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Abstract 

Wireless Sensor Network (WSN)-based Automatic Weather Stations (AWSs) perform automatic collection and transmission 

of weather data. These AWSs face challenges, which lower their performance. Hence, a need for regular monitoring to 

reduce down time. We propose condition monitoring, comprised of a data receiver, analyser, problem classifier and reporter 

and visualizer, to mine data relationships, identify possible causes of problems and perform reporting of AWS status. The 

data receiver uses an M/M/1/k queuing model. We use Successive Pairwise REcord Differences (SPREDs) algorithm to 

compare arrival rates and packet content so as to establish sensor, node and AWS level performance. We also perform a 

hybrid of Grubb outlier detection and correlations amongst related variables for data validation. Problems take on one of 

four states. One connection can receive data at a rate as low as 1ms, without loss while problem identification especially in 

high density network is improved 
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1. Introduction

Automatic Weather Stations (AWSs) collect and transmit 

weather data without human intervention, enabling them to 

operate in remote areas. AWSs, which use Wireless Sensor 

Networks (WSNs) technology, in which distributed sensors 

collect varying parameters at predetermined intervals are 

the focus of this paper. While in remote deployments, 

WSNs face challenges such as coverage [1], packet loss 

and limited energy among others [2], which lower their 

health and life time. We use the term health to refer to the 

AWS’s ability to perform its functions such as packet 

delivery rate and AWS availability among many other 

performance metrics. In order to ensure that the health of 

the AWSs is known at all times, there is need to perform 

*Correspondence: mnsabagwa@cit.a.ug 

condition monitoring to facilitate preventive maintenance 

and to lower downtime, hence lowering data losses. 

Condition monitoring has been proposed in applications 

such as railway [3], wind turbines [4], automotive industry 

[5] and in structural health monitoring [6]. No research has

been performed on condition monitoring in AWSs.

Moreover, AWSs have unique application requirements.

During condition monitoring, the monitoring entity may 

either perform active or passive monitoring. In active 

monitoring, the monitoring tool gets access to the network 

for data collection purposes as well as controlling the 

monitored device whereas in passive monitoring, only data 

collection is permitted. In order for the monitor to control 

the remote device, support protocols such as CoAP [7] may 

be used. Our focus is on passive monitoring, which 

receives weather data and analyzes it to only establish the 
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health of the respective AWSs. Regardless of the type of 

monitoring used, the monitor should be furnished with data 

from which relationships are drawn. In our previous study 

of common AWS problems [8], AWSs face challenges 

such as energy exhaustion, packet dropping, inability of the 

gateway to transmit data and sensor node failure among 

others. While the received data is clearly structured, 

extracting knowledge on the AWS health requires 

performing data analytics.     

The monitoring entity, while receiving data from the 

AWSs, may face challenges such as increased data volume 

and data transmission or arrival rates. The high data arrival 

rates may cause packet dropping, hence data loss at the 

receiving end. Therefore, the monitoring tool should be 

able to receive and process the growing number of data 

packets without loss as a result of buffer overflows. 

Queuing models provide solutions for the imbalance in 

arrival rates and processing speeds by allocating temporary 

storage to packets, using predefined procedures in order to 

avoid packet dropping. Based on the arrival method, 

service time distributions and number of servers, the 

queuing models are able to optimize metrics such as server 

utilization and reducing delays in the waiting time. 

Queuing has been used in monitoring Service Level 

Agreements (SLAs) processes [9], manufacturing [10], 

patient monitoring, video streaming [11], airport arrivals 

and departures [12] among others. Queuing can also be 

adopted by the data condition monitor, at the point of data 

reception, in order to avoid dropping of packets on arrival. 

