
EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

EAI Endorsed Transactions
on Creative Technologies Research Article

1

Multi-agent evolutionary systems for the generation of
complex virtual worlds
J. Kruse1 and A.M. Connor1,*

1 Auckland University of Technology, Auckland, New Zealand

Abstract

Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex
models are a requirement for the successful delivery of many scenes and environments. While workflows such as
rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex
models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm
(IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive
Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the
effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This
workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer’s
intent through interaction, and encourages playful discovery.

Keywords: evolutionary computation, genetic algorithms, autonomous agents, multi-agent systems, interactive design.

Received on 11 June 2015, accepted on 29 July 2015, published on 20 October 2015

Copyright © 2015 J. Kruse and A.M. Connor, licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.20-10-2015.150099

1. Introduction

Convincing computer graphics models are a necessity
for the creation of successful games, movies and
virtual reality environments. Some natural and
architectural objects of higher complexity intensify
this problem as they necessitate fine detail and a large
number of smaller elements which act as the building
blocks of a more complex whole. Designing high-
quality content is a laborious and costly task that
requires substantial skill, time and resources [1, 2]
and often a large number of iterations are necessary to
achieve the desired results. This research addresses these
issues by use of human-centric evolutionary
computation combined with autonomous agents in
order to determine whether this process can be
facilitated by semi-autonomous approaches [3].

This paper describes an Interactive Genetic Algorithm
(IGA) that is driven by user input that works in
conjunction with a computational software agent that

supports the user in the decision making process. By
shifting the workload from the human user to the
computational agent, the laborious tasks of modelling are
simplified and the process is partially automated.

This paper describes the design of a hybrid intelligent
system to support interactive design and then utilises
procedural city design as an example to demonstrate the
process, identify potential benefits, and find possible
issues of hybrid intelligent systems in design contexts.

2. Background and related work

The problem discussed in this paper deals with both
Design and Artificial Intelligence, both of which are very
broad fields of research. To narrow these further, and to
address only the core matters of this enquiry, Generative
Design (as part of Design), as well as Genetic Algorithms
and Agents are discussed in more detail in the following
sections.

*Corresponding Author. E-mail: andrew.connor@aut.ac.nz

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

2

2.1. Generative Design

Generative Design, often also referred to as Procedural
Design, is the area of form and shape finding by use of
algorithmic help [4]. It is the overarching field in which
form finding is located in. There are some significant
differences between manual design aided by computer
software and automated design provided by software.

Computer Aided Design (CAD) systems and other
tools to create three dimensional objects with help of
computers are technically based on algorithms and
program code. However they require the designer to
manually operate the software and provide the inputs
necessary to create a shape and form. Some of the
processes may be partially automated, but the designer
still needs to draw the objects on screen and parametrize
them. These objects are often primitives such as circles,
rectangles, cubes, spheres and other two or three
dimensional shapes, which when combined, form the
desired complex object [5]. While this manual process
lays the foundation for Generative Design, it would still
be considered a potentially onerous iterative process. The
goal of this research is therefore to investigate automated
or semi-automated design processes driven by algorithms
to reduce the manual effort required.

Generative Design is the process of writing or applying
often simple and small fragments of code that show
objects on screen automatically, without the necessity to
have the designer create underlying shapes in the first
place [6]. The creation of shapes is done by software,
driven by an algorithm. The combination of many simple
shapes creates larger compound structures. These two or
three dimensional structures (or objects) tend to be rather
complex, given the simplicity of a few lines of code [2].
For example, to create a complex procedural structure
made of hundreds or thousands geometric primitives such
as cubes and spheres, only 8 lines of code are required.
These structures also often use recursive elements, i.e.
functions or procedures that call themselves over and over
again and therefore assemble a complex object from
small, identical building blocks. This is similar to some
plants such as ferns or trees, which are complex structures
that are made from very few number of simple individual
elements [7]. In case of the fern for example, the fractal or
recursive nature is visible from a large scale to a
microscopic level. The same shape is found over and over
again, from plant to branch, and from branch to leaf, and
so forth. This is usually referred to as self-similarity [8].
In the case of a procedurally modelled city, it is possible
to apply some very similar approaches. While not fully
self-similar, they are still based on repetition of simple
building blocks, which when used in large numbers
resemble rather complex structures. An example would be
windows on an office building, which are simple elements
but make up most of a large structure. Another example
would be streets. While most streets have similar building
blocks, as a whole they present a very complex and large
system of gaps between buildings.

There is little evidence in the literature that a computer
generated city has been made using Generative Design
driven by the user in conjunction with algorithmic help.
While there have been attempts to create procedural three
dimensional cities as laid out by Parish and Müller [9],
these were entirely computer driven and provided no user
interaction. This leads to a computer generated city as
such, but does not enable the outcome to reflect the
designer’s intent. The city is a result of the programmer’s
imagination and it can therefore be argued that it is
similar to manual Computer Aided Design, with the
difference that the user (or programmer) does not draw
objects on screen, but writes code to create them. This
research follows a different approach in that the user is
influences the design by choosing preferred layouts.

Parish and Müller [9] allow the user simply to run the
software, which then produces a random result, which
may or may not resemble the designer’s vision. There
have also been other studies into components of
generatively designed cities, for instance street structures
or building structures [10], but these approaches also did
not consider interactive user input. Therefore, this
research aims to fill a significant gap in the existing
literature by using Generative Design driven by user
interaction to create complex structures while seeking to
reach the designer’s original vision.

Using computers to explore the space of possible
images, sculptures or other complex artistic forms such as
musical compositions, has enabled researchers and artists
to evolve pieces of art and led to the exploration of new
ideas. These range from simple arbitrary colour blobs to
working functional forms such as boat designs,
architectural forms or electronic circuits. Designers are
being enabled to study more solutions in less time and to
find forms that are outside the conventional and expand
their conceptual understanding. Evolutionary approaches
have also led to new methods and principles, which can
be exploited in future designs [11].

Bohnacker [4] demonstrates a variety of generated
typographic and abstract graphics. Other examples
include generated art using L-Systems [12], generative
design using very simple autonomous agents [2] and
studies in architecture [7] to name a few. Generative
Design has become more common for a variety of
reasons, including a vast growth of computing power.

2.2. Evolutionary computation

Evolutionary computation borrows ideas from Darwin’s
theory of evolution, which states that individuals as part
of a population increase their chances of survival and
reproduction by way of natural selection. This selection
process allows for small variations of each individual’s
properties, which are then passed on to the next
generation through inheritance. Darwinism in conjunction
with Mendel’s concept of genetics formed what is known
in biology as modern evolutionary synthesis [13].

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

3

Biological evolution encapsulates the following concepts
[14]:

• DNA (Deoxyribonucleic acid) is the molecular
structure that encodes the genetic information of
each cell of all living organisms. It is represented as
a double helix.

• Chromosomes are strings of DNA.
• Genotype is the hereditary information encoded in

the DNA.
• Phenotype is the observable properties as a result of

the DNA.
• Reproduction is the creation of offspring by (usually)

two parents, inheriting parts from both parents’
DNA.

• Crossover is the process of synthesizing an offspring
DNA, creating a new chromosome.

• Mutation is a small accidental change in the
offspring DNA, potentially resulting in slight
variations to a straight, non-mutated crossover.
Mutation happens with a very low probability.

• Survival of the fittest is the concept of only the
strongest properties of a DNA being sustained over
many reproduction cycles. Weaker DNA properties
could result in weaker offspring, which in turn has a
lower chance of survival. Over many generations,
this leads to the elimination of weak DNA. This is
also used synonymously with the term Evolution in
the literature [14].

Modern evolutionary synthesis serves as the foundation
for the many different types of evolutionary computation.
While evolutionary computation borrows ideas and the
notion of biological evolution from the natural process,
evolutionary computation is merely an abstraction of
evolutionary synthesis to emulate soft intelligent
behaviour in computer software. The concepts were
applied in different ways and evolved over time, so that
there are now a multitude of different algorithms, which
all borrow from the underlying idea of natural evolution.
Examples are Genetic Algorithms [15], Evolution
Strategies [16] and Genetic Programming [17]. While
these all simulate natural evolution to an extent, they
differ significantly in how they apply the evolutionary
principles.

