
1

A Permission-Based Distributed Mutual

Exclusion Algorithm allowing Quality of Service

(PBDMEAQoS)

E. D. NGOUNOU NTOUKAM1, *, V. C. KAMLA 2 and J. C. KAMGANG3

1 The university of NGAOUNDERE, P. O. Box 455 CAMEROON (ngounoudimitry@gmail.com)
2 The university of NGAOUNDERE, P. O. Box 455 CAMEROON (vckamla@gmail.com)
3 The university of NGAOUNDERE, P. O. Box 455 CAMEROON (jckamgang@gmail.com)

Abstract

The main purpose of mutual exclusion in a distributed environment is to control access to a shared resource. Large-scale

distributed systems such as clouds or grids provide shared informatics resources to its clients. In this type of environment,

Service Level Agreement (SLA) allows for the definition of a type of quality of service (QoS) between a resource provider

and a client. This means that some constraints like priority, response time or reliability must be taken into consideration to

maintain a good QoS. Permission-based algorithms are costly in messages, not easily extensible and naturally more robust,

pertaining to failures when compared to token algorithms. In this paper, we propose two mutual exclusion algorithms,

integrating priority and time constraints for each request, via deadline and execution time in the critical section, with the

aim of ensuring a proper service quality. The proposed algorithms are based on a logical structure of nodes in complete

binary trees. The algorithms named PBDMEAQoSα and PBDMEAQoSβ are SLA (Service Level Agreement) based. They

integrate priority dynamics, which cumulates with the age of a request. PBDMEAQoSα requires 3log2N messages per

access to critical section and a synchronization delay of 2log2N for a set of N nodes competing for the critical resource.

PBDMEAQoSβ requires 2log2N messages per access to critical section and a synchronization delay of log2N.

Keywords: Distributed algorithm, mutual exclusion, time constraints, SLA, QoS

Received on 3 October 2017, accepted on 30 November 2017, published on 20 December 2017

Copyright © 2017 E. D. NGOUNOU NTOUKAM, licensed to EAI. This is an open access article distributed under the

terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits

unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.*

doi: 10.4108/eai.20-12-2017.153491

* Corresponding author: ngounoudimitry@gmail.com

1. Introduction

Distributed systems have been the centre of interest in

computer science for the last three decades. Distributed

systems are a collection of autonomous computers

connected by communication network. One of the main

goals of distributed system is to provide an efficient and

convenient environment for sharing resources. Certain

resources can’t be accessed simultaneously by different

processes, mutual exclusion therefore permits us to solve

this problem. This kind of resource is called a critical

resource and the execution inside such resource is called

critical section. Many distributed mutual exclusion

algorithms have been proposed in literature. The taxonomy

proposed by [4], [5] and [6] distinguishes two families of

algorithm. The first family is permission based. In this

algorithm family, a node enters the critical section after the

permission of a set of nodes. The second family is token-

based, where the system has a single token and the

possession of this token by one site gives him the right to

enter in critical section. The main goal of the algorithms

cited above was to reduce the number of messages

EAI Endorsed Transactions
on Cloud Systems Research Article

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

http://creativecommons.org/licenses/by/3.0/

E. D. NGOUNOU NTOUKAM, V. C. KAMLA and J. C. KAMGANG

2

exchanged per critical section. In most of those algorithms

the order of critical section request was FIFO (First In First

Out). The response time was finite but not bound. This type

of algorithm is not always suitable for new distributed

systems such as cloud computing which has some

requirements in term of Quality of Service (priority,

response time, . . .) [7]. The QoS requirements are important

for any application since these are recorded as an agreement

between the customer and the system designer. Any

violation from QoS may lead to customer dissatisfaction,

hence, must be taken seriously [8]. Many mutex algorithms

have been proposed to this new type of distributed system.

We can list some priority-based algorithms (eg.: Goscinksi,

Housni-Trhel, Mueller,KanrarChaki) where a node of

system has a privilege which determines the weight of his

request in the system. There are some algorithms that are

dedicated to cloud [19] [21] [7].