Once data has been received and stored, mining 

relationships in order to establish the health or performance 

of the AWS is done. Although the type of data may be 

known, in its raw form, conclusions about AWS 

performance is impossible at a glance. AWS performance 

is determined by metrics such as its availability, packet 

dropping, sensor degradation or any kind of deviation from 

what is considered normal behavior. These metrics may be 

provided by time series data, which provides information 

on normal behavior, hence forming a basis for identifying 

abnormal behavior or low performance. Using the time 

series data,  anomaly detection through classification, 

clustering, association analysis, trend analysis and outlier 

analysis among others are possible [13]. Trend analysis of 

time-series data identifies significant increase or decrease 

in the magnitude of a variable and has been used in fields 

including energy [14], power [15], social media [16] and 

weather [17][18][19] using methods such as regression 

models, pattern mining, self-organizing map, fuzzy logic 

[20], graph-based methods [21], network anomaly 

detection [22] and others [23], Euclidean distance, k-

nearest neighbors (KNNs), recurrences (REC) and support 

vector data description among others [24]. The data trends 

also provide insights into future performance of the 

monitored devices. Given the wide range of data types, 

characteristics and trends acquired by the AWS, it is 

impossible to apply one data mining technique, hence the 

need to use a hybrid of more than one mechanism. 

Furthermore, weather data trends vary with spatial 

distribution of the respective AWSs, hence a variation in 

readings at any given time.  

Based on the above unique challenges, we propose 

condition monitoring located at a remote server and 

receiving data from an infinite number of AWSs. The 

proposed condition monitor consists of a data receiver, 

analyzer, problem classifier and reporter and visualizer 

shown in Fig. 1. Our contributions are as follows: 

1. An M/M/1/k queuing algorithm, which is applied

to each connection and generates parallel queues

in order to handle high data arrival rates.

2. We propose a hybrid of three techniques to detect

anomalies in data samples. The methods include:-

o Successive Pairwise REcord

Differences (SPREDs) clustering and

classification technique

o Observing data correlations

o Using Grubb outlier detection

3. We complement available architectures with a

reporting layer, which classifies problems in

states for improved reporting.

The rest of this paper is organized as follows: Section 

2 contains materials and methods we used for condition 

monitoring, section 3 gives details on the proof-of-concept 

experiment performed to test the proposed monitoring 

framework, section 4 presents results and we finally 

conclude in section 5.  

2. Materials and methods

We designed a condition monitor for a network of AWSs 

based at the remote server to listen for incoming data from 

the AWS gateways, process it and store it in a database. 

Since processing is performed at the server with abundant 

resources, overhead resulting from the processing activities 

is considered negligible, except for buffer overflows. Once 

in the database, mining to deduce AWSs health and 

performance is done and results are classified into 

problems that are reported by the reporting layer. Figure 1 

shows the architecture of the condition monitor, which 

comprises of four major components including:- 

 Data receiver

 Data Analyser

 Problem Classifier
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 Reporter & Visualizer

Figure 1. Architecture of AWS Condition Monitor 
running at the server 

2.1. Data Receiver 

The data receiver listens for incoming TCP connections, 

pre-processes received data and stores it in a database. The 

data receiver uses one TCP port to receive data / packets / 

reports from remote AWSs and creates a new connection 

for each AWS. The connections are maintained until data 

transmission from the respective AWS is complete. From 

this point on, we shall refer to what is received from AWSs 

as reports. The following are performed when a connection 

is established with the data receiver: - Create a data 

receiving thread if none exists for that connection / AWSs, 

receive and buffer the reports. The data receiving thread 

persists as long as there is incoming data via the same 

connection. The data receiving thread creates a child 

thread, also known as a data storing thread to extract 

reports from the buffer, process them and insert them into 

the database as shown in Figure 2.  