Genetic Algorithms are heuristic search algorithms,
used to find a solution in the space of all possible
solutions. Evolution Strategies are designed to find
solutions to technical optimization problems [18], and
Genetic Programming generates computer programs that
in turn attempt to solve the actual problem [19]. Genetic
Programming therefore programs computers by finding an
optimal set of rules or section of code. Evolutionary
Computation is the field of research that is concerned with
computation based on the concepts of natural evolution.

Genetic Algorithms
Genetic Algorithms (GA), being part of the heuristic

optimization or search algorithms, are very popular due to

their relative simplicity, and are also well researched and
understood [20]. They were introduced in the 1970s by
John Holland and mimic natural evolution, normally by
abstracting the chromosomes into binary digits [15].
These chromosomes are passed on from one population to
a new population after genetics-inspired processes of
crossover and mutation. An evaluation function called
fitness function is then applied to establish each
chromosome’s performance towards the final goal. If the
chromosome performs poorly, it is likely to be dropped
from the pool of future ‘parents’. Otherwise, if the
chromosome’s fitness is high, it is more likely to be
selected for reproduction. The actual reproduction process
is performed by using a crossover operator, which mixes
parts of two parent’s chromosomes to form the new
child’s chromosome. Finally, a mutation operator is
applied to some of the new found chromosome in order to
ensure a certain variation of the child’s properties. This
mutation operator randomly changes the value of
individual digits of the chromosome binary string.
Mutation operator and crossover operators effectively
represent the probability of each operation (mutation and
crossover) occurring. The process of simulating natural
evolution is repeatedly applied for many generations and
as a result, the fittest members of a population dominate,
while the less fit become extinct. The underlying
mechanisms of Genetic Algorithms are very simple, yet
capable of showing seemingly complex behaviour and the
ability to solve difficult problem sets [18].

While simple search and optimization algorithms such
as hill climbing or gradient descent might have a tendency
to get stuck in local maxima or minima, Genetic
Algorithms avoid this issue due to their inherent creation
of diversity by mutation. Genetic Algorithms are highly
effective in many cases, and given that a robust fitness
function and solid parameters for crossover and mutation
have been selected, tend to avoid local optima in favour of
a global solution [21].

Genetic Algorithms have successfully been applied to a
range of different areas such as Engineering, Arts and
Computer Science. Some examples include the
optimization of machinery [22], evolved particle systems
[2], generative jazz music [23] or optimizing the weights
of neural networks [21]. Genetic Algorithms have also
been successfully applied to much simpler, but somewhat
similar design problems as presented in this paper, for
instance finding coloured blobs and stripes that reflect the
intent of the designer in the solution space of all possible
combinations of colour blobs and stripes [24]. This
research seeks to extrapolate the positive results to the
more complex design issue in relation to Procedural City
models.

Whilst there are many contradictory studies [25-28],
there is a body of evidence that suggests that Genetic
Algorithms are at least as effective as other metaheuristic
search algorithms [29]. Such a view is supported by Li &
Kou [30] who assert that Genetic Algorithms are
implicitly parallel, robust and scalable, as well as
powerful in global search and optimization.

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

4

Interactive Genetic Algorithms
Genetic Algorithms (GA) are relatively easy to implement
and can be very effective if the solution space is very
large. While GA have some disadvantages such as the
tendency to converge towards local maxima if not
properly tuned [31, 32] and the requirement of a fitness
function, which can be a challenge if soft factors such as
aesthetics come into play [33], GAs have been well
studied and well documented.

The GA was selected for this study based on its
simplicity, but the specific implementation does not use a
mathematical fitness function. Instead it integrates the
user (designer/artist) into the process. The user provides
the necessary fitness evaluation in the selection stage of
the GA, a process known as Interactive Evolutionary
Computation (IEC) [34]. The underlying idea of IEC was
first introduced by Dawkins in the third chapter of his
book “The Blind Watchmaker”. Dawkins demonstrates
the process of evolution based on Darwinian theories in a
software program called “biomorphs”, which uses human
interaction to evaluate factors such as aesthetics, appeal or
attractiveness [35]. Karl Sims [36] has taken this idea of
user-computer interaction for Genetic Algorithms further
and suggests that the human user does not have to
understand the underlying process of creating the
candidates, while still being able to produce results of
high complexity. He argues that such interactive evolution
enables the computer as well as the human to achieve
results that neither could have produced on their own.

The term ‘Interactive Evolutionary Computation’ was
finally formed by Takagi [33], who also evaluated IEC in
context of several different fields of research as a method
to integrate computational optimization and human
evaluation. Beside the ability to combine both
optimization and evaluation for design subjects, IEC can
also offer a significant benefit over other computational
design methods such as Genetic Algorithms or manual
computer aided design. The user can change their
evaluation during the evolutionary process and drive the
resulting populations into a different direction. This could
potentially lead to the discovery of previously unknown
outcomes and expose features that were not expected
initially. Changing the objectives in regular Genetic
Algorithms would require re-coding and is neither
practical nor efficient. IEC allows for alterations on the
fly and as a result has been recognized as a ‘novelty
generator’ [37].

It is important to note, that the user does not
necessarily evaluate the genotype or phenotype of the
candidates of the Genetic Algorithm directly, but a
different representation which is easier to grasp. For
example, instead of a numerical bit string (genotype) or
the associated colour values (phenotype) of some
elements of an image, a user might select whole images
that are based on both elementary parts [34]. This is an
approach chosen for this research where the user is able to
select rendered images which are each based on an
underlying set of parameters. These parameters are
encoded into a collection of numerical strings, the DNA.

This DNA is then modified (mutated) and crossed over by
the Genetic Algorithm. The resulting parameter set is
rendered back as a new image, which is then presented to
the user for consideration in the next generation.

Whilst this is an elegant way to both capture the user’s
preference and also avoid forming a mathematical
function for aesthetics or user preference, it poses a
significant problem which is related to the nature of
humans. After a number of iterations, human users tend to
fatigue and get slower to select, get distracted more easily
and lose concentration due to the high number of visual
triggers [38]. The effects of time saving while defining a
computational solution for the design problem could
potentially result in a less effective and less successful
overall outcome of the interactive evolutionary process
due to this fatigue effect. In the following section
discusses autonomous agents as a possible solution to this
inherent problem of IEC.

Interactive Evolutionary Computation offers significant
benefits over non-interactive approaches, as it removes
the necessity to find a mathematical solution for the
fitness function. The intractable nature of writing an
equation for aesthetics, taste and preference is elegantly
avoided. Instead, the user is employed to directly provide
the selection of potential candidates, which makes this
approach suitable for this research.

2.3. Autonomous agents

Research into agents or autonomous agents is a relatively
young field, which has been studied for about the past two
decades. Most publications from the early 1990s
presented agent definitions that are still valid and that
build the foundation of our current understanding of the
field.

In essence for this research it is assumed that an agent
is acting in some environment or is part thereof. It is
capable of deriving inputs from its environment and act
accordingly in an independent, autonomous manner.
Furthermore, an agent runs over a period of time, until it
finishes its task and not necessarily when the human user
decides to stop it. Some agents might even act beyond the
control of any human user [39].

Russell and Norvig [40] classify agents into five
groups based on the agent’s level of intelligence and
capability:

• Simple reflex agents act based on their current
perception and their function follows the condition-
action rule, which is usually implemented as a simple
if-then decision. They require a fully observable
environment in order to succeed.

• Model-based reflex agents differ from the above
mainly through their ability to handle partially
observable environments. They store descriptions of
the un-observable environment and act similar to the
reflex agent following a condition-action rule.

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

5

• Goal-based agents are model-based and use a
database of desirable situations for their decision
making process. The agents simply choose one of the
multiple possibilities that lead to the desired goal.

• Utility-based agents store goal-states and non-goal
states, from which they choose the most desirable
state. This decision is made based on a utility
function, which maps the state to a measure of the
utility of a particular state.