We observe that all these new algorithms for

modern distributed systems are essentially token-based and

are in most case either essentially priority-based or time

constraint algorithms. Token-based mutual exclusion

algorithms are easy to put in place, present weak average

message traffic and are easy to extend, but the loss of token

or failure of a node is difficult to manage. Permission-based

mutual exclusion algorithms present heavy average message

traffic and are not easy to extend but are naturally fault-

tolerant. There is no type of algorithm better than another,

but their uses are contextualized for a specific objective

performance [9]. Thus, we propose in this article two

permission-based mutual exclusion algorithm which

consider QoS requirement defined in Agreement. QoS

requirements defined in our algorithm are time constraint

and priority. The time constraint includes the deadline of the

request and its execution time in critical resource. Therefore,

the purpose of our algorithm is to minimize the violation of

the contract. This means that there is a reduction of the

number of requests which were not satisfied before a given

response time (deadline of request). Our algorithms are

permission based algorithm which is more robust to of

failures than token-based. They use the complete Binary

Tree topology which provides a better bandwidth (in order

of log(N)) as compared to other algorithms. The rest of the

paper is organized as follows; Section 2 discusses about

some existing priority-based mutual exclusion distributed

algorithms and some mutual exclusion algorithms for cloud

environment. Section 3 presents some definitions as well as

some assumptions about the considered system. Our mutual

exclusion algorithms named PBDMEAQoSα and

PBDMEAQoSβ are presented in Section 4 and 5. The

comparison between PBDMEAQoSα and PBDMEAQoSβ is

given in section 6. Finally, Section 7 concludes the paper.

2. Related Work

Priority is the level of importance of something. To be sure

that each process will have access to the critical resource in

time, a priority must be affected to each process. Several

priorities-based algorithms have been proposed for realtime

systems. According to Lejeune et al. in [11] we distinguish

two families of priority-based algorithms: static priorities

and dynamic priorities

• Static priority Algorithms

In the static priority algorithms, the priority of a process

remains the same until it enters the critical section. The

entry of a process in the CS respects the order of priorities

without inversion of priorities. Nevertheless, the starvation

of nodes with weak priority remains always possible if

nodes with greater priority perpetually request the CS.

Goscinksi [12] ameliorated Suzuki-Kasami’s [13] algorithm

by inserting a priority. Requests in waiting CS are recorded

in a global queue and are ordered by priority. The queue is

included in the token. The algorithm presents a message

complexity of O(N). Housni-Trhel algorithm [14]

adopted a hierarchical approach where nodes are grouped by

priority. In each group one router node represents the group

close to other groups. Routers nodes use Ricart-Agrawala’s

[15] algorithm between them. In each group the algorithm

applied is Raymond’s algorithm [16]. A process can only

send requests with the same priority (that of its group).

Mueller’s algorithm [17] was inspired from the Naimi-

Trehel algorithm where the circulation of the token uses a

dynamic tree as a logical structure for forwarding requests.

Each node stores the date of reception of each request and

keeps it in local queue. These queues form a virtual global

queue ordered by priority.

• Dynamic priority Algorithms

In the dynamic priority algorithms, the priority of a request

is incremented with time to assume liveliness property.

Generally, the priority of hanging requests is

increased at each record of a new request with high priority.

The Kanrar-Chaki [1] algorithm is based on Raymond’s

algorithm. They introduced a priority level

for every process CS request. The greater is the priority

level, the more urgent is the CS request. Every pending

request of a local process queue is ordered by decreasing

priority levels. A process that wishes the token sends a

request message to its father as Raymond’s algorithm. To

avoid starvation, the priority level of pending requests of a

local process queue is increased: whenever a process

receives a request with priority p, every pending request of

its local queue whose priority level is smaller than p is

increased by 1. Aiming at reducing the number of priority

inversions, Lejeune et al. [7] propose a new algorithm

with a reduction of incrementation of priorities. Though, this

reduction of incrementation always assumes the liveliness

property, a process with low priority could have enormous

waiting time in certain configuration. To resolve the

problem of waiting time, Lejeune et al. proposed another

algorithm in [18]. This algorithm is based on the circulation

of token inside a static tree topology and considerably

reduces the waiting time of process to a given rate inversion.

Cloud computing essentially outsources the computing

infrastructure of a user or an organization to data centers.

These centers allow thousands of their clients to share their

computing resources through the Internet for efficient

computing at an affordable cost [3]. To achieve satisfaction

of client Service Level Agreement (SLA) is defined between

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

A Permission-Based Distributed Mutual Exclusion Algorithm allowing Quality of Service (PBDMEAQoS)

3

the client and cloud provider. Any SLA violations can lead

to client dissatisfaction. In comparison with classical

distributed systems, the cloud computing environment has to

be dealt with differently because of following

characteristics: Scalability, Fault tolerance, Quality of

Services, Different Priorities [19]. To consider all these

characteristics, some mutual exclusion algorithms have been

dedicated to cloud environment.

Emondson-Schmidt-Gokhle’s [19] algorithm called

Prioritizable Adaptive Distributed Mutual Exclusion

(PADME) requires that customers be differentiated by the

price they pay for different services. In the other hand, the

customers who pay more than other customers must have

greater priority. PADME is based on a spanning tree where

higher requests are pushed towards the root. PADME uses

three types of messages: Request, Reply and Release.