Figure 2. Architecture of the data receiver 

A single connection may generate queues since the 

processing rate may be lower than the report arrival rate, 

hence the need for buffering. Buffering is a motivation for 

using a queuing model to handle the received reports and 

ensure that losses are avoided. The following are the 

characteristics; 

i. Reports arrive at the server following a Poisson

distribution. That is, server is unaware of how many

possible reports it can pick ahead of time from the TCP

port.

ii. Time taken to service a report is exponentially

distributed. That is, reports arrive continuously and

independently at a constant average rate.

iii. Inter-arrival time of reports and service time are

independent of each other.

iv. Each AWS is associated with a single finite queue and

there is no interaction between the AWSs.

The above data characteristics depict an M / M / 1 / k 

queuing model using a single server. Where:-  

 M represents inter-arrival time of reports

following an exponential distribution

 M represents processing time of reports

following an exponential distribution

 1- One server
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 k - Finite buffer size

Since each connection gets a finite buffer, this queuing 

model therefore provides insights into metrics including 

average waiting, processing times of the reports and server 

utilization. Table 1 shows terms used in modeling the 

queuing system.  

Table 1. Terms used and their description 

Term / 

symbol 
Description & significance 

λ Mean arrival rate of the reports  

�̅� The actual mean arrival rate of reports  �̅� =
�̅�

�̅̅̅�

π 
Mean inter-arrival time; the time taken between 
two reports receptions 

μ Mean service / processing rate  

�̅� Mean / expected number of reports in the system 

k Buffer size (number of reports in a filled queue) 

�̅�
Number of reports in the queue, expressed as 

𝑸 ̅̅̅ =  �̅�  ∗  �̅� 

�̅�
Mean / expected processing / service time, 

expressed as  
𝟏

𝛍

�̅̅̅� 
Expected steady state time a report spends 
waiting in the queue. 

𝑻 ̅
Expected / mean steady state time a report 

spends in the queuing system expressed as 𝑻 ̅ =
 �̅̅̅� + �̅�

ρ Traffic intensity (load), expressed as 𝝆 =  𝝀 ∗  𝑺 ̅

α 
Probability that the server is busy at any given 
time 

𝑷𝒏 
The steady probability that there are n reports in 
the system including the one being processed 

Performance of the system derived by the equations 

below and borrowed from [25]. The probability 𝑷𝒏 given

that there are n reports in the system awaiting service is 

given as 

𝑷𝒏 = {

(𝟏− 𝝆)∗𝝆𝒏

𝟏− 𝝆(𝒌+𝟏)
 𝒊𝒇 𝝀 ≠ 𝝁

𝟏

𝒌+𝟏
 𝒊𝒇 𝝀 = 𝝁

 For n = 0, 1,…k 
(1) 

(1) 

Mean arrival rate of reports is given by; 

�̅�=(1- P_k )λ  (2) 

Where 

𝑷𝒌 = 
𝝆𝒌

∑ 𝝆𝒊𝑲
𝒊=𝟎

  for k = 0, 1…, k. (3) 

𝑷𝒌  is the probability that there are k reports in the system.

The system is only stable if ρ>0 and when k is fixed. The 

system is unstable if the mean processing rate of reports in 

the system is less than their mean arrival rate. In this case, 

the buffer will be filled to capacity, leaving no space for 

incoming reports, hence incoming reports shall be lost.  

If 𝝀𝒓, 𝝀𝒒 and 𝝀𝒔 are the arrival rates of the reports at the

receiving thread, queue and data storing threads, then the 

actual mean arrival rates, 𝝀𝒓̅̅ ̅, 𝝀𝒒̅̅ ̅ and 𝝀𝒔̅̅ ̅ respectively are;

𝝀𝒓̅̅ ̅  = (𝟏 − 𝑷𝒌)𝝀𝒓 (4)

𝝀𝒒̅̅ ̅  = (𝟏 − 𝑷𝒌)𝝀𝒒 (5) 

𝝀𝒔̅̅ ̅  = (𝟏 − 𝑷𝒌)𝝀𝒔 (6)

