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Abstract 

Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex 
models are a requirement for the successful delivery of many scenes and environments. While workflows such as 
rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex 
models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm 
(IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive 
Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the 
effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This 
workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer’s 
intent through interaction, and encourages playful discovery.  
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1. Introduction

Convincing computer graphics models are a necessity 
for the creation of successful games, movies and 
virtual reality environments. Some natural and 
architectural objects of higher complexity intensify 
this problem as they necessitate fine detail and a large 
number of smaller elements which act as the building 
blocks of a more complex whole. Designing high-
quality content is a laborious and costly task that 
requires substantial skill, time and resources [1, 2] 
and often a large number of iterations are necessary to 
achieve the desired results. This research addresses these 
issues by use of human-centric evolutionary 
computation combined with autonomous agents in 
order to determine whether this process can be 
facilitated by semi-autonomous approaches [3]. 

This paper describes an Interactive Genetic Algorithm 
(IGA) that is driven by user input that works in 
conjunction with a computational software agent that 

supports the user in the decision making process. By 
shifting the workload from the human user to the 
computational agent, the laborious tasks of modelling are 
simplified and the process is partially automated. 

This paper describes the design of a hybrid intelligent 
system to support interactive design and then utilises 
procedural city design as an example to demonstrate the 
process, identify potential benefits, and find possible 
issues of hybrid intelligent systems in design contexts.  

2. Background and related work

The problem discussed in this paper deals with both 
Design and Artificial Intelligence, both of which are very 
broad fields of research. To narrow these further, and to 
address only the core matters of this enquiry, Generative 
Design (as part of Design), as well as Genetic Algorithms 
and Agents are discussed in more detail in the following 
sections.   
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2.1. Generative Design 

Generative Design, often also referred to as Procedural 
Design, is the area of form and shape finding by use of 
algorithmic help [4]. It is the overarching field in which 
form finding is located in. There are some significant 
differences between manual design aided by computer 
software and automated design provided by software.  

Computer Aided Design (CAD) systems and other 
tools to create three dimensional objects with help of 
computers are technically based on algorithms and 
program code. However they require the designer to 
manually operate the software and provide the inputs 
necessary to create a shape and form. Some of the 
processes may be partially automated, but the designer 
still needs to draw the objects on screen and parametrize 
them. These objects are often primitives such as circles, 
rectangles, cubes, spheres and other two or three 
dimensional shapes, which when combined, form the 
desired complex object [5]. While this manual process 
lays the foundation for Generative Design, it would still 
be considered a potentially onerous iterative process. The 
goal of this research is therefore to investigate automated 
or semi-automated design processes driven by algorithms 
to reduce the manual effort required.   

Generative Design is the process of writing or applying 
often simple and small fragments of code that show 
objects on screen automatically, without the necessity to 
have the designer create underlying shapes in the first 
place [6]. The creation of shapes is done by software, 
driven by an algorithm. The combination of many simple 
shapes creates larger compound structures. These two or 
three dimensional structures (or objects) tend to be rather 
complex, given the simplicity of a few lines of code [2]. 
For example, to create a complex procedural structure 
made of hundreds or thousands geometric primitives such 
as cubes and spheres, only 8 lines of code are required. 
These structures also often use recursive elements, i.e. 
functions or procedures that call themselves over and over 
again and therefore assemble a complex object from 
small, identical building blocks. This is similar to some 
plants such as ferns or trees, which are complex structures 
that are made from very few number of simple individual 
elements [7]. In case of the fern for example, the fractal or 
recursive nature is visible from a large scale to a 
microscopic level. The same shape is found over and over 
again, from plant to branch, and from branch to leaf, and 
so forth. This is usually referred to as self-similarity [8]. 
In the case of a procedurally modelled city, it is possible 
to apply some very similar approaches. While not fully 
self-similar, they are still based on repetition of simple 
building blocks, which when used in large numbers 
resemble rather complex structures. An example would be 
windows on an office building, which are simple elements 
but make up most of a large structure. Another example 
would be streets. While most streets have similar building 
blocks, as a whole they present a very complex and large 
system of gaps between buildings.  