Emondson Schmidt-Gokhle also presented a fault tolerant

version of PADME. Token-based distributed mutual

exclusion algorithm has been proposed by Lejeune et al. [7]

with the aim to support SLA. To respect SLA Lejeune and

al. put in place an admission control to accept or reject

requests. Accepted requests will be satisfied,

with great probability, before their deadline. The Lejeune et

al. [7] algorithm is based on Raymond’s algorithm.

Requests are sorted at a process local queue by their

response time deadline, similarly to the real-time scheduling

policy Earliest Deadline First (EDF). They proposed two

mechanisms to minimize SLA violations. Admission

control: the feasibility of a request satisfaction should be

checked before including the request in the system and

Preemption mechanism: which permits to decide which

path the token must follow inside the topology in order to

make profitable its utilization.

Recently, gossip-based algorithms have received

much attention due to their inherent scalable and fault-

tolerant properties, which offer additional benefits in

distributed systems. In gossip-based algorithms, each node

maintains several neighbours, called a partial view. With

this partial view, at each cycle (round), every node in the

system selects f(fanout) number of nodes randomly and then

communicates using one of the following ways: 1) Push, 2)

Pull, and 3) Push pull mode [21]. Applications of gossip-

based algorithms include message dissemination, failure

detection services, data aggregation etc.

Lim et al. [21] proposed a gossip-based mutual exclusion

algorithm for cloud computing systems with dynamic

membership behaviour. The amortized message complexity

of our algorithm is O(n), where n is the number of nodes.

Their simulation results show that their proposed algorithm

is attractive regarding dynamic membership behaviour.

3. The system model

In this section, we present some definition and

assumptions, variables and messages exchanged between

nodes, and finally the criterion of sort of pending queues.

3.1 Definitions and assumptions

We suppose that N nodes of our distributed system

communicate under a network which is reliable, and nodes

are not prone to failures. The words node, process, and site

are interchangeable. The delay of a message delivery is

supposed constant γ. The treatment time of request e at each

time is supposed constant. The physical clock of each node

does not change during the execution of our algorithm. Our

algorithm runs on a distributed system of N physically

dispersed autonomous computers sites that logically form a

complete binary tree and communicate with one another

only by sending messages. It is assumed that the sites

numbered from 1 to N form a tree topology. The

implementation of this kind of tree is made in a way that

each node i has two children node (2i and node 2i + 1). Each

node i also keeps inside his local queue all request of CS

that he received. We assume that each node has two layers:

the application layer and the network layer. Every request

emanates from the application layer. It is the

layer which changes state (calm, requesting, in CS). The

network layer permits to receive and transfer the messages

from the network layer of other node or from its own

application layer.

3.2 Local variables and messages

For each site Si, the algorithm defines the following local

variables which are updated:

– Flag allows us to know if the node is inside the CS. It is 1

if the node is inside and 0 otherwise;

– Granted permits us to know if the node gave an

authorisation to another node to enter inside CS, 1 if it is the

case and 0 otherwise;

– State is used to know if the node is the requesting state or

not, 1 if it is the case and 0 otherwise;

– Qc stores the local queue of all request of CS received ;

– Ni,r gives information about the number of links between

the root of tree and node i. The construction of the tree is

done in a way that each node added in system takes the Ni,r

of its parent and adds one into it to determine its own Ni,r

value.

Three types of messages are used: REQUEST (to

request access to the critical section), REPLY (to grant

access to the critical section) and EXIT (to release the

critical section). A message keeps the following

information:

–idi its sender-id, idp its receiver-id;

– Bi which is the rest of request waiting time, Ai which is

the request constant, msgi which is the message type.

Note that for REPLY and EXIT message parameters Bi and

Ai are not necessary. The following functions used in our

algorithm: init() which initiates our environment;

Request_section() which describes the instruction for

requesting the critical resource; Exit_section() which

describes how a process exits the CS; Treatment message()

which describes the behaviour of node at the arrival of a

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

E. D. NGOUNOU NTOUKAM, V. C. KAMLA and J. C. KAMGANG

4

message; InsertMessage(Messagem) which describe how a

new request is inserted in a queue. Other variables are

necessary to be put in place in our algorithm.

• pi: priority of initiator site of request ;

• hi : the initial Lamport’s timestamp [20];

• dsci: latest date of CS exit (as illustrated in figure 1) ;

• dscLi: latest local date of CS exit;

• t: current date at given site ;

• t2i: latest date of entrance the CS (like illustrated in figure

1) ;

• t1i: latest authorisation date of access to critical resource

(as illustrated in figure1) ;

• t0: emission date of the request;

• Nc,r: number of intermediate links separate current site

where the request found and the root of the tree;

• e: treatment time of request at a site (supposed constant for

every request);

• si, sc, sp, sr and root are respectively request site, current

site, parent site of current site, message receiver site, root

site;

• msg: message Object;

• da: waiting time of request;

• Message: each message exchanged or stored;

• Vi,c(t): Value V of request i at a site c at a moment t.