• Learning agents are able to operate in unknown (or
non-observable) environments through learning.
These agents become more knowledgeable over
time, compared to their initial state.

This research specifically involves Learning Agents in
order to capture the user’s intent, which is unknown at the
time of programming. This therefore presents a set of
non-observable parameters of the agent’s environment
when the process of form finding is started. But through
observation of the user’s action and accordingly through
evaluation of success and failure by comparison of the
agent’s prediction and the user’s input, the agent will
become more knowledgeable. The idea of learning as
opposed to simple behaviour is that perception is not only
used to trigger certain actions depending on the observed
changes in the environment, but that it is used to improve
future decisions by the agent system. It is not a reaction to
the environmental change, but rather a reaction to the
agent’s own experience [40].

Many different forms of learning are being used in
agent research. Some examples include Decision Trees,
which is learning from observations to generate a decision
hierarchy, expert systems, which extract rules from
examples or Reinforcement Learning, which is learning
the value of actions by getting rewards or punishment
depending on previously made decisions and applying
these updated learned values to future actions [41]. In
general, learning can be classified into three main
categories, namely supervised, unsupervised and
reinforcement learning [40].

Supervised learning is based on examples, which are
used as a training dataset to teach the system. This
training set includes the right and wrong answers to a
problem, which the system then learns as a function of
inputs and outputs, or in other words as a relationship
between actions and outcomes. This can be as simple as
detecting whether an image contains a certain element [2]
or which action to take, when a certain event occurs in the
observed environment [42]. It is important to note, that
supervised learning does not require a teacher to provide
the actual value for the correct solutions to the agent. The
solution can also be derived by the agent from looking at
all possible candidates through its own perception and
getting the correct solution pointed out by the teacher.
The difference is that the former requires some sort of
table or key-value pairs for all right and wrong solutions,
whereas the latter just requires someone to point to the
right ones. This means that an agent in a fully observable
environment might be able to perceive the consequences

of its decisions, and learn from them to make future
decisions. In a partially observable environment, this is
more difficult and the agent needs more comprehensive
feedback from the teacher in order to make future
predictions [40].

Unsupervised learning differs in that it requires
detection of patterns in the observations, because the right
and wrong solutions are not provided prior to the decision
making process. Examples of unsupervised learning
methods are statistical learning methods or some neural
network implementations. Neural networks imitate the
processes in the brain by using multiple simple units with
inputs and outputs called neurons or in their simplest form
perceptrons, which are connected in a network-like
structure. Inputs provide sensory information, which gets
evaluated in one or more layers of neurons. The resulting
sum of outputs by the neuron layers generate a
behavioural pattern. If certain values reach the input side,
a consistent response is created as an output [18].

Reinforcement learning is probably the most complex,
but also most general learning method [40]. Actions taken
by the agent inevitably lead to consequences, good or bad.
The evaluation of successful and unsuccessful actions is
used to maximize a reward function. The agent is not
being led through the learning process as in supervised
learning, but instead derives the most successful actions
from the rewards it gains by trying them out [41].
Therefore, reinforcement learning does not require an
expert to provide the right or wrong solutions, which is an
important feature of this type of learning. But more
significantly, the agent is able to engage with uncertain,
unknown new territory, because it learns entirely from its
own experiences and not from a knowledgeable teacher.
But reinforcement learning also imposes an important
issue on the design of the agent architecture. Depending
on the problem set and the intended use of the agent, a
balance between exploration and exploitation must be
maintained. The agent has to prefer actions that lead to
maximum rewards in order to arrive at a certain goal. This
implies that some actions which have not been tried
before, might never be explored even though they could
lead to even higher rewards and ultimately to the best
outcome overall [43].

Agent research, and study of learning agents
specifically, is a vast field of research and many concepts
have been developed to improve aspects of agent
architecture, communication and performance. One
performance enhancement of learning algorithms, among
many others, is Boosting. Boosting is a generic and often
effective method of creation reliable predictions in
machine learning [44]. Learning algorithms often suffer
from noise in the data or small numbers of training
examples [45]. Analysing and tracking the training error
by use of a test set, and combining multiple resulting
classifiers based on their training error score into a meta-
classifier, enables the Boosting algorithm to classify
instances better than individual classifiers based on noisy
or small training data as shown by Schapire [46]. Human-
centric evolutionary computation works with relatively

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

6

small data sets, where tens or hundreds of iterations are
typical, compared to non-interactive Genetic Algorithms,
where thousands or millions of generations are possible
depending on the computational resources. Therefore, the
ability to train learning algorithms using advanced
methods such as Boosting gain more importance in
Interactive Evolutionary Computation as suggested by
Kamalian et al. [47] in context of electronics design.

2.4. Collaborative multi-agent systems

Multi Agent Systems (MAS) are computational systems
that integrate more than one type of agent. These agents
might interact and communicate with each other and
perform different or similar tasks [48]. MAS are
employed when a single agent might fail to solve
problems by itself, because the problem is either too
difficult to encapsulate into a single agent or it is
impossible to do so. For example, a human (agent) and a
computational agent may interact while working on a
task, or multiple different agent architectures have to be
employed to solve an issue because the problem is beyond
the scope of an individual agent [49].

MAS can be classified into homogeneous and
heterogeneous architectures. In case of a homogeneous
structure, all agents have the same underlying
architecture. They only differ with regards to the
environment they are in. Every agent contributes to the
overall system by observing parts of the environment that
other agents can not perceive. Sometimes there is an
overlap between the observations made, in case those
agents partially share the same part of the environment. In
contrast, heterogeneous systems are made of agents of
different architectures. The agents perform different tasks
in different ways and complement each other. The most
extreme example for a heterogeneous structure might be a
MAS of human and computational agents. Homogeneous
systems are relatively fast to create as they only require a
single agent architecture. The advantage of heterogeneous
systems is their ability to account for a wide range of
different tasks, while keeping the individual agent
relatively simple [49].

This research aims to combine interactive computation
with autonomous computational agents. Therefore, the
concept of MAS is important to understand. But as this
study uses MAS in a very specific way, communication
between agents and their hierarchical structure differs
from common MAS and is detailed in the context of
Human-Based Genetic Algorithms (HBGA).

Human-Based Genetic Algorithms
First introduced by Alex Kosorukoff as part of his
research into knowledge management, Human-Based
Genetic Algorithms [50] are an additional class of genetic
algorithms. Kosorukoff describes them as a form of
outsourced primary genetic operators, which are the
processes of selection, crossover and mutation. Drawing
the parallel to a business organization, he exemplifies

outsourcing as the transfer of “ownership of a business
process to an external agent” [50]. Kosorukoff further
points out, that outsourcing effectively means the transfer
of a function from the organization to an external agent.
This function will be performed independently and
unsupervised by the agent, sometimes even without any
knowledge of how the agent works, which methods the
agent employs and most importantly, partially or fully
beyond the control of the organization. The organization
only controls the choice of agents, but not their
functionality. Similarly, an organizational function is
introduced to coordinate the system of multiple agents.

In Human-Based Genetic Algorithms, the three
primary operators are simplified into selection and
recombination (merging crossover and mutation). These
two main functions can be taken over by either human or
computational agents – not just exclusively, but even in
combination. For example, there may be a computational
recombination agent, a human selection agent like in
Interactive Genetic Algorithms plus an additional
computational selection agent. This is the defining feature
of Human-Based Genetic Algorithms. The term Human-
Based Genetic Algorithms may be considered to be
slightly misleading for a number of reasons. Firstly, this
class of Genetic Algorithms does not exclusively
incorporate human agents. Secondly, the distinguishing
feature is the use of a multi-agent system not necessarily a
human-based system. Kosorukoff’s own publication [50]
also used the term Multi-Agent Genetic Algorithms,
which would be a more distinguished term and probably
less prone to be misinterpreted. This is not to be confused
with what Zhong et al. [51] introduced as MAGA, which
is a Genetic Algorithm, where each candidate is an agent.