The expected number of reports in the queuing system at a 

given time including the one being processed at that time, 

�̅� is given by 

𝑵 ̅̅ ̅ =  

{

𝝆 − (𝒌 + 𝟏) ∗ 𝝆𝒌+𝟐 + 𝒌𝝆𝒌+𝟑

(𝟏 −  𝝆)(𝟏 − 𝝆(𝒌+𝟏))
 𝒊𝒇 𝝀 ≠ 𝝁

𝒌

𝟐
 𝒊𝒇 𝝀 = 𝝁

Therefore; 𝑸 ̅̅̅ =  𝑵 ̅̅ ̅ − (𝟏 − 𝑷𝟎), where 𝑷𝟎 is the

probability that there are no reports in the system. 

Therefore; 𝑸 ̅̅̅ is also given by;

𝑸 ̅̅̅

=  
𝜌2

1 −  𝜌

𝑤ℎ𝑒𝑟𝑒 𝝆 =  

𝑚𝑒𝑎𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

𝑚𝑒𝑎𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 

𝜌 =  
𝝀𝒒̅̅̅̅

𝝁𝒔

(8) 

(9) 

𝑸 ̅̅̅ =  
(
 𝝀𝒒̅̅ ̅̅

𝝁𝒔
)

2

1− 
 𝝀𝒒̅̅ ̅̅

𝝁𝒔

(10) 

𝑸 ̅̅̅ =  
𝝀𝒒̅̅̅̅
2

𝝁𝒔(𝝁𝒔− 𝝀𝒒̅̅̅̅ )

(11) 

(7)

(7) 
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From equation (11), the system is stable if   𝝁𝒔  >

𝝀𝒒̅̅ ̅. That is, the denominator tends to zero when

𝝁𝒔 = 𝝀𝒒̅̅ ̅

Mean waiting time of a report in the queue 

From, 

𝑊 ̅̅̅̅ =  
𝑸 ̅̅̅

�̅�

(12) 

𝑊𝑞 ̅̅ ̅̅̅ =
�̅�

𝝀𝒒̅̅ ̅
=
(𝟏 − 𝑷𝑲) 𝝀𝒒

𝝁𝒒 𝝀𝒒̅̅ ̅

(13) 

From Equation 13, average report waiting time 

before processing is given by; 

𝑾 ̅̅̅̅ =  𝑊𝑞  ̅̅ ̅̅̅ (14) 

Mean Service time for the reports  𝑺 ̅

𝑆̅ =  
𝟏

𝝁

(15) 

At the receiving thread, mean service time (time 

from when the report arrives at the thread to the 

time when it is added to the queue), 𝑺 ̅𝑟 is given

by; 

𝑺 ̅𝑟 =
1

𝜇
𝑟

(16) 

At the data storing thread; time taken from when 

the report is de-queued to the time when data is 

saved to the database, 𝑺 ̅𝑠 is given by;

𝑺𝒔̅̅ ̅ =
𝟏

𝝁𝒔

(17) 

From equation 16 and 17, the average service time 

for a given report is given by; 

𝑺 ̅ =  
𝑺 ̅𝑠 + 𝑺 ̅𝑟

2

(18) 

The mean steady state time a report spends in the 

system, both waiting in the queue and processing 

time is given by; 

𝑻 ̅ =  𝑾 ̅̅ ̅̅ +  𝑺 ̅ (19) 

Server utilization 

Server utilization, α, is given by; 

𝜶 =  (𝟏 − 𝑷𝑲)𝝆 (20) 

The rate at which the receiving thread, buffer, and 

data storing threads utilize the server are 

𝜶𝒓 , 𝜶𝒒 , 𝑎𝑛𝑑 𝜶𝒔 respectively. Therefore, average

server utilization is given by; 

𝜶 =  
𝜶𝒓 + 𝜶𝒒 + 𝜶𝒔

𝟑

(21) 

