
Condition Monitoring for Wireless Sensor Network-

Based Automatic Weather Stations

Mary Nsabagwa 1,*, Julianne Sansa Otim 1 , Roseline Nyongarwizi Akol 2 , Grace Ninsiima1, Robert

Mwesigye1, Maximus Byamukama2 and Björn Pehrson3

1 Department of Networks, Makerere University, Kampala, Uganda, mnsabagwa@cit.ac.ug, sansa@cit.ac.ug,

graceolive8@gmail.com, mwesirob@gmail.com.
2 Department of Electrical & Computer Engineering; rnakol@cedat.mak.ac.ug, maximus.byamukama@gmail.com
3 KTH Royal Institute of Technology, Stockholm, Sweden; bjorn@pehrson.se

Abstract

Wireless Sensor Network (WSN)-based Automatic Weather Stations (AWSs) perform automatic collection and transmission

of weather data. These AWSs face challenges, which lower their performance. Hence, a need for regular monitoring to

reduce down time. We propose condition monitoring, comprised of a data receiver, analyser, problem classifier and reporter

and visualizer, to mine data relationships, identify possible causes of problems and perform reporting of AWS status. The

data receiver uses an M/M/1/k queuing model. We use Successive Pairwise REcord Differences (SPREDs) algorithm to

compare arrival rates and packet content so as to establish sensor, node and AWS level performance. We also perform a

hybrid of Grubb outlier detection and correlations amongst related variables for data validation. Problems take on one of

four states. One connection can receive data at a rate as low as 1ms, without loss while problem identification especially in

high density network is improved

Keywords: Automatic Weather Station (AWS), condition monitoring; queuing, Wireless Sensor Networks.

Received on 25 January 2018, accepted on 17 March 2018, published on 20 March 2018

Copyright © 2018 Mary Nsabagwa et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.20-12-2018.156083

1. Introduction

Automatic Weather Stations (AWSs) collect and transmit

weather data without human intervention, enabling them to

operate in remote areas. AWSs, which use Wireless Sensor

Networks (WSNs) technology, in which distributed sensors

collect varying parameters at predetermined intervals are

the focus of this paper. While in remote deployments,

WSNs face challenges such as coverage [1], packet loss

and limited energy among others [2], which lower their

health and life time. We use the term health to refer to the

AWS’s ability to perform its functions such as packet

delivery rate and AWS availability among many other

performance metrics. In order to ensure that the health of

the AWSs is known at all times, there is need to perform

*Correspondence: mnsabagwa@cit.a.ug

condition monitoring to facilitate preventive maintenance

and to lower downtime, hence lowering data losses.

Condition monitoring has been proposed in applications

such as railway [3], wind turbines [4], automotive industry

[5] and in structural health monitoring [6]. No research has

been performed on condition monitoring in AWSs.

Moreover, AWSs have unique application requirements.

During condition monitoring, the monitoring entity may

either perform active or passive monitoring. In active

monitoring, the monitoring tool gets access to the network

for data collection purposes as well as controlling the

monitored device whereas in passive monitoring, only data

collection is permitted. In order for the monitor to control

the remote device, support protocols such as CoAP [7] may

be used. Our focus is on passive monitoring, which

receives weather data and analyzes it to only establish the

EAI Endorsed Transactions
on Internet of Things Research Article

1 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

mailto:mnsabagwa@cit.ac.ug
mailto:sansa@cit.ac.ug
mailto:graceolive8@gmail.com
mailto:mwesirob@gmail.com
mailto:rnakol@cedat.mak.ac.ug
mailto:maximus.byamukama@gmail.com
mailto:bjorn@pehrson.se
http://creativecommons.org/licenses/by/3.0/

health of the respective AWSs. Regardless of the type of

monitoring used, the monitor should be furnished with data

from which relationships are drawn. In our previous study

of common AWS problems [8], AWSs face challenges

such as energy exhaustion, packet dropping, inability of the

gateway to transmit data and sensor node failure among

others. While the received data is clearly structured,

extracting knowledge on the AWS health requires

performing data analytics.

The monitoring entity, while receiving data from the

AWSs, may face challenges such as increased data volume

and data transmission or arrival rates. The high data arrival

rates may cause packet dropping, hence data loss at the

receiving end. Therefore, the monitoring tool should be

able to receive and process the growing number of data

packets without loss as a result of buffer overflows.

Queuing models provide solutions for the imbalance in

arrival rates and processing speeds by allocating temporary

storage to packets, using predefined procedures in order to

avoid packet dropping. Based on the arrival method,

service time distributions and number of servers, the

queuing models are able to optimize metrics such as server

utilization and reducing delays in the waiting time.