Kosorukoff also identified a significant implication of
Human-Based Genetic Algorithms. The organizational
function needs to be efficiently and carefully designed in
order to allow for effective agent-agent or agent-human
interaction [50]. While this indication seems to be correct,
it is equally true for simple Genetic Algorithms and
especially Interactive Genetic Algorithms. The program
structure defines how the entities (computational or
human) interact, how effectively they perform and
whether it is possible to achieve any sensible, desired
outcomes at all. Therefore it seems as if this seemingly
generic problem is outweighed by the robustness and
flexibility of a multi-agent system.

In relation to this study, it seems to be a huge
advantage to be able to utilize one or more agents in
addition to human selection in order to augment the
before mentioned issue of user fatigue. If a computational
agent performs one or many iterations of selection instead
of the human user, the capability of the human is probably
utilized in a better, more effective way, and therefore
allows for an overall larger number of iterations, which in
turn leads to a better convergence of desired and achieved
results. This is one of the core ideas which this research
seeks to explore.

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

7

3. Multi-agent Human-Based GA

This section outlines the architecture of the multi-agent
human based genetic algorithm. The elements of the
system are shown in Figure 1, with specific reference to
the procedural city generation application outlined in
Section 4.

Figure 1. Human-Based GA architecture

An initial population of cityscapes is generated and
presented to the human agent after being rendered. The
human selects the candidate solutions to be used in the
evolution of the next generation of cityscapes. The
learning agent monitors the selections made by the human
agent. The learning agent classifies new generations of
candidates based on several available classification
algorithms and makes new decisions following these
classifications. The decisions made lead to actions, in this
case selections of new candidates for future breeding.
These selections are fed back into the Genetic Algorithm.
While this architecture is relatively straight forward, it is
still following the common view of what an agent is.
Fogel [20] as well as Russel and Norvig [40], all
differentiate an agent from any other software by
assuming that the agent observes (at least part of) its
environment, makes decisions based on these
observations and takes actions accordingly. All three of
those assumptions are found in the agent architecture used
in this research.

The main classifiers used in this research are based on
decision trees and naïve Bayes. The reasoning behind this
is to evaluate different learning approaches from different
classes of learning algorithms. Employing the WEKA
machine learning framework allows for a fast switch
between different approaches, which provides an insight
into the performance of learning algorithms based on very
small training sets as used in this study. Given that the
aim was to counteract the effects of fatigue by running as
few iterations as possible, only a small number of user
selections per run were available for training the agent,

before the trained classifier had to evaluate a generation
of candidates itself.

This paper utilizes the C4.5 algorithm [52], which was
used to induce the decision trees. Specifically, WEKA’s
J48 classifier, which is an open source implementation of
C4.5 revision 8, created the decision tree at runtime and
refined it after each selection made by the user. This is
how the initially untrained agent is able observe the
actions taken by the user and utilize this information to
build the decision tree independent of the goal desired by
the user at the start of each run. It adapts every time the
whole interactive process is started and does not rely on
any assumptions made by the software developer. Every
time the user gives new input, the resulting generation of
cities is considered a new supervised input. Subsequently,
the increasing size of the training set, growing with the
iterative selection process by the user, improves the
classifier of the learning algorithm due to the increasing
number of valid test samples, and therefore the ability of
the agent to predict user preference more accurately is
improved with every interactive step. This also implies
that the user only gives feedback to the agent’s actions by
making new selections, not through a direct
rewards/punishment system. Therefore, the frequency of
interactive and computational runs has to be relatively
high at the start. Only when the agent has received a
certain number of valid test samples to build the classifier
can its involvement be increased and more computational
selections conducted by the agent. This ratio between
interactive user selection and computational selection by
the agent can be set before the start of the interactive
modelling process. Nearly all experiments of this study,
are based on a run of 10 interactive selections, followed
by another 10 selections, where the agent and the user
made selections every other time. From the 20th selection
run, the agent was responsible for 9 generations, while the
user only interacted every 10th time. While this required
the user to provide an initially high number of selections,
the workload was relatively quickly reduced to a very low
number.

4. Procedural City Generation

The first important decision that led to the underlying idea
of combining Interactive Evolutionary Computation and
Agents for this research, was to computationally generate
a model of a city. The reasoning behind this shift from
manual laborious modelling to significant computational
support, is the complexity and number of parameters that
are necessary to create such model. While Parish and
Müller [9] point out that the creation of systems of high
visual complexity is an established process in computer
graphics, it still requires a very high level of skill,
knowledge and consumes a lot of time. Even breaking the
overall model down into smaller units such as buildings,
streets and layout, does not lead to a significant
simplification or is less demanding towards the computer
graphics expertise of the designer. Using computational

Render Engine
3D Cityscape
Generated from
basic elements

Interactive GA

Learning Agent

Initial
Random

Population

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

8

approaches exclusively pose the same problem on the
software developer. Many different approaches have been
taken to combine smaller, simple elements into a large
system. These include L-systems for plant generation
[53], dress design [54], level generation for jump and run
games [55] and the before mentioned L-system based city
engine by Parish and Müller [9]. But none of these
processes close the gap between highly complex systems
and the inclusion of the designer in the creation process.
This is where the novelty of the solution proposed in this
paper lies. It enables a moderately skilled designer to
create a large model of high complexity without
compromising on the aesthetic demands to achieve said
complexity.

In principle it is possible to use the proposed system of
IGA and Agents for nearly any computer generated asset
for games, film or virtual reality. A city has intentionally
been selected as an example of high complexity and
composed of many individual parts. The design and
creation of CG cities is a complex undertaking as pointed
out in previous sections.

Some of the decisions that could be considered limiting
to the achievable design, such as using a square matrix to
place buildings, separate land and water and drive the
height and density of the city centre with its higher
buildings, are indeed not limiting at all. For example,
considering a map of the Manhattan peninsula of New
York City and overlaying a simple square grid as shown
in Figure 2 it is possible to break the complexity of
Manhattan down into few small units, for example streets,
buildings, water and land.

Figure 2. City grid overlay

Taking the idea further, the same grid overlay could be
used to build a height-map of the buildings on the
peninsula by assigning different height values to each grid
cell as shown in Figure 3a. This is effectively reverse
engineering the main spatial and aesthetic features of the

city. Further, this approach does not limit the street layout
to be square and grid like. Figure 3b is based on an
underlying square grid, but shows typical non-square,
European like cities, which evolved from a city centre and
spread outwards like a web. And this reverse approach is
the foundation of the city model as discussed in this study.
A simple grid structure is introduced to represent
buildings, land and water. A street-map is used to build
the network of streets between the buildings on land, and
finally an occupancy grid is used to indicate the presence
of water.

(a) (b)

Figure 3. Street layout styles

A height-map is applied to the buildings in the grid,
which drives the height of the buildings plus a pre-defined
variance so that the elevation does not appear too
uniform, but believable and aesthetically similar to what
is expected based on looking at actual cities. Further, only
simple instances of buildings are used during the design
process. This is for two reasons, one being the very
practical realization that creating and rendering times
have to be as short as possible to reduce additional user
fatigue. Secondly, the instances can easily be replaced
with prebuilt or purchased models of very different
architectural styles. The applicability of this approach is
therefore much broader than the presented prototype
might suggest. Further investigation is of course needed to
verify this, but again the limiting factor is predominantly
the scope of this study and not the presented process
itself.

The GUI was written in Java using the Processing
framework to provide some graphics functions. There are
only two input parameters, which reflect the two main
parents of each population of the Genetic Algorithm. The
GUI therefore simply presents a number of candidate
solutions from which the user selects the two chosen
parents. The GUI is therefore represented by the figures
presented in the results section of this paper. The
motivation behind this simple mode of interaction is the
desire to reduce user fatigue. Additional inputs would
require additional user attention. And as the models,
which the user designs, grow in complexity, the risk of
extending the required attention and interaction beyond
the point of human capacity is rising as well. Minimizing
the number of required interactions per iteration seemed

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

9

the most appropriate way to focus the results of this study
on said fatigue and avoiding it by adding agents.