3.3 Criterion of sort

In known algorithms, local queues are sorted by FIFO

policy. This policy doesn’t consider waiting time, priority

and execution time of the process. These parameters are

important for QoS. They must be considered during the

insertion of a request in the local queue. We draw up a

formula accounts for these parameters. The formula

obtained must permit us sort or insert a new process in a

pending queue.

ii e

i

rcriesci

i
ci

d
p

teNNedd

ht
tV

1

))()((

1
)(

,,

,

(1)

With Ni1 and Nj1

We suppose that:

0))()((, ,, teNNeddt rcriesc ii

iei dP , and 0ih

Vi,c(t) obtained is the priority of the process Pi inside a

queue of processes at a given time t. This priority is

dynamic and temporal because it varies during the

execution and depends essentially on the waiting time of

request. The value Vi,c(t) is the criteria admission of the

request in the CS at a given time. Vi,c(t) can be divided into

three parts. We have:

1 ihA

ie

i
d

pC
1

))()((,, eNNeddB rcriesc ii

Therefore, equation 1 can be summarise as:

C
tB

At
tV ci

)(, (2)

The parameter A represents the emission date of the request.

Thus, the age of a request is the difference between the

current time and A. We added 1 to hi and obtained A, this is

to avoid having request having zero age. In C, we observe

that the value of C doesn’t change with time, due to its

parameters (pi, dei) which are statics. On the other hand,

wherever the request is found the value of C is the same. pi

is the priority of initiator node of request. To prioritize

request with a lower execution time we use 1/dei in our

formula. B represents the rest of the waiting time in the

expression of Vi,c(t), it’s situated between t0i and t2i as shown

in figure 1. The difference between the deadline of request

and the CS time, transition time between the initiator node

and the root of the tree must not exceed the latest

authorisation date of access to critical resource t1i. This is

done to satisfy a request before its deadline. Notice that we

consider that all nodes have a virtual clock that are

synchronized.

4. PBDMEAQoSα Algorithm

4.1 Description of the PBDMEAQoSα
algorithm

Figure 2 shows the pseudo code of PBDMEAQoSα

algorithm. When a site si wants to enter the critical section at

time t, it defines its expiration date dsci > t, and estimates the

duration of execution dei in the critical section (line 11 to

15). It inserts into its own list of queries a REQUESTtype

message which it transmits itself. It then sends a request to

its parent’s site sp in case it’s not the root of the tree (line 19

to 21) via its network layer. Upon reception of a REQUEST

message by the current site sc from its application layer or

the network layer of one of its son nodes, it is verified that

the waiting time has not yet been reached (ie t > Bi+(γ+e))

for demands from its daughter sites). If this is the case, this

message is deleted (line 56). Otherwise, the current site sc

updates the Bi parameter (Bi = Bi + (γ + e)) of the message

(line 58). It then inserts the message in its own line of

requests (line 59). The current site sc transmits the message

to its parent site sp by substituting itself to the sender (line

60). In case the current site is the root of the tree (ROOT), it

is checked that the waiting time is not completed (Bi + (γ +

e) > t) (line 43 to 44). If this is the case, this message is

inserted into the local queue. Otherwise it is removed from

the system. If an entry into the CS has not been authorized

(Granted == 0) the most urgent request in the queue will be

searched for and an authorization message sent to it. Upon

reception of a REPLY message at a site sc (line 61), if this

REPLY message belongs to it, it checks whether the

deadline of its request has not yet been reached. If that is the

case, it sets its Flag to 1 and enters the critical section.

Otherwise, it goes in its demand queue Qc, searches for the

highest value demand Vi(t) still permissible in CS while

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

5

withdrawing requests with due dates attained. As soon as it

finds it, it sends a REPLY message and sets its Granted

variable to 1(Figure 2, line 83 to 99). At the output of the

critical section, the site deletes its request from its own local

queue and sets its Flag and Granted to 0. If it is the root, it

sends an EXIT message to itself; Otherwise, it sends an

EXIT message to its parent site (line 24 to 37). Upon

reception of an EXIT message by a sc (line 71), the latter

sets its Granted variable to 0 and looks for the initiator

process of the EXIT message in its pending queue, removes

it while withdrawing the demands with deadlines reached

(line 73 to 76). If the site sc is the root site (line 77), it sends

a REPLY message to itself if its queue is not empty. If site

sc is not the root site, it sends an EXIT message to its parent

site (line 78 to 82). The waiting time for each request is

fixed at the initiation of the request. If this duration is zero,

the value Vi(t) will also be. When the due date is reached

(Vi(t) <= 0), the message is simply deleted from the list. If

this message has been emitted by the current site, the

application layer informs the network layer that the waiting

time has expired for this request.