There is little evidence in the literature that a computer 
generated city has been made using Generative Design 
driven by the user in conjunction with algorithmic help. 
While there have been attempts to create procedural three 
dimensional cities as laid out by Parish and Müller [9], 
these were entirely computer driven and provided no user 
interaction. This leads to a computer generated city as 
such, but does not enable the outcome to reflect the 
designer’s intent. The city is a result of the programmer’s 
imagination and it can therefore be argued that it is 
similar to manual Computer Aided Design, with the 
difference that the user (or programmer) does not draw 
objects on screen, but writes code to create them. This 
research follows a different approach in that the user is 
influences the design by choosing preferred layouts.  

Parish and Müller [9] allow the user simply to run the 
software, which then produces a random result, which 
may or may not resemble the designer’s vision. There 
have also been other studies into components of 
generatively designed cities, for instance street structures 
or building structures [10], but these approaches also did 
not consider interactive user input. Therefore, this 
research aims to fill a significant gap in the existing 
literature by using Generative Design driven by user 
interaction to create complex structures while seeking to 
reach the designer’s original vision.   

Using computers to explore the space of possible 
images, sculptures or other complex artistic forms such as 
musical compositions, has enabled researchers and artists 
to evolve pieces of art and led to the exploration of new 
ideas. These range from simple arbitrary colour blobs to 
working functional forms such as boat designs, 
architectural forms or electronic circuits. Designers are 
being enabled to study more solutions in less time and to 
find forms that are outside the conventional and expand 
their conceptual understanding. Evolutionary approaches 
have also led to new methods and principles, which can 
be exploited in future designs [11]. 

Bohnacker [4] demonstrates a variety of generated 
typographic and abstract graphics. Other examples 
include generated art using L-Systems [12], generative 
design using very simple autonomous agents [2] and 
studies in architecture [7] to name a few. Generative 
Design has become more common for a variety of 
reasons, including a vast growth of computing power. 

2.2. Evolutionary computation 

Evolutionary computation borrows ideas from Darwin’s 
theory of evolution, which states that individuals as part 
of a population increase their chances of survival and 
reproduction by way of natural selection. This selection 
process allows for small variations of each individual’s 
properties, which are then passed on to the next 
generation through inheritance. Darwinism in conjunction 
with Mendel’s concept of genetics formed what is known 
in biology as modern evolutionary synthesis [13]. 
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Biological evolution encapsulates the following concepts 
[14]: 

• DNA (Deoxyribonucleic acid) is the molecular
structure that encodes the genetic information of
each cell of all living organisms. It is represented as
a double helix.

• Chromosomes are strings of DNA.
• Genotype is the hereditary information encoded in

the DNA.
• Phenotype is the observable properties as a result of

the DNA.
• Reproduction is the creation of offspring by (usually)

two parents, inheriting parts from both parents’
DNA.

• Crossover is the process of synthesizing an offspring
DNA, creating a new chromosome.

• Mutation is a small accidental change in the
offspring DNA, potentially resulting in slight
variations to a straight, non-mutated crossover.
Mutation happens with a very low probability.

• Survival of the fittest is the concept of only the
strongest properties of a DNA being sustained over
many reproduction cycles. Weaker DNA properties
could result in weaker offspring, which in turn has a
lower chance of survival. Over many generations,
this leads to the elimination of weak DNA. This is
also used synonymously with the term Evolution in
the literature [14].

Modern evolutionary synthesis serves as the foundation 
for the many different types of evolutionary computation. 
While evolutionary computation borrows ideas and the 
notion of biological evolution from the natural process, 
evolutionary computation is merely an abstraction of 
evolutionary synthesis to emulate soft intelligent 
behaviour in computer software. The concepts were 
applied in different ways and evolved over time, so that 
there are now a multitude of different algorithms, which 
all borrow from the underlying idea of natural evolution. 
Examples are Genetic Algorithms [15], Evolution 
Strategies [16] and Genetic Programming [17]. While 
these all simulate natural evolution to an extent, they 
differ significantly in how they apply the evolutionary 
principles.  

Genetic Algorithms are heuristic search algorithms, 
used to find a solution in the space of all possible 
solutions. Evolution Strategies are designed to find 
solutions to technical optimization problems [18], and 
Genetic Programming generates computer programs that 
in turn attempt to solve the actual problem [19]. Genetic 
Programming therefore programs computers by finding an 
optimal set of rules or section of code. Evolutionary 
Computation is the field of research that is concerned with 
computation based on the concepts of natural evolution.  

