point for motion compensation. 

   Each return pulse is recorded at an angle in the spatial frequency domain related to 

the relative rotational angle 
a
 (aperture viewing angle or squint angle) of the scene.

Due to the quadratic nature of the motion compensated phase of the received echo 

signal, the 2-D phase history data is recorded in form of an annulus in K
x K

y
 plane as 

shown in figure 3 below. The radial positioning of each return pulse is proportional to 

the instantaneous transmitted frequency
^

f t
c

 . The scatterer coordinates X
t and Y

t can

be coded in frequency along K
x and K

y
axes (spatial frequencies). Therefore, the polar 

format angle 
p

 and the distances R
t
and R

a vary with pulse number n . While 
p

 is

constant in a pulse, it varies linearly with the measured angle a
 from pulse to pulse.

So, the signal returned from a scatterer at ( , , )X Y Z
t t t for pulse n is stored in the processor 

space along the line ( )n
p a

  [4]. 
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    The spatial frequency K
c
corresponds to the aperture centre pulse n n

c
 returned by 

scene centre.  To process such data, various reconstruction techniques are employed 

in the process. These include the Fourier transformation, Interpolation, Chirp-Z 

transformation and use of reconstruction filters [5], [6], [7], [8], [9], [10]. In this 

paper, the Fourier transformations (FFT and IFFT) were employed on each SSAR 

data segment for reconstruction of the composite SSAR image. In fig. 4 we show a 

typical SSAR data geometry in polar format. 

 

Fig. 3. Sampled data geometry in the spatial frequencies K
x

and K
y

plane 

4 Two-Dimensional Block Segmentation 

When segmenting a data matrix in 2-D, both dimensions of the data A are segmented 

to form block segments. The technique of segmentation is based on 2-D block 

mapping [11], in which the process on the 
th

i and thj column on a computer grid of 

size N N
pc pc
 , is referred to as P

ij
.

 Fig.4. Spotlight SAR Returns (MathsWorks)         
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Process P
ij

is assigned a sub-block of A whose upper left vertex is

(( 1) / 1, (j 1) / 1)i n N n N
pc pc

    and whose lower right vertex is ( / , j / )in N n N
pc pc

  for 

square data of size n n . The technique is to keep track of these vertices for every thk  

iteration of the algorithm. Each process updates its part of the block matrix during 

each iteration. For non-square data of size m n  the upper left vertex is represented by 

(( 1)m/ 1, (j 1) / 1)i N n N
pc pc

    and the lower right vertex is ( / , j / )im N n N
pc pc

. For 

square data, it is segmented into N
pc

 blocks or segments of size ( / ) ( / )n N n N
pc pc

 , for 

parallel processing and each block segment is assigned to one of the N
pc

processors 

[11], [12]. For data matrix of size m n , it would be segmented into N
pc

blocks of

size (m/ ) ( / )N n N
pc pc

 . Some resizing of some data prior to segmentation may also be 

necessary as discussed in the next chapter. Fig.5 shows an example of a 4 4  segment 

grid of data A and how it is segmented in 2-D for parallel processing. Details of the 

steps of execution at each processor and communications requirements for the 2-D 

parallel algorithm are given in [13], [14], 15]. The first and second dimension 

segmentation can also be used to achieve 2-D segmentation as in Jagged-Like and 

Checkerboard methods [13].  

  In general, d-dimensional array, data can be segmented using up to d-dimensional 

block segments. Image data segmentation may be viewed as a process that partitions 

A into N
pc

sub-regions (block segments) , ,...
1 2

N N N
pc pc pc

n
. Two block segments 

N
pc

i
and N

pc
j

would be adjacent if their union forms a connected set. If all the block 

segments are in the region N
pc

i
, then they have the same intensity level 

and ( )Q N TRUE
pc

i
 . The algorithm below (fig. 6) was developed to parallel process the 

segmented SSAR data. 
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Fig. 5. Matrix A distributed by 2-D segmentation into 
N N

pc pc


segments and the 

projection of A assigned to processor 
,

N
pc

i j
[11]. 