4.2 Theoretical analysis of PBDMEAQoSα
algorithm

For a mutual exclusion algorithm to be considered

correct, it must satisfy the properties of safety and liveliness.

Proof of liveliness: Liveliness avoids blocking and

starvation situations in processes requiring access to a

resource. In our algorithm, we define the waiting time for

the process. This allows us to cancel the process once this

waiting time is exceeded and notify a rejection message to

the process initiator. The main aim is to minimize the

number of rejections. We also define the execution time and

priority of a process. To avoid the greatest number of

rejections, the most urgent process is chosen according to

Vi(t) (combination of wait time, priority and run time

parameters). This is to allow a large number of pending

applications to have a chance to use the critical resource

efficiently.

ASSERTION 1. Deadlock is impossible

The system of nodes is said to be deadlocked when no node

is in its critical section and no requesting node can ever

proceed to its own critical section [15].

 PROOF. Attending to the most urgent request of a

pending queue allows to assign the resource to one process

at least. Once it has been executed, it must be reported

(EXIT message) to the entire system. Removing queries

from the local queue of a site once their due date reached

allows for an increase in the allocation of the critical

resource. Thus, at time t, a process i has a value of Vi of a

low emergency: At a time, t + ∆t, a process i will have a

value of Vi with a high degree of emergency; At time t + (∆

+ 1) t, a process i will have a value of Vi which could turn to

zero or less. We can have in a queue two processes i and j

that have the same value of V (Vi = Vj) at a certain time. This

can only happen at a given moment, for there exists a single

t for which Vi = Vj. In this type of situation (Vi = Vj), if our

queue has only two processes, and an authorization message

input to CS arrives, one of the two processes i and j we be

randomly chosen. This ensures a constant evolution of the

system, hence the vivacity of our system.

ASSERTION 2. Starvation is impossible

Starvation occurs when node must wait indefinitely to enter

its critical section even though other nodes are entering and

exiting their own critical sections [15].

PROOF: In our case, a process can only wait for the time

it has previously defined. Consider two processes i and j. At

a time, t, Vi > Vj if i runs at CS at this time. Once process i

is taken out of the SC, it can only run a second time after j

because for process i to emit a request again, it would have

to signal its output (REPLY message) and cover all the

intermediate links that separate it from the current node (γ +

e) Ni,r. This is being done for a certain duration ∆t.

Therefore, at a time t + ∆t, Vj will necessarily be more

urgent because Vi changes with time. Therefore, process I

would like to enter a second time in SC, process Vi would be

greater or equal to Vi, therefore Vj ≥ Vi. This avoids

starvation situations. However, repetitive transmission of

several requests with small parameters to a single node near

the root could lead to the famine of a process in the pending

queue of this node.

Proof of safety

ASSERTION 3. Mutual exclusion is achieved.

Mutual exclusion is achieved when no pair of nodes ever

simultaneously in its critical section. For any pair of nodes,

one must leave its critical section before the other may enter

[15].

PROOF. Since our topology is a complete binary tree,

only the root node can have knowledge of the whole state of

the system. However, it can give its authorization (REPLY

message) only to one of its children node. Entry into the

critical section from a site is only possible after the

authorization from all its parent sites from the root site.

Thus, the root site can authorize input into critical section

only if it has received an EXIT message, meaning the

release of the critical resource. We deduce that our

algorithm can admit at most a single process in critical

section at a given time. It does verify the safety criterion.

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

A Permission-Based Distributed Mutual Exclusion Algorithm allowing Quality of Service (PBDMEAQoS)

E. D. NGOUNOU NTOUKAM, V. C. KAMLA and J. C. KAMGANG

6

Bandwidth analysis: The aim here is to evaluate the

number of messages exchanged to enter critical section in a

set of N sites in total. As with the previous algorithm, for a

request to reach the root site, it takes log2(N) messages in

Figure 1: Description of urgency of request

the worst case. This represents the average size of a

complete binary tree of size N. To enter the critical section,

a process must send in the worst case log2(N) REQUEST

messages, log2(N) REPLY messages and log2(N) EXIT

messages. This means that in the worst case a total of

3log2(N) posts per access to the critical resource. However,

in our algorithm, a request can be cancelled (Vi,c(t) = 0) on

the way to the root if its expected response time is reached.