Genetic Algorithms 
Genetic Algorithms (GA), being part of the heuristic 

optimization or search algorithms, are very popular due to 

their relative simplicity, and are also well researched and 
understood [20]. They were introduced in the 1970s by 
John Holland and mimic natural evolution, normally by 
abstracting the chromosomes into binary digits [15]. 
These chromosomes are passed on from one population to 
a new population after genetics-inspired processes of 
crossover and mutation. An evaluation function called 
fitness function is then applied to establish each 
chromosome’s performance towards the final goal. If the 
chromosome performs poorly, it is likely to be dropped 
from the pool of future ‘parents’. Otherwise, if the 
chromosome’s fitness is high, it is more likely to be 
selected for reproduction. The actual reproduction process 
is performed by using a crossover operator, which mixes 
parts of two parent’s chromosomes to form the new 
child’s chromosome. Finally, a mutation operator is 
applied to some of the new found chromosome in order to 
ensure a certain variation of the child’s properties. This 
mutation operator randomly changes the value of 
individual digits of the chromosome binary string. 
Mutation operator and crossover operators effectively 
represent the probability of each operation (mutation and 
crossover) occurring. The process of simulating natural 
evolution is repeatedly applied for many generations and 
as a result, the fittest members of a population dominate, 
while the less fit become extinct. The underlying 
mechanisms of Genetic Algorithms are very simple, yet 
capable of showing seemingly complex behaviour and the 
ability to solve difficult problem sets [18]. 

While simple search and optimization algorithms such 
as hill climbing or gradient descent might have a tendency 
to get stuck in local maxima or minima, Genetic 
Algorithms avoid this issue due to their inherent creation 
of diversity by mutation. Genetic Algorithms are highly 
effective in many cases, and given that a robust fitness 
function and solid parameters for crossover and mutation 
have been selected, tend to avoid local optima in favour of 
a global solution [21].  

Genetic Algorithms have successfully been applied to a 
range of different areas such as Engineering, Arts and 
Computer Science. Some examples include the 
optimization of machinery [22], evolved particle systems 
[2], generative jazz music [23] or optimizing the weights 
of neural networks [21]. Genetic Algorithms have also 
been successfully applied to much simpler, but somewhat 
similar design problems as presented in this paper, for 
instance finding coloured blobs and stripes that reflect the 
intent of the designer in the solution space of all possible 
combinations of colour blobs and stripes [24]. This 
research seeks to extrapolate the positive results to the 
more complex design issue in relation to Procedural City 
models.  

Whilst there are many contradictory studies [25-28], 
there is a body of evidence that suggests that Genetic 
Algorithms are at least as effective as other metaheuristic 
search algorithms [29]. Such a view is supported by Li & 
Kou [30] who assert that Genetic Algorithms are 
implicitly parallel, robust and scalable, as well as 
powerful in global search and optimization.  



EAI Endorsed Transactions on
Creative Technologies 

10 2015 | Volume 2 | Issue 5 | e5 

J. Kruse and A. M. Connor

4 

Interactive Genetic Algorithms 
Genetic Algorithms (GA) are relatively easy to implement 
and can be very effective if the solution space is very 
large. While GA have some disadvantages such as the 
tendency to converge towards local maxima if not 
properly tuned [31, 32] and the requirement of a fitness 
function, which can be a challenge if soft factors such as 
aesthetics come into play [33], GAs have been well 
studied and well documented. 

The GA was selected for this study based on its 
simplicity, but the specific implementation does not use a 
mathematical fitness function. Instead it integrates the 
user (designer/artist) into the process. The user provides 
the necessary fitness evaluation in the selection stage of 
the GA, a process known as Interactive Evolutionary 
Computation (IEC) [34]. The underlying idea of IEC was 
first introduced by Dawkins in the third chapter of his 
book “The Blind Watchmaker”. Dawkins demonstrates 
the process of evolution based on Darwinian theories in a 
software program called “biomorphs”, which uses human 
interaction to evaluate factors such as aesthetics, appeal or 
attractiveness [35]. Karl Sims [36] has taken this idea of 
user-computer interaction for Genetic Algorithms further 
and suggests that the human user does not have to 
understand the underlying process of creating the 
candidates, while still being able to produce results of 
high complexity. He argues that such interactive evolution 
enables the computer as well as the human to achieve 
results that neither could have produced on their own.  