Queuing has been used in monitoring Service Level

Agreements (SLAs) processes [9], manufacturing [10],

patient monitoring, video streaming [11], airport arrivals

and departures [12] among others. Queuing can also be

adopted by the data condition monitor, at the point of data

reception, in order to avoid dropping of packets on arrival.

Once data has been received and stored, mining

relationships in order to establish the health or performance

of the AWS is done. Although the type of data may be

known, in its raw form, conclusions about AWS

performance is impossible at a glance. AWS performance

is determined by metrics such as its availability, packet

dropping, sensor degradation or any kind of deviation from

what is considered normal behavior. These metrics may be

provided by time series data, which provides information

on normal behavior, hence forming a basis for identifying

abnormal behavior or low performance. Using the time

series data, anomaly detection through classification,

clustering, association analysis, trend analysis and outlier

analysis among others are possible [13]. Trend analysis of

time-series data identifies significant increase or decrease

in the magnitude of a variable and has been used in fields

including energy [14], power [15], social media [16] and

weather [17][18][19] using methods such as regression

models, pattern mining, self-organizing map, fuzzy logic

[20], graph-based methods [21], network anomaly

detection [22] and others [23], Euclidean distance, k-

nearest neighbors (KNNs), recurrences (REC) and support

vector data description among others [24]. The data trends

also provide insights into future performance of the

monitored devices. Given the wide range of data types,

characteristics and trends acquired by the AWS, it is

impossible to apply one data mining technique, hence the

need to use a hybrid of more than one mechanism.

Furthermore, weather data trends vary with spatial

distribution of the respective AWSs, hence a variation in

readings at any given time.

Based on the above unique challenges, we propose

condition monitoring located at a remote server and

receiving data from an infinite number of AWSs. The

proposed condition monitor consists of a data receiver,

analyzer, problem classifier and reporter and visualizer

shown in Fig. 1. Our contributions are as follows:

1. An M/M/1/k queuing algorithm, which is applied

to each connection and generates parallel queues

in order to handle high data arrival rates.

2. We propose a hybrid of three techniques to detect

anomalies in data samples. The methods include:-

o Successive Pairwise REcord

Differences (SPREDs) clustering and

classification technique

o Observing data correlations

o Using Grubb outlier detection

3. We complement available architectures with a

reporting layer, which classifies problems in

states for improved reporting.

The rest of this paper is organized as follows: Section

2 contains materials and methods we used for condition

monitoring, section 3 gives details on the proof-of-concept

experiment performed to test the proposed monitoring

framework, section 4 presents results and we finally

conclude in section 5.

2. Materials and methods

We designed a condition monitor for a network of AWSs

based at the remote server to listen for incoming data from

the AWS gateways, process it and store it in a database.

Since processing is performed at the server with abundant

resources, overhead resulting from the processing activities

is considered negligible, except for buffer overflows. Once

in the database, mining to deduce AWSs health and

performance is done and results are classified into

problems that are reported by the reporting layer. Figure 1

shows the architecture of the condition monitor, which

comprises of four major components including:-

 Data receiver

 Data Analyser

 Problem Classifier

2 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

M. Nsabagwa et al.

 Reporter & Visualizer

Figure 1. Architecture of AWS Condition Monitor
running at the server

2.1. Data Receiver

The data receiver listens for incoming TCP connections,

pre-processes received data and stores it in a database. The

data receiver uses one TCP port to receive data / packets /

reports from remote AWSs and creates a new connection

for each AWS. The connections are maintained until data

transmission from the respective AWS is complete. From

this point on, we shall refer to what is received from AWSs

as reports. The following are performed when a connection

is established with the data receiver: - Create a data

receiving thread if none exists for that connection / AWSs,

receive and buffer the reports. The data receiving thread

persists as long as there is incoming data via the same

connection. The data receiving thread creates a child

thread, also known as a data storing thread to extract

reports from the buffer, process them and insert them into

the database as shown in Figure 2.

Figure 2. Architecture of the data receiver

A single connection may generate queues since the

processing rate may be lower than the report arrival rate,

hence the need for buffering. Buffering is a motivation for

using a queuing model to handle the received reports and

ensure that losses are avoided. The following are the

characteristics;

i. Reports arrive at the server following a Poisson

distribution. That is, server is unaware of how many

possible reports it can pick ahead of time from the TCP

port.

ii. Time taken to service a report is exponentially

distributed. That is, reports arrive continuously and

independently at a constant average rate.

iii. Inter-arrival time of reports and service time are

independent of each other.

iv. Each AWS is associated with a single finite queue and

there is no interaction between the AWSs.