The resulting city model is being kept fairly simple in
order to make rendering of 9 candidates for a number of
iterations feasible. This is just a limitation of the available
hardware and could easily be changed in a commercial
environment by using a small render farm. But to manage
the rendering times (which are purely a result of the
commercial render engine and not the software system
presented here), only simple geometric primitives such as
cylinders and cubes have been used for the object
instances. Also, the texture is very small and simple, due
to the limited memory available in the test system. Given
that the software system has been designed to use
instances of small building blocks instead of copies of
existing models, the process of changing from this simple
type of geometry to a fully textured, shaded, high polygon
model for each house is just the mere adjustment of one
configuration parameter. The system to produce feature
film quality renders has been established and poses no
limitation to the validity of the results. It is just a matter of
using high end workstations, which could also be done in
future research, assuming that the resources would be
accessible.

A typical model, as it is shown to the user for selection,
is shown in Figure 4. Some of the defining features
include a New York style street system which divides the
city into square blocks, some water visible in the far
background as well as a distinct city centre on the far left
with a number of larger than average buildings
surrounding it.

Figure 4. Typical candidate solution

The DNA string used in the implementation of the
Genetic Algorithm is made of the following parameters:

• Ground: 2D integer array, reflecting land or water
• Heightmap: 2D integer array, height of buildings
• Streets: 2D integer array, street map layout
• Buildings: 2D integer array, type of building
• City: 2D integer array, location of city center(s), a

few distinct buildings

One of the necessities for inducing decision trees is to
keep the number of attributes as low as possible, while
still arriving at a solution in form of a usable classifier
[56]. To accommodate this requirement, the parameters
for the agent are abstracted from the candidates DNA.

Instead of using each attribute of the DNA, some have
been consolidated. For example, the height map is a grid-
like structure represented as a 2D array in the DNA,
which has been pre-processed into three parameters,
namely average building height, number of buildings and
height of buildings in the city centre (or scale of the
buildings compared to the average height in the remainder
of the city). This reduces the number of parameters from
originally 10,000 cells in the 2D grid, holding the height
value for each individual cell, to just 3 attributes, which
make induction of a decision possible for the agent.

In summary, the attributes for the agent are:

• Land/Water ratio
• Street type (European or New York style)
• Average building height
• Number of buildings
• Height of city centre

Additionally, the agent receives the class value, which
indicates whether this instance of the training set has been
selected or rejected. Finding the correct class value in new
instances is ultimately the task of the agent.

5. Experimental design

The overall experimental process for procedural cities
involves three different runs, namely Random, IGA and
HBGA, but not necessarily in this order so that the user
does not attempt the design with a preoccupied idea of
how the software might perform. For all three variants,
the user interaction is exactly the same, so that the
underlying strategy is hidden from the user. The
differences between the three variants are detailed in the
following subsections.

In any case, each iteration of the user interaction starts
with a set of 9 rendered city models. These are created by
the software system depending on the underlying model,
for example random selection, interactive genetic
algorithm without agent and interactive genetic algorithm
with agent. The user selects two parents with the mouse
(both show a coloured border around the selection to give
visual feedback) and starts the algorithm with a press of
the space button. Everything else such as log information,
render file creation and sub-processes for the render
engine are hidden from the user. This keeps the user
interface as simple as possible, with the idea to utilize
maximum user focus for the actual task of selection.

After computation, which includes creating the new
population of 9 cities, writing the render archives and
rendering the resulting images, the user is presented with
the next generation ready for selection. Each generation
typically takes around 10 seconds to render the cities and

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

10

the average time taken for a user to conduct an evaluation
was an additional 5 seconds.

Each individual evaluation was conducted based on a
predefined set of goals. Some of the requests that where
made include relatively specific elements such as:

• A city with a lot of blue water, a city centre with
very high buildings on the left and some smaller
buildings on the right hand side of frame

• A city without water, multiple city centres with few
or no small buildings visible in frame

• A city without water, no distinct city centre and only
very small buildings

Other requests were kept abstract using high level
description of the desired features. Again, this was
designed so that the difference between a tight goal
driven, perhaps client based approach and in difference a
free creative design, independent of any strong
prerequisites and maybe just loosely based on a design
idea could be simulated. The latter examples include:

• A harbour city with a large population
• A city in a valley with a suburban feel
• A city by the sea with a lot of tourism

 A number of results were recorded for each different
approach. These findings include the run times for the
overall process from start to finding a result that the
designer deemed final, the number of iterations required
to get to the final result, and also the subjective feeling
after performing a full run. While the latter is not
necessarily representative for the quality of the algorithm,
with regards to user fatigue, it might provide an idea
whether the software system is successfully reducing the
workload on the user.

6. Results

The experimental process involved three different runs,
namely random selection, Interactive Genetic Algorithm
without agent and Human-Based Genetic Algorithm
including a computational agent.

6.1. Random selection

Initial testing did not show any promising candidates,
even after a larger number of runs. In a few rare cases
though, a random sample early on in the process could
have been accepted under the assumption that the brief
was not taken too rigorously, but none of the candidates
resembled the previously stated goal for that run exactly.
But the waiting times for each generation are relatively
high, with only a slim chance of randomly striking an
acceptable solution. Involving the human into the full
process, just to create a random control was deemed to be
impractical. Instead, batch processing was realized and
the user went through the results only. While this

approach did not measure the fatigue generated by the
actual (redundant) selection plus render times for every
generation, having to go through 900 pictures proved to
be very tiring and frustrating.

Two runs were conducted, and the experiment was not
continued for the initially envisioned 10 runs. The time it
took to evaluate the images seemed to justify the
conclusion that random selection does not necessarily lead
to a result within a practical time frame. While it could be
argued that manual creation takes much longer, this
study’s focus is on computational solutions, and the run
times in the following sections demonstrate the difference
between a manual random and a computational approach.

One interesting finding is the relevance of the design
goal though. When looking for a very specific outcome,
for example a large city by the water with many high rise
buildings on the left of screen and some flat buildings on
the right, it was clear after 100 generations (or 900
images) that no solution had been found. But when the
goal was set in a more abstract way, without any specific
requirements, for instance large harbour city, some of the
candidates seemed to fulfil that brief at least very loosely.
But in saying this, it seems necessary that the set goal has
to be specific enough, so that any broad interpretation,
which might include many very different solutions, is
avoided. A loose goal setting would not provide any
contestable results with regards to the specific research
question of this study. This research is concerned with the
difference between pure Interactive Evolutionary
Computation and Human-Based Genetic Algorithms to
address fatigue.

6.2. Interactive GA

This section outlines a typical run using Interactive
Genetic Algorithms without the support of a
computational agent. This section outlines an example
case of the system in use. The predetermined goal was
very specific, stating that a city with a lot of blue water, a
distinct city centre on the left and much smaller buildings
on the right was to be created. Figure 5 is the first
generation of the example generated from the random
seed.

Figure 5. Generation 1 of an IGA run

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

11

Typically, the first generation contains a number of
mixed results, here with 6 of 9 candidates containing just
land and no water. Consequently, the user selected
candidates top/left and bottom/left.

As a result of mainly choosing candidates that had
water present, the user improved the number of available
options in subsequent generations. Figure 6 shows
generation 10, which has significantly more cities with
water visible.

Figure 6. Generation 10 of an IGA run

Another 10 generations later, a number of candidates with
water appear and high buildings are emerging on the right
hand side, and on the left and somewhat smaller buildings
on the right hand side. This is shown in Figure 7.

Figure 7. Generation 20 of an IGA run

Figure 8 illustrates generation 30 of this exemplary
IGA run, a few issues can be observed, which are based
on the slow convergence of the Genetic Algorithm. In this
case, 8 of the 9 candidates contain water. One candidate
has high buildings on the left side, and the majority of
candidates had the buildings on the left. But none of the
candidates presented the required properties as outlined
before the run started. Accordingly, another 10
generations were required in order to achieve the first
promising results, as depicted in Figure 9.