The term ‘Interactive Evolutionary Computation’ was 
finally formed by Takagi [33], who also evaluated IEC in 
context of several different fields of research as a method 
to integrate computational optimization and human 
evaluation. Beside the ability to combine both 
optimization and evaluation for design subjects, IEC can 
also offer a significant benefit over other computational 
design methods such as Genetic Algorithms or manual 
computer aided design. The user can change their 
evaluation during the evolutionary process and drive the 
resulting populations into a different direction. This could 
potentially lead to the discovery of previously unknown 
outcomes and expose features that were not expected 
initially. Changing the objectives in regular Genetic 
Algorithms would require re-coding and is neither 
practical nor efficient. IEC allows for alterations on the 
fly and as a result has been recognized as a ‘novelty 
generator’ [37]. 

It is important to note, that the user does not 
necessarily evaluate the genotype or phenotype of the 
candidates of the Genetic Algorithm directly, but a 
different representation which is easier to grasp. For 
example, instead of a numerical bit string (genotype) or 
the associated colour values (phenotype) of some 
elements of an image, a user might select whole images 
that are based on both elementary parts [34]. This is an 
approach chosen for this research where the user is able to 
select rendered images which are each based on an 
underlying set of parameters. These parameters are 
encoded into a collection of numerical strings, the DNA. 

This DNA is then modified (mutated) and crossed over by 
the Genetic Algorithm. The resulting parameter set is 
rendered back as a new image, which is then presented to 
the user for consideration in the next generation. 

Whilst this is an elegant way to both capture the user’s 
preference and also avoid forming a mathematical 
function for aesthetics or user preference, it poses a 
significant problem which is related to the nature of 
humans. After a number of iterations, human users tend to 
fatigue and get slower to select, get distracted more easily 
and lose concentration due to the high number of visual 
triggers [38]. The effects of time saving while defining a 
computational solution for the design problem could 
potentially result in a less effective and less successful 
overall outcome of the interactive evolutionary process 
due to this fatigue effect. In the following section 
discusses autonomous agents as a possible solution to this 
inherent problem of IEC.  

Interactive Evolutionary Computation offers significant 
benefits over non-interactive approaches, as it removes 
the necessity to find a mathematical solution for the 
fitness function. The intractable nature of writing an 
equation for aesthetics, taste and preference is elegantly 
avoided. Instead, the user is employed to directly provide 
the selection of potential candidates, which makes this 
approach suitable for this research.  

2.3. Autonomous agents 

Research into agents or autonomous agents is a relatively 
young field, which has been studied for about the past two 
decades. Most publications from the early 1990s 
presented agent definitions that are still valid and that 
build the foundation of our current understanding of the 
field.  

In essence for this research it is assumed that an agent 
is acting in some environment or is part thereof. It is 
capable of deriving inputs from its environment and act 
accordingly in an independent, autonomous manner. 
Furthermore, an agent runs over a period of time, until it 
finishes its task and not necessarily when the human user 
decides to stop it. Some agents might even act beyond the 
control of any human user [39].  

Russell and Norvig [40] classify agents into five 
groups based on the agent’s level of intelligence and 
capability: 

• Simple reflex agents act based on their current
perception and their function follows the condition-
action rule, which is usually implemented as a simple
if-then decision. They require a fully observable
environment in order to succeed.

• Model-based reflex agents differ from the above
mainly through their ability to handle partially
observable environments. They store descriptions of
the un-observable environment and act similar to the
reflex agent following a condition-action rule.
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• Goal-based agents are model-based and use a
database of desirable situations for their decision
making process. The agents simply choose one of the
multiple possibilities that lead to the desired goal.

• Utility-based agents store goal-states and non-goal
states, from which they choose the most desirable
state. This decision is made based on a utility
function, which maps the state to a measure of the
utility of a particular state.

• Learning agents are able to operate in unknown (or
non-observable) environments through learning.
These agents become more knowledgeable over
time, compared to their initial state.

This research specifically involves Learning Agents in 
order to capture the user’s intent, which is unknown at the 
time of programming. This therefore presents a set of 
non-observable parameters of the agent’s environment 
when the process of form finding is started. But through 
observation of the user’s action and accordingly through 
evaluation of success and failure by comparison of the 
agent’s prediction and the user’s input, the agent will 
become more knowledgeable. The idea of learning as 
opposed to simple behaviour is that perception is not only 
used to trigger certain actions depending on the observed 
changes in the environment, but that it is used to improve 
future decisions by the agent system. It is not a reaction to 
the environmental change, but rather a reaction to the 
agent’s own experience [40]. 