The worst case corresponds to a query leaving a leaf node to

the root, and reaches its due date at the level of the root.

This corresponds to log2(N) REQUEST messages. This will

make it possible to release the bandwidth of messages with

expired waiting time (Vi,c(t) = 0), and give way to priority

messages.

Synchronization delay: The aim here is determining the

number of messages between the output of the critical

section by a process and the input of the other. At the end of

its execution, a process must send an EXIT message to the

root. In the worst case it will cost log2(N) messages. Then, it

will take log2(N) REPLY messages from the root to allow

the next process to enter the critical section. Thus, we have a

synchronization delay of 2log2(N) in the worst case.

Cost of queue processing: The aim here is to evaluate

the complexity of the processes carried out on the pending

queue. Upon reception of a REPLY message by a site, the

entire pending queue is checked in search of the highest

priority request. This has a complexity of order of Θ(n) for

an n elements queue. Upon reception of an EXIT message,

the current node must go to its local queue and remove the

process that sent the message if it still exists in the queue.

The worst of cases would be that during the search, the

process issuing the message EXIT is not in the queue or at

the end of the queue. In this case, the complexity of this

processing is of the order of Θ(n).

5. PBDMEAQoSβ Algorithm

5.1 Description of the PBDMEAQoSβ
algorithm

Figure 3 shows the pseudo code of PBDMEAQoSβ

algorithm. In this algorithm, the granting of input

authorization in CS is done automatically. This is done

through a timer at the root. This timer allows one to know

when to send an authorization. When a site si wants to enter

the critical section, it defines its expiration date (dsci, this

date must always be greater than the current date, t) and

estimates the duration of execution (dei) in the critical

section (equation l). It fits into its own list of queries a

REQUEST type message which it transmits itself. Then it

sends its request to its parent site sp if it is not the root of the

tree via its network layer (Figure 2, line 109 to 122). Upon

reception of a REQUEST message by the current site sc

from its application layer or the network layer of one of its

child node (line 144), it is verified that the waiting time has

not yet been reached (ie t > Bi +(γ + e)) (line 145). If this is

the case, this message is deleted (line 146). Otherwise, the

current site sc updates the setting Bi (Bi = Bi + (γ + e)) of the

message (line 148). Then, it inserts the message in its own

demand queue (line 149). The current site sc sends the

message to its parent site sp by substituting itself to the

sender (line 150). In this algorithm, the root of the tree

functions differently from the other nodes. Upon reception

of a REQUEST message by the root (line 125), it is checked

that the waiting time is not completed (Bi + (γ + e) > t) (line

126). If this is the case, this message is

inserted in the local file (line 128). Otherwise it is removed

from the system (line 130). The CS is initially assigned to

the first requests and the end date of execution of the

process in CS is defined (dateFinTimer). This date is the

sum of the current date and the journey time of the number

of intermediate links between the root and the node (node to

be executed) plus the execution time of the process. The

next authorization to enter CS is automatically granted once

this date has been reached or exceeded (line 133 to 134).

Once dateFinTimer is reached, the root goes into its local

file, searches for the most urgent query and defines the

variable dateFinTimer. Then, it goes through the line,

withdraws any requests that cannot survive till the next

authorization in CS (line 137 to 140). Upon reception of a

REPLY message by a site sc (line 151), If this REPLY

message belongs to it, it sets its Flag to 1 and enters the

critical section (line 152 to line 155). Otherwise, it goes in

its query queue Qc, removes from its queue the process

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

7

initiating the message REPLY received, this while

withdrawing requests by deadlines reached (line 156 to line

161). As soon as it removes the process, it sends a REPLY

message (line 162 to line 163).

5.2 Proof of PBDMEAQoSβ algorithm

Figure 2: The PBDMEAQoSα algorithm

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

A Permission-Based Distributed Mutual Exclusion Algorithm allowing Quality of Service (PBDMEAQoS)

E. D. NGOUNOU NTOUKAM, V. C. KAMLA and J. C. KAMGANG

8

Proof of liveliness

ASSERTION 4. Deadlock is impossible

PROOF: At a time, t a process i is either served if the CS

has just been released, or withdrawn from the file because

its due date has been reached or it can only wait until the

end of the process to which the CS has just been assigned.

This ensures a constant evolution of the system, hence the

vivacity of our system. The fact that the root is the only

node to assign CS periodically allows to ensure the

liveliness of the system.