𝜶

= 
(𝟏 − 𝑷𝑲)𝝆𝒓 + (𝟏 − 𝑷𝑲)𝝆𝒒 + (𝟏 − 𝑷𝑲)𝝆𝒔

𝟑

(22) 

𝜶 =  
(𝟏 − 𝑷𝑲)(𝝆𝒓 + 𝝆𝒒 + 𝝆𝒔)

𝟑

(23) 

Where; 

𝝆𝒙 = 𝝀𝒙 ∗ 𝑺𝒙̅̅ ̅        𝒇𝒐𝒓 𝒙 ∈  {𝒓, 𝒒, 𝒔} (24)

Mean inter-arrival time, π 

The average time between reception of two 

successive reports is given by:- 

𝝅 =  
1

𝝀𝒓̅̅ ̅
        (25)       

We need to ensure that average service time 

(equation 18) is less than the average inter-arrival 

time (equation 25) in order to reduce packet 

dropping at arrival.  

2.2 Data Analyser and Classifier 

The data analyser mines available and real-time reports for 

patterns and anomalies and as per a given AWS. Our 

previous work [8] provided the nature of data being mined 

and identified AWS problems. These are summarized into 

the three below.   

(i) Insufficient power supplies, which cause nodes to

shutdown, hence the inability to perform data

collection and transmission

(ii) Data loss due to packet dropping, faulty sensors or

node misconfiguration

(iii) Errors in the data collected

The proposed condition monitoring algorithms are 

based on data with smaller dimensions and limited number 

of data types. However, AWS data varies by type, 

acceptable data ranges due to spatial and temporal 

variations in sites of deployment and by parameter of 

interest. It is from that background that the data analyser 

performs mining using a hybrid of Grubb outlier detection 

[26], assessing correlations in data trends and using 

Successive Pairwise REcord Differences (SPREDs) to 

detect AWS problems. Before applying the methods, we 

first assessed relationships amongst AWS data to establish 

correlations, without which the tested data is considered 
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anomalous. The next subsections assess relationships 

amongst the AWS parameters, in order to provide input 

into the mining algorithms.  

Power supply Behavior 
Sensor node supply voltage (V_IN) and microcontroller 

voltage (V_MCU) maintain a constant level (Figure 3), 

regardless of the solar insolation levels. In the absence of 

solar insolation, the voltage levels should be kept within 

the same limits. Failure to maintain the voltage levels 

especially in limited or no solar insolation times implies 

that there is degradation of the energy systems, if the load 

is constant, hence a need for a replacement. 

Figure 3. Input voltage, MCU voltage and Solar 
Insolation 

Loss of Data 
Data loss may be due to packet dropping, node 

misconfiguration, and sensor mechanical problems, AWS 

gateway or node shutdown due to power failures. Data loss 

can be discovered through analysing sequence numbers 

attached to the reports, observing inconsistencies in data 

transmission rates as well as comparing received data with 

historical data. RSSI and Link Quality Indicator (LQI) 

provide an indication of the quality of the link, which could 

be the cause of packet dropping.   

Data Accuracy and Quality 
For a given AWS, data accuracy may be assessed based on 

historical data, the expected patterns as per the 

configurations and data types for the received data. 

Additionally, data accuracy can be validated by comparing 

them with other weather parameters. Figure 4 shows a 

correlation matrix for the weather parameters. Soil and air 

temperature show a high positive correlation while 

temperature and relative humidity show a high negative 

correlation. 

Figure 4. Scatterplot matrix showing correlation of a 
selected set of weather parameters 

Increase in air temperature causes an increase in soil 

temperature and an increase in air temperature and soil 

temperature corresponds to a decrease in relative humidity. 