The above data characteristics depict an M / M / 1 / k

queuing model using a single server. Where:-

 M represents inter-arrival time of reports

following an exponential distribution

 M represents processing time of reports

following an exponential distribution

 1- One server

Condition Monitoring for Wireless Sensor Network-Based Automatic Weather Stations

3 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

 k - Finite buffer size

Since each connection gets a finite buffer, this queuing

model therefore provides insights into metrics including

average waiting, processing times of the reports and server

utilization. Table 1 shows terms used in modeling the

queuing system.

Table 1. Terms used and their description

Term /

symbol
Description & significance

λ Mean arrival rate of the reports

�̅� The actual mean arrival rate of reports �̅� =
�̅�

�̅̅̅�

π
Mean inter-arrival time; the time taken between
two reports receptions

μ Mean service / processing rate

�̅� Mean / expected number of reports in the system

k Buffer size (number of reports in a filled queue)

�̅�
Number of reports in the queue, expressed as

𝑸 ̅̅̅ = �̅� ∗ �̅�

�̅�
Mean / expected processing / service time,

expressed as
𝟏

𝛍

�̅̅̅�
Expected steady state time a report spends
waiting in the queue.

𝑻 ̅
Expected / mean steady state time a report

spends in the queuing system expressed as 𝑻 ̅ =
 �̅̅̅� + �̅�

ρ Traffic intensity (load), expressed as 𝝆 = 𝝀 ∗ 𝑺 ̅

α
Probability that the server is busy at any given
time

𝑷𝒏
The steady probability that there are n reports in
the system including the one being processed

Performance of the system derived by the equations

below and borrowed from [25]. The probability 𝑷𝒏 given

that there are n reports in the system awaiting service is

given as

𝑷𝒏 = {

(𝟏− 𝝆)∗𝝆𝒏

𝟏− 𝝆(𝒌+𝟏)
 𝒊𝒇 𝝀 ≠ 𝝁

𝟏

𝒌+𝟏
 𝒊𝒇 𝝀 = 𝝁

 For n = 0, 1,…k
(1)

(1)

Mean arrival rate of reports is given by;

�̅�=(1- P_k)λ (2)

Where

𝑷𝒌 =
𝝆𝒌

∑ 𝝆𝒊𝑲
𝒊=𝟎

 for k = 0, 1…, k. (3)

𝑷𝒌 is the probability that there are k reports in the system.

The system is only stable if ρ>0 and when k is fixed. The

system is unstable if the mean processing rate of reports in

the system is less than their mean arrival rate. In this case,

the buffer will be filled to capacity, leaving no space for

incoming reports, hence incoming reports shall be lost.

If 𝝀𝒓, 𝝀𝒒 and 𝝀𝒔 are the arrival rates of the reports at the

receiving thread, queue and data storing threads, then the

actual mean arrival rates, 𝝀𝒓̅̅ ̅, 𝝀𝒒̅̅ ̅ and 𝝀𝒔̅̅ ̅ respectively are;

𝝀𝒓̅̅ ̅ = (𝟏 − 𝑷𝒌)𝝀𝒓 (4)

𝝀𝒒̅̅ ̅ = (𝟏 − 𝑷𝒌)𝝀𝒒 (5)

𝝀𝒔̅̅ ̅ = (𝟏 − 𝑷𝒌)𝝀𝒔 (6)

The expected number of reports in the queuing system at a

given time including the one being processed at that time,

�̅� is given by

𝑵 ̅̅ ̅ =

{

𝝆 − (𝒌 + 𝟏) ∗ 𝝆𝒌+𝟐 + 𝒌𝝆𝒌+𝟑

(𝟏 − 𝝆)(𝟏 − 𝝆(𝒌+𝟏))
 𝒊𝒇 𝝀 ≠ 𝝁

𝒌

𝟐
 𝒊𝒇 𝝀 = 𝝁

Therefore; 𝑸 ̅̅̅ = 𝑵 ̅̅ ̅ − (𝟏 − 𝑷𝟎), where 𝑷𝟎 is the

probability that there are no reports in the system.

Therefore; 𝑸 ̅̅̅ is also given by;

𝑸 ̅̅̅

=
𝜌2

1 − 𝜌

𝑤ℎ𝑒𝑟𝑒 𝝆 =

𝑚𝑒𝑎𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

𝑚𝑒𝑎𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

𝜌 =
𝝀𝒒̅̅̅̅

𝝁𝒔

(8)

(9)

𝑸 ̅̅̅ =
(
 𝝀𝒒̅̅ ̅̅

𝝁𝒔
)

2

1−
 𝝀𝒒̅̅ ̅̅

𝝁𝒔

(10)

𝑸 ̅̅̅ =
𝝀𝒒̅̅̅̅
2

𝝁𝒔(𝝁𝒔− 𝝀𝒒̅̅̅̅)