ASSERTION 5. Starvation process is impossible

PROOF: In our case, a process can only wait for the time it

has previously defined. Consider two processes i and j. At a

time, t Vi > Vj if i runs at CS at this time. Once process I will

be taken out of the SC, it will be able to run a second time

only after j, because for process i to issue a request again, it

should have to signal its exit (REPLY message) and cross

all the intermediate links between it and the current node (γ

+ e) Ni,r , this being done for a certain duration ∆t. Thus, at

any instant t+∆t, Vj will necessarily be more urgent because

Vi changes with time. Process i would like to enter a second

time in SC, process Vj would be greater or equal to Vi,

hence Vj ≥ Vi. This avoids starvation situations. However,

repetitive transmission of several requests with small

parameters with a single node near the root could lead to the

famine of a process in the pending queue of this node.

 Proof of safety: It consists in ensuring that the critical

resource at a time is used only by one and only one process.

Indeed, initially no process has access to the critical

resource. Entry into the critical section by a site is only

possible after the authorization of the root site. Thus, the

root site can only authorize a critical section entry if the

release of the critical resource is effective (dateFinTimer <=

t). From this we deduce that our algorithm can admit at most

one process in critical section at a given time. Our algorithm

thus verifies the safety criterion.

ASSERTION 6. The algorithm ensures mutual exclusion

PROOF: Since our topology is a complete binary tree, only

the root node can have knowledge of the whole state of the

system. It can however only give its authorization to only

one of its children node.

Bandwidth analysis: The aim here is to evaluate the

number of messages exchanged to enter critical section in a

set of N sites in total. As with the previous algorithm, it

takes log2(N) messages for a request to reach the root site.

This represents the average size of the binary tree of size N.

To enter a critical section, a process must send in the worst

case log2(N) REQUEST messages and log2(N) REPLY

messages. This sums to a total of 2log2(N) messages per

access to the critical resource in the worst case. However, in

our algorithm, a request can be cancelled (Vi,c(t) = 0) on its

way to the root if its expected response time is reached. The

worst case corresponds to a query leaving from a leaf node

to the root, and reaches its due date at the level of the root.

This corresponds to log2(N) REQUEST messages.

However, this will make it possible to release the bandwidth

of messages with expired waiting time (Vi,c(t) = 0), and give

way to priority messages.

Synchronization delay At the end of the execution of a

process in SC, another process is allowed automatically

through the root of the tree. Thus, in the worst case, log2(N)

messages for the effective entry of the process into SC.

Thus, we have a synchronization deadline of log2(N) in the

worst case.

Cost of queue processing: The aim here is to evaluate the

complexity of the processing carried out on the pending

queue. When a REPLY message is received, the entire

queue must be scanned to withdraw the initiating process

from the received REPLY message, while removing the

requests with due dates reached. In this worst case, the

complexity of this treatment is of the order of Θ(n). At the

end of the execution of a process in SC, the root must look

for the most urgent process in its queue. This has a

complexity of the order of Θ(n) for an n-element queue.

6. Comparison between the PBDMEAQoSα
and PBDMEAQoSβ algorithms

In addition to the comparisons made in Table 1, the

processing cost makes it possible to distinguish between the

two algorithms. The PBDMEAQoSα and the

PBDMEAQoSβ algorithms differ in the fact that in the

PBDMEAQoSβ algorithm, only the root of the tree performs

the search for the largest element of its local queue. This

makes it possible to say that the algorithm PBDMEAQoSβ

has a low processing cost compared to the PBDMEAQoSα

algorithm. We can superficially say that the algorithm

PBDMEAQoSβ is better than the PBDMEAQoSα

algorithm. It is important to note that the PBDMEAQoSβ

algorithm is more appropriate when one wants an algorithm

with an efficient use of the critical resource. The

PBDMEAQoSα algorithm is better adapted when one

wishes to privilege processes with high dynamic priorities

(according to Vi,c(t)).

Table 1. Comparison between the PBDMEAQoSα and
PBDMEAQoSβ algorithms

PBDMEAQoSα PBDMEAQoSβ

Bandwidth 3log2(N) 2log2(N)

Synchronization
delay

2log2(N) log2(N)

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

9

Figure 3: The PBDMEAQoSβ algorithm

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

A Permission-Based Distributed Mutual Exclusion Algorithm allowing Quality of Service (PBDMEAQoS)

E. D. NGOUNOU NTOUKAM, V. C. KAMLA and J. C. KAMGANG

10

7. Conclusion and perspectives

We have proposed in this paper two permission-based

distributed mutual exclusion algorithms called

PBDMEAQoSα and PBDMEAQoSβ. In PBDMEAQoSα

and PBDMEAQoSβ the quality of service is considered by

priority, deadline and execution time of process. The

dynamic variation of our classification parameter (Vi,c(t)) is

used to reduce to number the SLA violation. This policy

here is that processes that cannot wait to obtain

authorization and the indication of CS exit by other by the

current process which have authorization, should be

removed from the system. Thus, process with reached

deadlines will be deleted to free the bandwidth.