The reformatted SSAR data of size 128 x 1989 was resize to 128 x 1990 and was 

segmented into 2-D segments for each processor. Each segment had to be of size 

(m/ ) ( / )N n N
pc pc

  which translated to 64 x 995, for each of the 4 parallel processors (2 

x 2 processor grid).   Smaller segments could also be obtained by increasing the size 

of the processor grid. The square data implied that m=n and segment size would be 

(m/ ) ( / )N n N
pc pc

 . Table 1 shows the simulation data for 2-D Segmentation algorithm. 

 Fig.6.   2-D Segmentation Algorithm 
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   SAR processing creates a composite image of the ground from signals generated by 

a moving airborne radar platform. It is a computationally intensive process, requiring 

image processing and extensive input/output file exchange. Parallel processing was 

employed to speed up the processing of the SSAR data segments. Use of High 

Performance Computer could further speed up the processing of such data. The 

processing of the segmented SSAR data was accomplished through up-sampling, 

range and azimuth compression and sub-image resampling and filtering. 

5   Sub-image Reconstruction Errors 

    An important factor affecting image reconstruction error and computational 

complexity is the size of the sub-image. Subdividing an image reduces correlation 

between adjacent images to some acceptable level. It also facilitates the achievement 

of image size n n  where n  is an integer power of 2.  Image compression using 

transform coding is then applied to reconstruct the image. The image is reconstructed 

from reduced amount of data required to represent an image. There are basically three 

techniques used to transform sub-images and these are the discrete Fourier 

transformation (Fast Fourier Transformation, (FFT)), the Walsh-Hadamard 

Transformation (WHT) and Discrete Cosine Transformation (DCT).  The level of 

compression and computational complexity increase with sub-image size. 

Reconstruction errors tend to decrease as the sub-image size increases. The impact of 

sub-image size on transform reconstruction error for FFT, WHT and DCT is shown in 

fig.7.   The three curves are the FFT, WHT and DCT error curves. It is observed that 

larger size sub-images have lower root-mean square error values when compared with 

small size sub-images.  

 Fig.7. Reconstruction errors versus sub-image size [5] 

The three curve are seen to intersect at sub-image size 2 2  with the highest root-mean 

square error value. When the efficiencies of FFT, WHT and DCT in sub-image 

processing are analysed, it is observed that DCT is a more efficient technique despite 

an increase in sub-image size. 

6    Results Analysis 

    In this research, we combined FFT and DCT to reconstruct a resultant image from 
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sub-images with the least error. For a six point target SSAR scene, we show resultant 

image after sub-image recombination without DCT (fig. 8) and result with DCT (figs. 

9 & 10). The weakness of using FFT only is that the resultant image resolution is 

poor. It can be observed also that apart from poor image resolution, the targets of FFT 

processed segments appear distorted and out of sync with the true target locations. 

FFT processing of segments causes the resultant sub-images to shift position before 

recombination as shown in fig. 8. 

  (a)   True target locations    (b) Location of targets of FFT sub-image processing 

     Fig. 8. Sub-image reconstruction errors with FFT 

To reduce these reconstruction errors, the algorithm implemented both FFT and DCT 

and the results are shown in fig. 9 and 10. We show results of both noise free and 

noisy environment. 
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 (a)  Gray scale Image  (b) Full colour map 

Fig. 9. Noise free image of 6 point target scene 

(a) Gray scale image  (b) Full colour map 

Fig.10. Noisy image of 6 point target scene 
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In fig. 11, the reconstruction of a 36 point target scene using FFT and DCT is shown 

for noise free environment. 

(a)  Gray scale image  (b)    Full colour map image 

   Fig. 11. 2-D Segmentation Image for 36 Point Target Grid 

7   Summary 

   In this paper, non-traditional techniques (1-D and 2-D block segmentation) for 

segmenting SSAR data and images were presented. While the traditional 

segmentation techniques are based on certain characteristics such as intensity, 

amplitude, texture etc., non-traditional techniques may or may not depend on 

characteristics depending on the application. Segmentation of the radar data and its 

parallel processing addresses the limitation of memory and processing speed. 

However, the recombination of processed segments reduces the image quality due to 

recombination errors. The impact of sub-image size on reconstruction error when 

using image compression as a reconstruction technique was presented. It was 

observed in this research that the larger the sub-image size, the smaller the will be the 

reconstruction errors. The use of both Fast Fourier transformation (FFT) and Discrete 

Cosine transformation (DCT) in SSAR data processing reduces the errors associated 

with sub-image reconstruction. 
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