(11)

(7)

(7)

M. Nsabagwa et al.

4 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

From equation (11), the system is stable if 𝝁𝒔 >

𝝀𝒒̅̅ ̅. That is, the denominator tends to zero when

𝝁𝒔 = 𝝀𝒒̅̅ ̅

Mean waiting time of a report in the queue

From,

𝑊 ̅̅̅̅ =
𝑸 ̅̅̅

�̅�

(12)

𝑊𝑞 ̅̅ ̅̅̅ =
�̅�

𝝀𝒒̅̅ ̅
=
(𝟏 − 𝑷𝑲) 𝝀𝒒

𝝁𝒒 𝝀𝒒̅̅ ̅

(13)

From Equation 13, average report waiting time

before processing is given by;

𝑾 ̅̅̅̅ = 𝑊𝑞 ̅̅ ̅̅̅ (14)

Mean Service time for the reports 𝑺 ̅

𝑆̅ =
𝟏

𝝁

(15)

At the receiving thread, mean service time (time

from when the report arrives at the thread to the

time when it is added to the queue), 𝑺 ̅𝑟 is given

by;

𝑺 ̅𝑟 =
1

𝜇
𝑟

(16)

At the data storing thread; time taken from when

the report is de-queued to the time when data is

saved to the database, 𝑺 ̅𝑠 is given by;

𝑺𝒔̅̅ ̅ =
𝟏

𝝁𝒔

(17)

From equation 16 and 17, the average service time

for a given report is given by;

𝑺 ̅ =
𝑺 ̅𝑠 + 𝑺 ̅𝑟

2

(18)

The mean steady state time a report spends in the

system, both waiting in the queue and processing

time is given by;

𝑻 ̅ = 𝑾 ̅̅ ̅̅ + 𝑺 ̅ (19)

Server utilization

Server utilization, α, is given by;

𝜶 = (𝟏 − 𝑷𝑲)𝝆 (20)

The rate at which the receiving thread, buffer, and

data storing threads utilize the server are

𝜶𝒓 , 𝜶𝒒 , 𝑎𝑛𝑑 𝜶𝒔 respectively. Therefore, average

server utilization is given by;

𝜶 =
𝜶𝒓 + 𝜶𝒒 + 𝜶𝒔

𝟑

(21)

𝜶

=
(𝟏 − 𝑷𝑲)𝝆𝒓 + (𝟏 − 𝑷𝑲)𝝆𝒒 + (𝟏 − 𝑷𝑲)𝝆𝒔

𝟑

(22)

𝜶 =
(𝟏 − 𝑷𝑲)(𝝆𝒓 + 𝝆𝒒 + 𝝆𝒔)

𝟑

(23)

Where;

𝝆𝒙 = 𝝀𝒙 ∗ 𝑺𝒙̅̅ ̅ 𝒇𝒐𝒓 𝒙 ∈ {𝒓, 𝒒, 𝒔} (24)

Mean inter-arrival time, π

The average time between reception of two

successive reports is given by:-

𝝅 =
1

𝝀𝒓̅̅ ̅
 (25)

We need to ensure that average service time

(equation 18) is less than the average inter-arrival

time (equation 25) in order to reduce packet

dropping at arrival.

2.2 Data Analyser and Classifier

The data analyser mines available and real-time reports for

patterns and anomalies and as per a given AWS. Our

previous work [8] provided the nature of data being mined

and identified AWS problems. These are summarized into

the three below.

(i) Insufficient power supplies, which cause nodes to

shutdown, hence the inability to perform data

collection and transmission

(ii) Data loss due to packet dropping, faulty sensors or

node misconfiguration

(iii) Errors in the data collected

The proposed condition monitoring algorithms are

based on data with smaller dimensions and limited number

of data types. However, AWS data varies by type,

acceptable data ranges due to spatial and temporal

variations in sites of deployment and by parameter of

interest. It is from that background that the data analyser

performs mining using a hybrid of Grubb outlier detection

[26], assessing correlations in data trends and using

Successive Pairwise REcord Differences (SPREDs) to

detect AWS problems. Before applying the methods, we

first assessed relationships amongst AWS data to establish

correlations, without which the tested data is considered

Condition Monitoring for Wireless Sensor Network-Based Automatic Weather Stations

5 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

anomalous. The next subsections assess relationships

amongst the AWS parameters, in order to provide input

into the mining algorithms.

Power supply Behavior
Sensor node supply voltage (V_IN) and microcontroller

voltage (V_MCU) maintain a constant level (Figure 3),

regardless of the solar insolation levels. In the absence of

solar insolation, the voltage levels should be kept within

the same limits. Failure to maintain the voltage levels

especially in limited or no solar insolation times implies

that there is degradation of the energy systems, if the load

is constant, hence a need for a replacement.