It is against these correlations that we conclude that sensor 

values have a problem if any deviation occurs. Based on 

the inverse proportion of temperature and relative 

humidity, we use the following to validate or invalidate the 

values 

𝑇 ∝ 1/𝑅𝐻     

 𝑇 =
𝑘

𝑅𝐻
  (26) 

 𝑘 = 𝑇 ∗ 𝑅𝐻  (27) 

    Using a sample of validated data, where T= 17.88 and 

RH = 93 

 𝑘 = 93 ∗ 17.88  = 1662.84

Given either relative humidity or temperature, we apply the 

formula  

 𝑇 =
1661.84

𝑅𝐻
Allowed values can have an error margin of ± 1, otherwise 

either relative humidity or temperature is reported 

suspicious. We also use Grubb outlier detection technique 

[26] to identify anomalies in data samples in order to flag

them as suspicious. Grubb outlier detection checks if a

significant difference exists between the expected and

actual value using the equation

G = |xi − �̅�̅  |𝑆                                                              (28)

At 95% confidence level, where

M. Nsabagwa et al.
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  �̅�̅  is the sample mean of the data set  

    S is the standard deviation of the data set  

    xi is the value in question  

Lastly, in order to check the consistence in the rate of 

sensor, node or AWS level reporting, we propose an 

algorithm called Successive Pairwise REcord Differences 

(SPREDs), which computes time differences between 

successive data packets and generates clusters representing 

the differences. In order to avoid lengthy computations, 

which should be regularly performed for each AWS, only 

a summary of the state at levels including AWS, node and 

sensor are maintained. At the node level, a list of model 

parameters that have been captured in the past is 

maintained. The list forms a basis of establishing anomalies 

for the future reports. A report showing reception time, 

number and list of unique time differences (clusters) 

between report intervals and a report interval change 

list/tracker is generated. The report interval change tracker 

gives the magnitude of the change, time the change 

occurred and whether it is an increase or decrease. The 

cluster list keeps cluster values and a count in each cluster. 

Using the two data structures (i.e. change tracker and 

cluster list), the analyser is able to identify information 

such as the cause of the change, what level of the AWS the 

problem is (sensor, AWS or node) including packet 

dropping, sensor faults and gateway failure to transmit. 

Classification of the problems is done using a decision 

table given in [8]. 

Algorithm 1: Successive Pairwise REcord 
Differences (SPREDs) 

1: aws_sensor_list, missed_node_count =0 

2:  if exists( new_aws_record) 
3:  reference_parameters = 
get_reference_parameter_list 
4:  while(exists more tokens in model_tokens list) 
5:   if(reference_parameter not found in new list) 
6:  record_sensor_level_miss(time, 
parameter) 
7:   node_record_time_diff = last_record_time – 
previous_record_time 
8:  if(node_record_time_diff not equal to previous 
diff) 
9:  record_change(old_ddiff, new_diff, time) 
10:    
update_cluster_list(cluster_name,cluster_count) 
11:     if(missed_node_count equals 
len(aws_sensor_list))   
12:         record_aws_miss(aws_name)     

2.3 Visualizer and reporter 

Reporting using either SMS, emails or web visualization is 

necessary because it informs stakeholders of the 

occurrence of a problem. It is important to determine when 

and how often to report persistent problems. Furthermore, 

a reported problem should only be re-reported if it has 

persisted for a maximum period of time. All problems both 

fixed and ignored are archived so as to generate a dataset 

that can guide in preventive maintenance. The reporter also 

gives information such as when node data was last 

received, details for last received packet, number of reports 

sent for a particular problem and time that has elapsed since 

problem was last reported. Figure 5 shows the state 

transitions of problems. 

Figure 5. State transition diagram of the problems 

The states in Figure 5 are explained as follows; 

New & confirmed problem: There is supporting evidence 

of a new problem. 

Reported/re-reporting problem: problem has been 

reported once and if it still persists, there is a chance of 

reporting it again 

Persisting problem: The number of times a problem has 

been reported has exceeded the threshold and reporting of 

the same has stopped 

Fixed & archived problem: Problem has been resolved 

and information stored for future reference. 