Figure 8. Generation 30 of an IGA run

Figure 9. Generation 40 of an IGA run

After 7 additional generations, the final candidate was
found. Figure 10 shows the originally requested water, a
distinct centre with high buildings on the left and low-rise
buildings on the right side of frame. While the result
satisfied all criteria of the brief, it required 47 generations
to achieve it.

Figure 10. Selected final solution

Overall, the Interactive Genetic Algorithm without an
agent was tested in 36 runs with an average of 37

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

12

generations per run and the average time per run was 18
minutes. The standard deviation was 11 generations,
which shows a fairly wide spread. The smallest run was
only 1 generation, although this was deemed a special
case and likely due to the subjective nature of aesthetics
combined with an element of ‘luck’ arising from the
stochastic nature of the algorithms. After finding a
suitable candidate right in the first generation, a few more
iterations were conducted, which showed even more
promising results. The fact that the initial conclusion in
generation 1, was later reviewed and seemingly better
solutions were found in subsequent generations,
underlines the implications of judging aesthetics based on
a high level project brief (which was given for this
particular run). A more detailed brief would probably
have led to more iterations in the first place.

6.3. Human-Based GA

The Human-Based Genetic Algorithm was tested in 36
runs, similar to the Interactive Genetic Algorithm and
with the same predetermined goals, as discussed in the
previous section. The average number of generations was
52 with a standard deviation was 14. The maximum was
91 generations and the minimum 21. The average time per
run was 12 minutes. It is noteworthy that the total number
of iterations is higher compared to IGA, but this higher
number includes both interactive and computational
generations conducted by the human designer and the
autonomous agent respectively. The mean number of
generations using HBGA that required user interaction is
18 and as such is about half of the number required when
using the IGA. Table 1 shows an overview of the statistics
of all runs conducted using the Human-Based Genetic
Algorithm compared to the Interactive Genetic Algorithm.
For each run, the same brief was given based on examples
shown in section 5.

Table 1. Comparison IGA vs. HBGA

Approach Performance
runs # generations

(interactive)
generations

(total)
time

(average)
IGA 36 37 37 18
HBGA 36 18 52 12

The higher number of generations in total indicates that
a greater number of possible solutions are being explored,
though a smaller number are being evaluated by the user
in person.

Different initial mutation rates for the Genetic
Algorithm were verified, with the majority of runs
conducted at 0.2 probability. This showed a good
performance in terms of relatively quick convergence,
without the issue of getting stuck in local maxima. The
latter was experienced at initial mutation rates of 0.02. At

this low rate, the system seemed to produce little diversity
even after only a few runs and the user could not achieve
the predetermined goal as most candidates looked very
similar and left no room for additional evolutionary
breeding. Such lack of diversity is perhaps to be expected
given the relatively small population size.

7. Discussion

It is interesting to see that the average number of
generations using the Human-Based Genetic Algorithm is
nearly one and a half times of the number of generation
conducted using the Interactive Genetic Algorithm. This
is not unexpected though. In case of the Interactive
Genetic Algorithm, the user has to run every generation
interactively. The time consumed per iteration is about 10
seconds render time plus user decision time, which was
typically about 15 seconds. This means, a run took on
average just over 18 minutes. Comparing this to the
Human-Based Genetic Algorithm, the time for the first 10
runs is identical. But after that, the non-interactive
generations, driven by the computational agent take
virtually no time (under 1 second) for the decision making
process and only the last generation that is to be presented
to the user for interactive selection again, needs to be
rendered, which takes the aforementioned 15 seconds.
Therefore, many additional generations can be run in the
same time, which the user seems to take advantage of in
case of the Human-Based Genetic Algorithm.

For the overall process it can be said, that if the user is
less pleased with the results returned by the agent, the
user will select candidates that are different, rather than
similar. This triggers the agent to change course as well,
running a lower level of confidence due to the inherent
inability to predict the sudden random selection by the
user, which in turn creates more diversity through
increased mutation probability. Consequently, this allows
the designer to choose a more intuitive, even unstructured
approach to the modelling process, and a carefully, clearly
planned execution is not a requirement anymore. The
designer is essentially able to use playful discovery
without endangering the end product. In a random or
manual approach, this would cost either a lot of time, as
many hundreds or thousands of parameters would have to
be adjusted, or it would be impossible, given that a certain
appearance of the buildings in the skyline can only be
altered by changing the layout of the city blocks and the
street pattern.

A few interesting cases could be observed, where an
originally weak and seemingly unstructured response
from the algorithm in the first 10 iterations is altered by
the support of the software agent within a few iterations.
The software agent suddenly drives the designs into a
different direction from what the Genetic Algorithm did,
and closely follows what it identified based on the human
selections. Therefore, the overall system performed better
than its individual components and provided a better user
experience. For example, the brief was to create a city

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

13

without water and flat buildings with no distinct city
centre. The Genetic Algorithm showed a high number of
candidates with water, an average of 7 out of 9 per
generation. The user inevitably selected candidates with
land and no water. While the Genetic Algorithm
continued to present candidates with water in higher
proportion as shown in Figure 11, the agent’s classifier
was trained by the user selection.

Figure 11. Generation 10 of HBGA run presenting
mostly water, contrary to the brief given

Once the agent came into effect, after only four
additional generations most of the candidates were
containing land. Even the candidate solutions still
containing water had proportionally more land and
buildings visible, as shown in Figure 12.

Figure 12. Generation 14 of the same HBGA run as
above, showing mostly land-based candidates

It was a bit surprising that the user did not always
follow a straight approach towards the goal. For example,
if a harbour city model was requested, quite a few
selections involved no water at all. There are a few
possible reasons for that. First, perhaps most of the other
parameters did not fit the brief from the perspective of the
user. Or, the fact that relatively little effort to create a new
city layout was required, compared to manual modelling,
led to a more playful attitude. Overall, it seems that the

user is more adventurous using the Human-Based Genetic
Algorithm, changing direction a few times, for example
from water on the left to water on the right when asked to
make a harbour city. One would probably not attempt a
drastic change after many man hours of modelling
manually, as a larger diversion from the original layout
might require a re-start of the whole manual modelling
process. Due to the support of the agent and the relatively
fast ‘modelling’ approach, there seems to be a lower
boundary for otherwise significant changes. It seems that
interactivity on one hand, but also the agent reducing
fatigue on the other hand, allow for more user iterations
and therefore exploration of different solutions.

The core of the agent architecture used in this study is
the decision tree, which is induced at run-time and refined
in subsequent iterations by use of the additional selections
made by the user. Figure 13 shows the root node of the
decision tree after 14 user-driven iterations.

Figure 13. Decision tree visualization

The root attribute is land/water ratio, which gives a
clear indication that any candidate with more water than
14% is to be rejected, which is true for 86 of all instances
of the training set. The goal of this run was in fact to find
a city with no water, and based on the training set, the
classifier preferred any candidate with less than 14% of
water. The full tree has 7 branches and shows a high rate
of confidence (88% correctly classified instances),
although most of the candidates were rejected right at the
root, based on the amount of water compared to land
hence only the root node of the tree is shown. This is one
indication of a useable classification tree, however, some
of the other decision trees that have been examined
throughout this study, were not as clear and had a lower
level of confidence. There has been no clear indication
that the J48 classifier produces viable results in every
case. Sometimes the tree is not able to reliably identify
candidates with a high confidence and the score was only
around 60%. However, this is still a marginal
improvement over a 50/50 ‘coin toss’, so there is some
value in the use of the agent. It seems that perhaps the
noise of the training data due to the low number of
instance compared to other data mining tasks, might be a
contributing factor. Hall et al. [56] discuss this as a
possible issue, and other work using J48 has identified
that when the number of instances is low compared to the

<= 0.13546 > 0.13546

Rejected (86.0)

Land / Water
Ratio

Number of
Buildings

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

14

number of attributes, the J48 classifier becomes of limited
use [57], though one possible solution to this problem is
the use of synthetic data [58]. In the instance of the
procedural city generation, the classification is conducted
on 5 attributes and typically the training set would include
10 initial instances. The selection of J48 was initially
based on its popularity as a classifier, however a potential
solution to improve the effectiveness of the classification
might be the introduction of an alternative classifier,
which could be part of future research and the matter
requires further investigation. The WEKA framework
allows for relatively easy adaption of different algorithms.