PBDMEAQoSβ algorithm is more appropriate for

an efficient use of the critical resource. The PBDMEAQoSα

algorithm is better adapted when one wishes to privilege

processes with high dynamic priorities (according to Vi,c(t)).

As future work, we might extend his work using a

dynamic root system. The root can be a bottleneck in our

current system. we might also consider fault tolerance and

adapting our solutions to k-mutual exclusion and group

mutual exclusion.

Acknowledgements.
We thank the laboratory LAMEX (Laboratory of Experimental

Mathematics) of the Doctoral Training Unit UFD-MIAP.

References

[1] KANRAR, S., & CHAKI, N. (2010). FAPP: A New Fairness

Algorithm for Priority Process Mutual Exclusion in

Distributed Systems. JNW, 5(1), 11-18.

[2] KSHEMKALYANI, A. D., & SINGHAL, M. (2011). Distributed

computing: principles, algorithms, and systems. Cambridge

University Press.

[3] GHOSH, S. (2014). Distributed systems: an algorithmic

approach. CRC press.

[4] Raynal, M. (1991). A simple taxonomy for distributed mutual

exclusion algorithms. ACM SIGOPS Operating Systems

Review, 25(2), 47-50.

[5] Velazquez, M. G. (1993) A survey of distributed mutual

exclusion algorithms. Tech. rep., Colorado state university.

[6] Saxena, P. C., & Rai, J. (2003). A survey of permission-

based distributed mutual exclusion algorithms. Computer

standards & interfaces, 25(2), 159-181.

[7] Lejeune, J., Arantes, L., Sopena, J., & Sens, P. (2012, May).

Service level agreement for distributed mutual exclusion in

cloud computing. In Proceedings of the 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (ccgrid 2012) (pp. 180-187). IEEE

Computer Society.

[8] Singh, J., Dutta, M., & Swaroop, A. (2015). A QoS Aware

Self Adaptive General Scheme to Solve GME

Problem. International Journal of Computer

Applications, 109(7), 25-29.

[9] Sopena, J. (2008). Algorithmes d’exclusion mutuelle :

tolérance aux fautes et adaptation aux grilles (Doctoral

dissertation, Paris 6).

[10] Chang, Y. I. (1994). Design of mutual exclusion algorithms

for real-time distributed systems. J. Inf. Sci. Eng., 11(4), 527-

548.

[11] Lejeune, J., Arantes, L., Sopena, J., & Sens, P. (2013,

January). Un algorithme équitable d'exclusion mutuelle

distribuée avec priorité. In 9ème Conférence Française sur

les Systèmes d'Exploitation (CFSE'13), Chapitre français de

l'ACM-SIGOPS, GDR ARP.

[12] Goscinski, A.M. (1990). Two Algorithms for Mutual

Exclusion in Real-Time Distributed Computer Systems. J.

Parallel Distrib. Comput., 9, 77-82.

[13] Kasami, T., & Suzuki, I. (1985). A Distributed Mutual

Exclusion Algorithm. ACM Trans. Comput. Syst., 3, 344-349.

[14] Housni, A., & Trehel, M. (2001). Distributed mutual

exclusion token-permission based by prioritized groups.

In Computer Systems and Applications, ACS/IEEE

International Conference on. 2001 (pp. 253-259). IEEE.

[15] Agrawala, A.K., & Ricart, G. (1981). An Optimal Algorithm

for Mutual Exclusion in Computer Networks. Commun.

ACM, 24, 9-17.

[16] Raymond, K. (1989). A Tree-Based Algorithm for

Distributed Mutual Exclusion. ACM Trans. Comput. Syst., 7,

61-77.

[17] Mueller, F. (1998). Prioritized Token-Based Mutual

Exclusion for Distributed Systems. IPPS/SPDP.

[18] Lejeune, J., Arantes, L., Sopena, J., & Sens, P. (2013,

October). A prioritized distributed mutual exclusion

algorithm balancing priority inversions and response time.

In Parallel Processing (ICPP), 2013 42nd International

Conference on (pp. 290-299). IEEE.

[19] Edmondson, J., Schmidt, D., & Gokhale, A. (2011). QoS-

enabled distributed mutual exclusion in public clouds. On the

Move to Meaningful Internet Systems: OTM 2011, 542-559.

[20] Lamport, L. (1978). Time, Clocks, and the Ordering of

Events in a Distributed System. Commun. ACM, 21, 558-565.

[21] Lim, J., Chung, K. S., Chin, S. H., & Yu, H. C. (2012). A

gossip-based mutual exclusion algorithm for cloud

environments. Advances in Grid and Pervasive Computing,

31-45.

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e1