Figure 3. Input voltage, MCU voltage and Solar
Insolation

Loss of Data
Data loss may be due to packet dropping, node

misconfiguration, and sensor mechanical problems, AWS

gateway or node shutdown due to power failures. Data loss

can be discovered through analysing sequence numbers

attached to the reports, observing inconsistencies in data

transmission rates as well as comparing received data with

historical data. RSSI and Link Quality Indicator (LQI)

provide an indication of the quality of the link, which could

be the cause of packet dropping.

Data Accuracy and Quality
For a given AWS, data accuracy may be assessed based on

historical data, the expected patterns as per the

configurations and data types for the received data.

Additionally, data accuracy can be validated by comparing

them with other weather parameters. Figure 4 shows a

correlation matrix for the weather parameters. Soil and air

temperature show a high positive correlation while

temperature and relative humidity show a high negative

correlation.

Figure 4. Scatterplot matrix showing correlation of a
selected set of weather parameters

Increase in air temperature causes an increase in soil

temperature and an increase in air temperature and soil

temperature corresponds to a decrease in relative humidity.

It is against these correlations that we conclude that sensor

values have a problem if any deviation occurs. Based on

the inverse proportion of temperature and relative

humidity, we use the following to validate or invalidate the

values

𝑇 ∝ 1/𝑅𝐻

 𝑇 =
𝑘

𝑅𝐻
 (26)

 𝑘 = 𝑇 ∗ 𝑅𝐻 (27)

 Using a sample of validated data, where T= 17.88 and

RH = 93

 𝑘 = 93 ∗ 17.88 = 1662.84

Given either relative humidity or temperature, we apply the

formula

 𝑇 =
1661.84

𝑅𝐻
Allowed values can have an error margin of ± 1, otherwise

either relative humidity or temperature is reported

suspicious. We also use Grubb outlier detection technique

[26] to identify anomalies in data samples in order to flag

them as suspicious. Grubb outlier detection checks if a

significant difference exists between the expected and

actual value using the equation

G = |xi − �̅�̅ |𝑆 (28)

At 95% confidence level, where

M. Nsabagwa et al.

6 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

 �̅�̅ is the sample mean of the data set

 S is the standard deviation of the data set

 xi is the value in question

Lastly, in order to check the consistence in the rate of

sensor, node or AWS level reporting, we propose an

algorithm called Successive Pairwise REcord Differences

(SPREDs), which computes time differences between

successive data packets and generates clusters representing

the differences. In order to avoid lengthy computations,

which should be regularly performed for each AWS, only

a summary of the state at levels including AWS, node and

sensor are maintained. At the node level, a list of model

parameters that have been captured in the past is

maintained. The list forms a basis of establishing anomalies

for the future reports. A report showing reception time,

number and list of unique time differences (clusters)

between report intervals and a report interval change

list/tracker is generated. The report interval change tracker

gives the magnitude of the change, time the change

occurred and whether it is an increase or decrease. The

cluster list keeps cluster values and a count in each cluster.

Using the two data structures (i.e. change tracker and

cluster list), the analyser is able to identify information

such as the cause of the change, what level of the AWS the

problem is (sensor, AWS or node) including packet

dropping, sensor faults and gateway failure to transmit.

Classification of the problems is done using a decision

table given in [8].

Algorithm 1: Successive Pairwise REcord
Differences (SPREDs)

1: aws_sensor_list, missed_node_count =0

2: if exists(new_aws_record)
3: reference_parameters =
get_reference_parameter_list
4: while(exists more tokens in model_tokens list)
5: if(reference_parameter not found in new list)
6: record_sensor_level_miss(time,
parameter)
7: node_record_time_diff = last_record_time –
previous_record_time
8: if(node_record_time_diff not equal to previous
diff)
9: record_change(old_ddiff, new_diff, time)
10:
update_cluster_list(cluster_name,cluster_count)
11: if(missed_node_count equals
len(aws_sensor_list))
12: record_aws_miss(aws_name)

2.3 Visualizer and reporter

Reporting using either SMS, emails or web visualization is

necessary because it informs stakeholders of the

occurrence of a problem. It is important to determine when

and how often to report persistent problems. Furthermore,

a reported problem should only be re-reported if it has

persisted for a maximum period of time. All problems both

fixed and ignored are archived so as to generate a dataset

that can guide in preventive maintenance. The reporter also

gives information such as when node data was last

received, details for last received packet, number of reports

sent for a particular problem and time that has elapsed since

problem was last reported. Figure 5 shows the state

transitions of problems.