8. Conclusion

This paper has presented initial results comparing the use
of a simple Interactive Genetic Algorithm with a multi-
agent implementation of a Human-Based Genetic
Algorithm with the goal of determining whether the
computation learning agent in the HBGA has the potential
to reduce user fatigue. Results indicate that the use of the
HBGA allows greater exploration of the design space in a
shorter space of time. This suggests that there may be
lower overhead placed upon the human user which and
that there is potentially less fatigue experienced to achieve
the same goal. However, further work with more subjects
and quantification of the fatigue

In terms of actual fatigue, an interesting observation is
the influence of soft factors such as positive emotions.
Fatigue seems not just to be based on attention span and
focus, but also to be compensated by subjective positive
emotions. Evaluating the candidate solutions presented by
the computational agent seems to positively engage the
designer more than when evaluating those presented by
the IGA. The process of using interactive evolutionary
concepts, which allow the user to observe convergence
towards selected goals with each iteration, could be
almost described as playful.

Looking at the number of iterations run by the Human-
Based Genetic Algorithm compared to pure Interactive
Genetic Algorithm, it seems that the user might be happy
to allow more iterations, if they are not interactive but run
by an agent. It seems not to be about keeping the
maximum number of iterations low, but more about
optimizing the final result within a certain time frame.
The average time of the runs between IGA and HBGA
were very similar, which could indicate that the user is
more driven by time consumed, rather than the number of
selections that have to be made by either the human or the
agent. This might hint that the driving factor is indeed
fatigue or attention span, and that a computational agent
helps to optimize the result by running additional
iterations. Based on this prototype, it looks as if the
system of Interactive Evolutionary Computation and
agents shows some promising benefits towards goal
optimization, and a wider study could probably confirm
this indication and provide additional insights.

The results of this study do not show conclusive
evidence that agents lead to consistent improvements of
Interactive Genetic Algorithms. But there are some
indications that this approach has advantages. First, there
are some promising signs when adding agents to the
interactive process, for example the cases where the
Genetic Algorithm seemed to suffer from a high mutation
probability, which lead to a high diversity and no clear
convergence. Once the agent ran some of the generations,
a clear shift in direction towards the previous user
selection was observable. This needs further proof, which
a quantitative experiment could provide. Second, the
observation that the user seemed to enjoy the interactive
process more, once the agent was engaged, could prove to
be a valuable insight. While this needs further
investigation as well, looking at the psychological aspects
of perceived intelligence by a computational system could
provide additional value. This seems like the next logical
step in understanding the user experience of Interactive
Evolutionary Computation better.

References

[1] OKUN, J. A. and ZWERMAN, S. (2010) The VES
Handbook of Visual Effects: Industry Standard VFX
Practices and Procedures, 1st ed. (Burlington, MA:
Focal Press).

[2] SHIFFMAN, D. (2012) The Nature of Code:
Simulating Natural Systems with Processing, 1st ed.
(New York, NY: Shiffman).

[3] KRUSE, J. (2014) Interactive Evolutionary
Computation in Design Applications for Virtual
Worlds, Masters Thesis, Auckland University of
Technology.

[4] BOHNACKER, H. (2012) Generative Design:
Visualize, Program, and Create with Processing, 1st

ed. (New York, NY: Princeton Architectural Press).
[5] GREENBERG, I. (2007) Processing: Creative

Coding and Computational Art, 1st ed. (Berkeley,
CA: Friends of ED).

[6] GREENBERG, I., XU, D. and KUMAR, D. (2013)
Processing: Creative Coding and Generative Art in
Processing 2, 2nd ed. (Berkeley, CA: Friends of
ED).

[7] REAS, C. and MCWILLIAMS, C. (2010) Form+Code
in Design, Art, and Architecture, 1st ed. (New York,
NY: Princeton Architectural Press).

[8] MANDELBROT, B. B. (1983) The Fractal Geometry
of Nature, (London: Macmillan).

[9] PARISH, Y. I. H. and MÜLLER, P. (2001) Procedural
modeling of cities. In Proceedings of the 28th
Annual Conference on Computer Graphics and
Interactive Techniques, Los Angeles, CA, USA,
August 12-17 (New York, NY: ACM), 301–308.

[10] LECHNER, T., WATSON, B., REN, P., WILENSKY, U.,
TISUE, S., FELSEN, M., LECHNER, T., WATSON, B.,
REN, P., WILENSKY, U., TISUE, S. and FELSEN, M.
(2004) Procedural Modeling of Land Use in Cities,

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

Interactive evolutionary computation in design applications for virtual worlds

15

Technical Report NWU-CS-04-38. (Evanston, IL:
Northwestern University).

[11] BENTLEY, P.J. and CORNE, D.W. (2001) Creative
Evolutionary Systems. 1st ed. (San Francisco, CA:
Morgan Kaufmann).

[12] PEARSON, M. (2011) Generative Art, 1st ed. (Shelter
Island, NY: Manning Publications).

[13] KEETON, W. T. (1996) Biological Science, 6th ed.
(New York, NY: W W Norton & Co Inc).

[14] PIMPALE, P. and BHANDE, N. (2007) Genetic
algorithms made easy,” Retrieved from
http://www.slideshare.net/pbpimpale/genetic-
algorithms-200688.

[15] HOLLAND, J. H. (1875) Adaptation in Natural and
Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence, 1st ed. (Ann Arbor, MA: University of
Michigan Press).

[16] BEYER, H.-G. and SCHWEFEL, H.-P. (2002)
Evolution strategies - A comprehensive
introduction, Natural computing 1(1): 3–52.

[17] KOZA, J. R. (1992) Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, 1st ed. (Cambridge, MA: Bradford
Books).

[18] NEGNEVITSKY, M. (2005) Artificial Intelligence: A
Guide to Intelligent Systems, 3nd ed. (London,
Pearson).

[19] KOZA, J. R., KEANE, M. A., STREETER, M. J.,
MYDLOWEC, W., YU, J. and LANZA, G. [eds.] (2003)
Genetic Programming IV: Routine Human-
Competitive Machine Intelligence, 1st ed. (Norwell,
MA: Springer).

[20] FOGEL, D. B. (2005) Evolutionary Computation:
Toward a New Philosophy of Machine Intelligence,
3rd ed. (Hoboken, NJ: Wiley).

[21] FOGEL, D. B. (2001) Blondie24: Playing at the
Edge of AI, 1st ed. (Burlington, MA: Morgan
Kaufmann).

[22] CONNOR, A. M. (1996) The Synthesis of Hybrid
Mechanisms Using Genetic Algorithms, PhD
Thesis, Liverpool John Moores University.

[23] BILES, J. A. (1994) GenJam: A genetic algorithm
for generating jazz solos. In Proceedings of the
International Computer Music Conference, Aarhus,
Denmark, September 12-17 (San Francisco, CA:
International Computer Music Association), 131-
137.

[24] ANDERSON, C., BUCHSBAUM, D., POTTER, J. and
BONABEAU, E. (2008) Making interactive
evolutionary graphic design practical. In YU, A. P.
T., DAVIS, P. L., BAYDAR, D. C. and ROY, P. R.
[eds.], Evolutionary Computation in Practice
(Berlin Heidelberg: Springer), ch. 6, 125–141.

[25] CONNOR, A. M. and TILLEY, D.G. (1997) A
comparison of two methods applied to the
optimisation of fluid power circuits. In Fluid Power
Engineering: Challenges and Solutions, 10th Bath

Fluid Power Workshop, Bath, UK, September 10-
12 (Baldock: Research Studies Press), 12–27.

[26] SIMPSON, A. R., DANDY, G. C. and MURPHY, L. J.
(1994) Genetic algorithms compared to other
techniques for pipe optimization, Journal of Water
Resources Planning and Management 120(4): 423–
443.