The amount of data lost due to problems is calculated as 

below, depending on the level of loss, after at time T, at 

data rates of time t, where t<<T.  

𝑆𝑒𝑛𝑠𝑜𝑟𝑙𝑜𝑠𝑠 =
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑒𝑥̅𝑝𝑒𝑐𝑡𝑒𝑑
∗ 100 (29) 

𝑁𝑜𝑑𝑒 𝑙𝑜𝑠𝑠 = sensor1levelloss +

𝑠𝑒𝑛𝑠𝑜𝑟2𝑙𝑜𝑠𝑠 +…sensorn loss
(30) 

𝐴𝑊𝑆𝑙𝑜𝑠𝑠 = 𝑛𝑜𝑑𝑒1𝑙𝑜𝑠𝑠 + 𝑛𝑜𝑑𝑒2𝑙𝑜𝑠𝑠 +
⋯+ 𝑛𝑜𝑑𝑒𝑛𝑙𝑜𝑠𝑠

(31) 

In cases where any of the levels of loss are 100%, the loss 

should be reported as an availability problem via either 

SMS or email. Node-level loss that is less than 50% is due 

to packet dropping and if in the next time T, a similar 

inconsistency occurs, packet dropping report should be 

sent via email and SMS. Re-reporting a problem should be 

done via SMS or email after a day from when the first case 

was reported. At the third and last time of reporting the 

same problem, the problem becomes persistent and no 

more messages are sent on the same. During the problem 

state transitions, the web visualizations should report 

details of each of the problems at all levels, indicating when 

the problem was first reported, current state if not yet fixed 

and how many times it has been reported. Also indicated, 

is the frequency of a given problem based on archived 

problems. The number of SMSs and emails on a specific 
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Normal 
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{Re}-reported 

Persisting 
Fixed & 

Archived 
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stopped 
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problem is controlled to enable drawing attention of the 

concerned persons to the messages.   

3. Proof-of-concept Experiment

As a proof-of-concept, we set up an AWS consisting of 3 

RSS2 wireless sensor nodes[27] and a gateway comprising 

of a sink node and raspberry pi. The gateway, consisting of 

a sink node and rasp berry pi, was placed in an office, 

approximately 80 feet from the AWS stand on which three 

sender nodes were installed (Figure 6). Sensors were 

placed 2m, 10m and close to the ground (gnd) and their data 

collected and processed using the RSS2 nodes to which 

they were connected. The sensor nodes were attached to the 

10m metallic pole. Table 2 shows details of sensors and 

nodes used. In addition to transmitting weather parameters, 

each node transmits its input voltage, micro controller 

voltage and MAC address for proper identification using 

IEEE 802.15.4 protocol[28]. Nodes are configured to send 

data packets to the gateway after 1 minute and 15 seconds. 

      On receiving data packets, the sink node appends radio 

link information including RSSI and LQI to each packet, 

before sending them to a remote server or repository. At 

the repository, all packets are received via a single TCP 

port, processed and stored in a database. Real-time 

processing is performed on both stored and incoming data 

to establish performance of the remote AWSs.  

Table 2. Weather parameters and nodes used 

Node 

name 
Weather parameter 

Measurement 

mechanism 

2m 
Temperature and Relative 

Humidity  

Capacitive 
humidity readings 

and band gap 
temperature 

readings  

gnd 
Rain, Soil moisture, Soil 

temperature 
Interrupts and 

voltage, 

10m 
Wind Speed, Wind Direction, 

Solar insolation 
Interrupts 

sink Pressure Piezo-resistivity 

Figure 6. Left: Contents of a sensor node; Right: Deployment site for the AWS, showing the 10m stand on which 
three sensor nodes (2m, 10m and gnd) are placed. The gateway is placed in the building, close to the window on 

second floor, approximately 80 feet from the AWS pole.
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4. Results

In this section, we present results of the various 

components of the AWS condition monitor.  