Figure 5. State transition diagram of the problems

The states in Figure 5 are explained as follows;

New & confirmed problem: There is supporting evidence

of a new problem.

Reported/re-reporting problem: problem has been

reported once and if it still persists, there is a chance of

reporting it again

Persisting problem: The number of times a problem has

been reported has exceeded the threshold and reporting of

the same has stopped

Fixed & archived problem: Problem has been resolved

and information stored for future reference.

The amount of data lost due to problems is calculated as

below, depending on the level of loss, after at time T, at

data rates of time t, where t<<T.

𝑆𝑒𝑛𝑠𝑜𝑟𝑙𝑜𝑠𝑠 =
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑒𝑥̅𝑝𝑒𝑐𝑡𝑒𝑑
∗ 100 (29)

𝑁𝑜𝑑𝑒 𝑙𝑜𝑠𝑠 = sensor1levelloss +

𝑠𝑒𝑛𝑠𝑜𝑟2𝑙𝑜𝑠𝑠 +…sensorn loss
(30)

𝐴𝑊𝑆𝑙𝑜𝑠𝑠 = 𝑛𝑜𝑑𝑒1𝑙𝑜𝑠𝑠 + 𝑛𝑜𝑑𝑒2𝑙𝑜𝑠𝑠 +
⋯+ 𝑛𝑜𝑑𝑒𝑛𝑙𝑜𝑠𝑠

(31)

In cases where any of the levels of loss are 100%, the loss

should be reported as an availability problem via either

SMS or email. Node-level loss that is less than 50% is due

to packet dropping and if in the next time T, a similar

inconsistency occurs, packet dropping report should be

sent via email and SMS. Re-reporting a problem should be

done via SMS or email after a day from when the first case

was reported. At the third and last time of reporting the

same problem, the problem becomes persistent and no

more messages are sent on the same. During the problem

state transitions, the web visualizations should report

details of each of the problems at all levels, indicating when

the problem was first reported, current state if not yet fixed

and how many times it has been reported. Also indicated,

is the frequency of a given problem based on archived

problems. The number of SMSs and emails on a specific

Sign

stopped Time

expiry

Normal

trend

{Re}-reported

Persisting
Fixed &

Archived

Sign

stopped

New & confirmed

Condition Monitoring for Wireless Sensor Network-Based Automatic Weather Stations

7 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

problem is controlled to enable drawing attention of the

concerned persons to the messages.

3. Proof-of-concept Experiment

As a proof-of-concept, we set up an AWS consisting of 3

RSS2 wireless sensor nodes[27] and a gateway comprising

of a sink node and raspberry pi. The gateway, consisting of

a sink node and rasp berry pi, was placed in an office,

approximately 80 feet from the AWS stand on which three

sender nodes were installed (Figure 6). Sensors were

placed 2m, 10m and close to the ground (gnd) and their data

collected and processed using the RSS2 nodes to which

they were connected. The sensor nodes were attached to the

10m metallic pole. Table 2 shows details of sensors and

nodes used. In addition to transmitting weather parameters,

each node transmits its input voltage, micro controller

voltage and MAC address for proper identification using

IEEE 802.15.4 protocol[28]. Nodes are configured to send

data packets to the gateway after 1 minute and 15 seconds.

 On receiving data packets, the sink node appends radio

link information including RSSI and LQI to each packet,

before sending them to a remote server or repository. At

the repository, all packets are received via a single TCP

port, processed and stored in a database. Real-time

processing is performed on both stored and incoming data

to establish performance of the remote AWSs.

Table 2. Weather parameters and nodes used

Node

name
Weather parameter

Measurement

mechanism

2m
Temperature and Relative

Humidity

Capacitive
humidity readings

and band gap
temperature

readings

gnd
Rain, Soil moisture, Soil

temperature
Interrupts and

voltage,

10m
Wind Speed, Wind Direction,

Solar insolation
Interrupts

sink Pressure Piezo-resistivity

Figure 6. Left: Contents of a sensor node; Right: Deployment site for the AWS, showing the 10m stand on which
three sensor nodes (2m, 10m and gnd) are placed. The gateway is placed in the building, close to the window on

second floor, approximately 80 feet from the AWS pole.

M. Nsabagwa et al.

8 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

4. Results

In this section, we present results of the various

components of the AWS condition monitor.

Figure 7. Web visualization of relative humidity and
temperature over time to assist in real-time
observations of the correlations of the two

parameters.

The observations from the two graphs can lead to a

conclusion as to whether any one of the two parameter

values is erroneous.

Figure 8. Percentage CPU Utilization for different
time intervals

The CPU utilization is 75.6%, 28.1% and 1.78 for arrival

rates of 5ms, 10ms and 50ms respectively. As the report

intervals/arrival rates (ms) increases, CPU utilization

increases because the time that CPU is made busy increases

due to increased load. The same CPU utilization is

experienced across the different parallel connections,

hence a higher CPU utilization for all AWSs combined.