[27] EBERHART, R. C. and SHI, Y. (1998) Comparison
between genetic algorithms and particle swarm
optimization. In PORTO, V.W., SARAVANAN, N.,
WAAGEN, D. AND EIBEN, A.E. [eds.], Evolutionary
Programming VII, Lecture Notes in Computer
Science Volume 1447 (Berlin Heidelberg:
Springer), ch. 59, 611-616.

[28] INGBER, L. and ROSEN, B. (1992) Genetic
algorithms and very fast simulated reannealing: A
comparison, Mathematical and Computer
Modelling 16(11): 87–100.

[29] CONNOR, A. M. and SHAH, A. (2014) Resource
allocation using metaheuristic search. In
Proceedings of the 4th International Conference on
Computer Science and Information Technology,
Sydney, Australia, February 21-22 (Chennai:
AIRCC Publishing), 353–364.

[30] LI, M. and KOU, J. (2001) The schema
deceptiveness and deceptive problems of genetic
algorithms, Science in China Series: Information
Sciences 44(5): 342–350.

[31] GOLDBERG, D. E. (1989) Genetic Algorithms in
Search, Optimization, and Machine Learning, 1st

ed. (Reading, MA: Addison-Wesley).
[32] SKOLICKI, Z. and DE JONG, K. (2004) “Improving

evolutionary algorithms with multi-representation
island models. In YAO, X., BURKE, E. K., LOZANO,
J. A., SMITH, J., MERELO-GUERVÓS, J. J.,
BULLINARIA, J. A., ROWE, J. E., TIŇO, P., KABÁN,
A. and SCHWEFEL, H.-P. [eds.], Parallel Problem
Solving from Nature - PPSN VIII, Lecture Notes in
Computer Science Volume 3242 (Berlin
Heidelberg: Springer), ch. 43, 420-429.

[33] TAKAGI, H. (2001) Interactive evolutionary
computation: fusion of the capabilities of EC
optimization and human evaluation,” Proceedings
of the IEEE 89(9): 1275–1296.

[34] TAKAGI, H. (1998) Interactive evolutionary
computation: System optimization based on human
subjective evaluation. In Proceedings of the IEEE
International Conference on Intelligent
Engineering Systems, Vienna, Austria, April 14-17
(New York, NY: IEEE), 17–19.

[35] DAWKINS, R. (1986) The Blind Watchmaker: Why
the Evidence of Evolution Reveals a Universe
Without Design, 1st ed. (New York, NY: Norton).

[36] SIMS, K. (1992) Interactive evolution of dynamical
systems. In Toward a practice of autonomous
systems, Proceedings of the 1st European
Conference on Artificial Life, Paris, France,
December 10-14, 1991 (Cambridge, MA: MIT
Press), 171–178.

EAI Endorsed Transactions on
Creative Technologies

10 2015 | Volume 2 | Issue 5 | e5

J. Kruse and A. M. Connor

16

[37] GU, Z., XI TANG, M. and FRAZER, J. H. (2006)
Capturing aesthetic intention during interactive
evolution, Computer Aided Design 38(3): 224–237.

[38] TAKAGI, H. and IBA, H. (2005) Interactive
evolutionary computation, New Generation
Computing 23(2): 113–114.

[39] S. FRANKLIN and A. GRAESSER, “Is it an agent, or
just a program?: A taxonomy for autonomous
agents,” In MÜLLER, J.P., WOOLDRIDGE, M.J. and
JENNINGS, N.R. [eds.], Intelligent Agents III Agent
Theories, Architectures, and Languages, Lecture
Notes in Computer Science Volume 1193 (Berlin
Heidelberg: Springer), ch. 2, 21–35.

[40] RUSSELL, S. J. and NORVIG, P. (2003) Artificial
Intelligence: A Modern Approach, 2nd ed. (Upper
Saddle River, N.J: Prentice Hall).

[41] SUTTON, R. S. and BARTO, A. G. (1998)
Reinforcement Learning: An Introduction, 1st ed.
(Cambridge, MA: Bradford Books).

[42] BOURG, D. M. and SEEMANN, G. (2004) AI for
Game Developers, 1st ed. (Sebastopol, CA:
O’Reilly Media).

[43] WIERING, M. and VAN OTTERLO, M. (2012)
Reinforcement Learning: State-of-the-Art,
Adaptation, Learning, and Optimization Volume
12. (Berlin: Springer).

[44] FREUND, Y., SCHAPIRE, R. and ABE, N. (1999) A
short introduction to boosting, Journal of the
Japanese Society for Artificial Intelligence 14(771–
780): 1612-1626.

[45] MITCHELL, T. (1997) Machine Learning, 1st ed.
(New York, NY: McGraw-Hill).

[46] SCHAPIRE, R. E. (1999) A brief introduction to
boosting. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence,
Stockholm, Sweden, July 31–August 6 (San
Francisco: Morgan Kaufmann), 1401–1406.

[47] KAMALIAN, R., YEH, E., ZHANG, Y., AGOGINO, A.
M. and TAKAGI, H. (2006) Reducing human fatigue
in interactive evolutionary computation through
fuzzy systems and machine learning systems. In
Proceedings of the 2006 IEEE International
Conference on Fuzzy Systems, Vancouver, BC,
Canada, July 16-21 (New York, NY: IEEE), 678–
684.

[48] GÓMEZ-SANZ, J. J. and PAVÓN, J. (2004)
Methodologies for developing multi-agent systems,
Journal of Universal Computer Science 10(4): 359–
374.

[49] BALAJI, P. G. and SRINIVASAN, D. (2010) An
introduction to multi-agent systems. In
SRINIVASAN, D. and JAIN, L. C. [eds], Innovations
in Multi-Agent Systems and Applications (Berlin
Heidelberg: Springer), ch. 1, 1–27.

[50] KOSORUKOFF, A. (2001) Human based genetic
algorithm. In Proceedings of the 2001 IEEE
International Conference on Systems, Man, and
Cybernetics, Tucson, Arizona USA, October 7-10
(New York, NY: IEEE), 3464–3469.

[51] ZHONG, W., LIU, J., XUE, M. and JIAO, L. (2004) A
multiagent genetic algorithm for global numerical
optimization,” EEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics 34(2) 1128–
1141.

[52] QUINLAN, J. R. (1986) Induction of decision trees,
Machine Learning 1(1): 81–106.

[53] PRUSINKIEWICZ, P. and LINDENMAYER, A. (1996)
The Algorithmic Beauty of Plants, 1st ed. (Berlin:
Springer).

[54] CHO, S.-B. (2002) Towards creative evolutionary
systems with interactive genetic algorithm,”
Applied Intelligence 16(2): 129–138.

[55] SORENSON, N. and PASQUIER, P. (2010) Towards a
generic framework for automated video game level
creation. In CHIO, C. D., CAGNONI, S., COTTA, C.,
EBNER, M., EKÁRT, A., ESPARCIA-ALCAZAR, A. I.,
GOH, C.-K., MERELO, J. J., NERI, F., PREUß, M.,
TOGELIUS, J. and YANNAKAKIS, G. N. [eds].
Applications of Evolutionary Computation, Lecture
Notes in Computer Science Volume 6024, (Berlin
Heidelberg: Springer), ch. 14,131–140.

[56] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER,
B., REUTEMANN, P. and WITTEN, I. H. (2009) The
WEKA data mining software: An update, SIGKDD
Exploration Newsletter 11(1):10–18.

[57] FINLAY, J., CONNOR, A. M. and PEARS, R. (2011)
Mining software metrics from Jazz. In Proceedings
of the 9th International Conference on Software
Engineering Research, Management and
Applications, Baltimore, Maryland, USA, August
10-12 (New York, NY: IEEE), 39–45.

[58] PEARS, R., FINLAY, J. and CONNOR, A. M. (2014)
Synthetic Minority over-sampling technique
(SMOTE) for predicting software build outcomes.
In Proceedings of the 26th International
Conference on Software Engineering and
Knowledge Engineering, Vancouver, BC, Canada,
July 1-3 (Skokie, IL: Knowledge Systems Institute),
546–551.