Figure 7. Web visualization of relative humidity and 
temperature over time to assist in real-time 
observations of the correlations of the two 

parameters. 

The observations from the two graphs can lead to a 

conclusion as to whether any one of the two parameter 

values is erroneous.   

Figure 8. Percentage CPU Utilization for different 
time intervals 

The CPU utilization is 75.6%, 28.1% and 1.78 for arrival 

rates of 5ms, 10ms and 50ms respectively. As the report 

intervals/arrival rates (ms) increases, CPU utilization 

increases because the time that CPU is made busy increases 

due to increased load. The same CPU utilization is 

experienced across the different parallel connections, 

hence a higher CPU utilization for all AWSs combined.   

Figure 9. Variation of processing time in clock 
counts for the 1 second interval data. 

Figure 10. Average waiting time for different 
transmission intervals 

The processing time is independent of the report arrival rate 

and varies from 0.02 to 0.18 clocks. This variation is as a 

result of the average size and content of the received 

reports. Reports that take the least amount of processing 

time are discarded on reception because they fail to match 

the required set guidelines while some reports consume 

processing time above 0.4 clocks depending on the size of 

the string. This implies that the storage process consumes 

approximately 3 to 4 times the amount of time consumed 

by the pre-processing time. Our algorithm proposes initial 

pre-processing in order to cut down on amount of time for 

storing invalid data. Other levels of processing can be done 

after storing the data to avoid dropping of reports from the 

queues.   

Condition Monitoring for Wireless Sensor Network-Based Automatic Weather Stations 

9 EAI Endorsed Transactions on 
Internet of Things 

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4



Figure 11. Left: Normal plot, middle: histogram and right: whisker plot for temperature values over a period from 
17th to 20th August 2018, with a reporting interval of 15 seconds. 

The distribution of temperature data indicates a normal distribution with the 

majority of readings appearing between 18 and 24. The assessment discovered no 

outliers in data values and gradual increases and decreases are observed. Unless 

rainfall readings are observed, 

which can cause a gradual decrease, 

temperature changes should be 

gradual.  

Figure 12. Left: Differences in reporting intervals (clusters) for the 10m node. Right: The number of clusters 
formed from reporting interval differences 

While there is variation in the reporting interval, 15 

seconds interval has the highest frequency (13471 times), 

followed by 30 seconds, which is 997 times given a total of 

15527 records. This implies that the expected and right 

interval is 15 seconds. The rest are reported as packet drops 

and if data is not received after a prolonged time, for this 

case 1 hour, the node failure is reported. 

5. Conclusions

Monitoring performance of WSN-based AWS is an 

important task that should be performed in order to 

facilitate preventive maintenance and reduce AWS 

downtime. The monitoring process becomes more complex 

as the network of AWSs being monitored grows variations 

in AWS data. Furthermore, receiving big volumes of data 

centrally becomes more challenging as the data arrival and 

processing rates vary, causing data packets to drop. We 

have proposed an architecture for monitoring a network of 

AWSs distributed over a wide area, consisting of a data 

receiver which, receives and stores data at rates as low as 

1ms using M/M/1/k queuing model. The data receiver is 

able to perform an infinite number of parallel connections 

at the same time, hence facilitating reception of packets 

from many AWSs at the same time. In order to detect 
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anomalies, we have proposed a hybrid of outlier detection 

in numerical data and assessment of correlations in data 

trends and using Successive Pairwise REcord Differences 

(SPREDs) to provide sensor, node and AWS-level 

anomalies. The identified problems are reported using 

SMS, email and web visualizations, indicating the problem 

type, state of the problem and time the problem has lasted. 

Reporting of observed problems is done only three times in 

order to reduce chances of ignoring the messages. In future, 

we shall evaluate the performance of the listener in terms 

of receiving multiple reports at the same time, a new 

gateway design recently designed to regulate power 

consumption amongst the sensor nodes.   
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