Figure 9. Variation of processing time in clock
counts for the 1 second interval data.

Figure 10. Average waiting time for different
transmission intervals

The processing time is independent of the report arrival rate

and varies from 0.02 to 0.18 clocks. This variation is as a

result of the average size and content of the received

reports. Reports that take the least amount of processing

time are discarded on reception because they fail to match

the required set guidelines while some reports consume

processing time above 0.4 clocks depending on the size of

the string. This implies that the storage process consumes

approximately 3 to 4 times the amount of time consumed

by the pre-processing time. Our algorithm proposes initial

pre-processing in order to cut down on amount of time for

storing invalid data. Other levels of processing can be done

after storing the data to avoid dropping of reports from the

queues.

Condition Monitoring for Wireless Sensor Network-Based Automatic Weather Stations

9 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

Figure 11. Left: Normal plot, middle: histogram and right: whisker plot for temperature values over a period from
17th to 20th August 2018, with a reporting interval of 15 seconds.

The distribution of temperature data indicates a normal distribution with the

majority of readings appearing between 18 and 24. The assessment discovered no

outliers in data values and gradual increases and decreases are observed. Unless

rainfall readings are observed,

which can cause a gradual decrease,

temperature changes should be

gradual.

Figure 12. Left: Differences in reporting intervals (clusters) for the 10m node. Right: The number of clusters
formed from reporting interval differences

While there is variation in the reporting interval, 15

seconds interval has the highest frequency (13471 times),

followed by 30 seconds, which is 997 times given a total of

15527 records. This implies that the expected and right

interval is 15 seconds. The rest are reported as packet drops

and if data is not received after a prolonged time, for this

case 1 hour, the node failure is reported.

5. Conclusions

Monitoring performance of WSN-based AWS is an

important task that should be performed in order to

facilitate preventive maintenance and reduce AWS

downtime. The monitoring process becomes more complex

as the network of AWSs being monitored grows variations

in AWS data. Furthermore, receiving big volumes of data

centrally becomes more challenging as the data arrival and

processing rates vary, causing data packets to drop. We

have proposed an architecture for monitoring a network of

AWSs distributed over a wide area, consisting of a data

receiver which, receives and stores data at rates as low as

1ms using M/M/1/k queuing model. The data receiver is

able to perform an infinite number of parallel connections

at the same time, hence facilitating reception of packets

from many AWSs at the same time. In order to detect

M. Nsabagwa et al.

10 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

anomalies, we have proposed a hybrid of outlier detection

in numerical data and assessment of correlations in data

trends and using Successive Pairwise REcord Differences

(SPREDs) to provide sensor, node and AWS-level

anomalies. The identified problems are reported using

SMS, email and web visualizations, indicating the problem

type, state of the problem and time the problem has lasted.

Reporting of observed problems is done only three times in

order to reduce chances of ignoring the messages. In future,

we shall evaluate the performance of the listener in terms

of receiving multiple reports at the same time, a new

gateway design recently designed to regulate power

consumption amongst the sensor nodes.

Acknowledgments: We acknowledge the financial

support of NORAD (Agreement number UGA-13/0018).

We are also grateful to the meteorological services of

Uganda, Tanzania, Norway and South Sudan for the

technical support given. We are also grateful to Dr. Julius

Omona and Ms. Florence Bageya for hosting the gateway

and Lawrence Ssanyu for proofreading this document.

Special thanks go to the former interns of WIMEA-ICT

lab, Makerere University including Robert Kasumba,

Joshua Muhumuza, Eugene Tumwesigye Owak and

Stephen Byarugaba for the technical input.

References

[1] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on

coverage and connectivity issues in wireless sensor

networks,” Journal of Network and Computer Applications.

p. 8, 2012.

[2] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin,

“Wireless sensor networks: A survey on recent

developments and potential synergies,” J. Supercomput., p.

5, 2014.

[3] V. J. Hodge, S. O. Keefe, M. Weeks, and A. Moulds,

“Wireless Sensor Networks for Condition Monitoring in the

Railway Industry: A Survey,” IEEE Trans. Intell. Transp.

Syst., 2015.

[4] W. Qiao and D. Lu, “A Survey on Wind Turbine Condition

Monitoring and Fault Diagnosis - Part I: Components and

Subsystems,” IEEE Trans. Ind. Electron., 2015.

[5] Y. Lei, J. Lin, M. J. Zuo, and Z. He, “Condition monitoring

and fault diagnosis of planetary gearboxes: A review,”

Measurement: Journal of the International Measurement

Confederation. 2014.

[6] and J. W. Bhuiyan, Md Zakirul Alam, Guojun Wang,

Jiannong Cao, “Deploying wireless sensor networks with

fault-tolerance for structural health monitoring,” IEEE

Trans. Comput., vol. 64, no. 2, 2015.

[7] Z. Shelby, K. Hartke, and C. Bormann, “Constrained

Application Protocol(CoAP),” CoRE Work. Gr., 2013.

[8] J. S. O. Mary Nsabagwa, Isaac Mugume, Robert Kasumba,

Joshua Muhumuza, Steven Byarugaba, Eugene

Tumwesigye, “Condition Monitoring and Reporting

Framework for Wireless Sensor Network-based Automatic

Weather Stations,” in 2018 IST-Africa Week Conference

(IST-Africa), 2018.

[9] G. Cicotti, L. Coppolino, S. D. Antonio, and L. Romano,

“Runtime Model Checking for SLA Compliance

Monitoring and QoS Prediction,” J. Wirel. Mob. Networks,

Ubiquitous Comput. Dependable Appl., 2015.

[10] and T. O. Ryota Suzuki, Shigeru Kohmoto, “Non-intrusive

Condition Monitoring for Manufacturing Systems,” in 2017

25th European Signal Processing Conference (EUSIPCO),

2017.

[11] H. Tang, L. Chen, Y. Wang, N. Wang, and X. Li, “Stalling

assessment for wireless online video streams via ISP traffic

monitoring,” in IEEE Wireless Communications and

Networking Conference, WCNC, 2017.

[12] A. Jacquillat, A. R. Odoni, and M. D. Webster, “Dynamic

Control of Runway Configurations and of Arrival and

Departure Service Rates at JFK Airport Under Stochastic

Queue Conditions,” Transp. Sci., 2017.

[13] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and

X. Rong, “Data mining for the internet of things: Literature

review and challenges,” International Journal of Distributed

Sensor Networks. 2015.

[14] M. Gorawski, A. Gorawska, and K. Pasterak, “The TUBE

algorithm: Discovering trends in time series for the early

detection of fuel leaks from underground storage tanks,”

Expert Syst. Appl., 2017.

[15] L. C. Shen, Lijuan and Cassottana, Beatrice and Tang,

“Statistical trend tests for resilience of power systems,”

Reliab. Eng. \& Syst. Saf., vol. 177, 2018.

[16] L. A. Trucolo, Caio Cesar and Digiampietri, “Improving

trend analysis using social network features,” J. Brazilian

Comput. Soc., vol. 23, 2017.

[17] N. N. Karmeshu Supervisor Frederick Scatena, “Trend

Detection in Annual Temperature & Precipitation using the

Mann Kendall Test – A Case Study to Assess Climate

Change on Select States in the Northeastern United States,”

Mausam, 2015.

[18] P. Jain, X. Wang, and M. D. Flannigan, “Trend analysis of

fire season length and extreme fire weather in North

America between 1979 and 2015,” Int. J. Wildl. Fire, 2017.

[19] R. K. Aggarwal, P. K. Mahajan, Y. S. Negi, and S. K.

Bhardwaj, “Trend Analysis of Weather Parameters and

People Perception in Kullu District of Western Himalayan

Region,” Environ. Ecol. Res., 2015.

[20] S. B. and S. A. Amro Al-Radaideh, A. R. Al-Ali, “A

wireless sensor network monitoring system for highway

bridges,” in In Electrical and Information Technologies

(ICEIT), 2015 International Conference on (pp. 121-122).

IEEE, 2015.

[21] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly

detection and description: A survey,” Data Min. Knowl.

Discov., 2015.

[22] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of

network anomaly detection techniques,” Journal of Network

and Computer Applications. 2016.

[23] S. Agrawal and J. Agrawal, “Survey on anomaly detection

using data mining techniques,” in Procedia Computer

Science, 2015.

[24] M. Flach et al., “Multivariate Anomaly Detection for Earth

Observations: A Comparison of Algorithms and Feature

Extraction Techniques,” Earth Syst. Dyn. Discuss., 2016.

[25] F. E. Grubbs, “Procedures for Detecting Outlying

Observations in Samples,” Technometrics, 1969.

[26] “Radio sensors.” [Online]. Available: radio-sensors.com.

[27] IEEE Standard, “IEEE standard for information technology-

telecommunications and information exchange between

systems-local and metropolitan area networks-specific

requirements-Part 15.4 : Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications,” IEEE

Std 802.15.4-2006, pp. 1–26, 2006.

11 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e4

Condition Monitoring for Wireless Sensor Network-Based Automatic Weather Stations