Many different forms of learning are being used in 
agent research. Some examples include Decision Trees, 
which is learning from observations to generate a decision 
hierarchy, expert systems, which extract rules from 
examples or Reinforcement Learning, which is learning 
the value of actions by getting rewards or punishment 
depending on previously made decisions and applying 
these updated learned values to future actions [41]. In 
general, learning can be classified into three main 
categories, namely supervised, unsupervised and 
reinforcement learning [40].  

Supervised learning is based on examples, which are 
used as a training dataset to teach the system. This 
training set includes the right and wrong answers to a 
problem, which the system then learns as a function of 
inputs and outputs, or in other words as a relationship 
between actions and outcomes. This can be as simple as 
detecting whether an image contains a certain element [2] 
or which action to take, when a certain event occurs in the 
observed environment [42]. It is important to note, that 
supervised learning does not require a teacher to provide 
the actual value for the correct solutions to the agent. The 
solution can also be derived by the agent from looking at 
all possible candidates through its own perception and 
getting the correct solution pointed out by the teacher. 
The difference is that the former requires some sort of 
table or key-value pairs for all right and wrong solutions, 
whereas the latter just requires someone to point to the 
right ones. This means that an agent in a fully observable 
environment might be able to perceive the consequences 

of its decisions, and learn from them to make future 
decisions. In a partially observable environment, this is 
more difficult and the agent needs more comprehensive 
feedback from the teacher in order to make future 
predictions [40]. 

Unsupervised learning differs in that it requires 
detection of patterns in the observations, because the right 
and wrong solutions are not provided prior to the decision 
making process. Examples of unsupervised learning 
methods are statistical learning methods or some neural 
network implementations. Neural networks imitate the 
processes in the brain by using multiple simple units with 
inputs and outputs called neurons or in their simplest form 
perceptrons, which are connected in a network-like 
structure. Inputs provide sensory information, which gets 
evaluated in one or more layers of neurons. The resulting 
sum of outputs by the neuron layers generate a 
behavioural pattern. If certain values reach the input side, 
a consistent response is created as an output [18]. 

Reinforcement learning is probably the most complex, 
but also most general learning method [40]. Actions taken 
by the agent inevitably lead to consequences, good or bad. 
The evaluation of successful and unsuccessful actions is 
used to maximize a reward function. The agent is not 
being led through the learning process as in supervised 
learning, but instead derives the most successful actions 
from the rewards it gains by trying them out [41]. 
Therefore, reinforcement learning does not require an 
expert to provide the right or wrong solutions, which is an 
important feature of this type of learning. But more 
significantly, the agent is able to engage with uncertain, 
unknown new territory, because it learns entirely from its 
own experiences and not from a knowledgeable teacher. 
But reinforcement learning also imposes an important 
issue on the design of the agent architecture. Depending 
on the problem set and the intended use of the agent, a 
balance between exploration and exploitation must be 
maintained. The agent has to prefer actions that lead to 
maximum rewards in order to arrive at a certain goal. This 
implies that some actions which have not been tried 
before, might never be explored even though they could 
lead to even higher rewards and ultimately to the best 
outcome overall [43]. 

Agent research, and study of learning agents 
specifically, is a vast field of research and many concepts 
have been developed to improve aspects of agent 
architecture, communication and performance. One 
performance enhancement of learning algorithms, among 
many others, is Boosting. Boosting is a generic and often 
effective method of creation reliable predictions in 
machine learning [44]. Learning algorithms often suffer 
from noise in the data or small numbers of training 
examples [45]. Analysing and tracking the training error 
by use of a test set, and combining multiple resulting 
classifiers based on their training error score into a meta-
classifier, enables the Boosting algorithm to classify 
instances better than individual classifiers based on noisy 
or small training data as shown by Schapire [46]. Human-
centric evolutionary computation works with relatively 
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small data sets, where tens or hundreds of iterations are 
typical, compared to non-interactive Genetic Algorithms, 
where thousands or millions of generations are possible 
depending on the computational resources. Therefore, the 
ability to train learning algorithms using advanced 
methods such as Boosting gain more importance in 
Interactive Evolutionary Computation as suggested by 
Kamalian et al. [47] in context of electronics design. 

2.4. Collaborative multi-agent systems 

Multi Agent Systems (MAS) are computational systems 
that integrate more than one type of agent. These agents 
might interact and communicate with each other and 
perform different or similar tasks [48]. MAS are 
employed when a single agent might fail to solve 
problems by itself, because the problem is either too 
difficult to encapsulate into a single agent or it is 
impossible to do so. For example, a human (agent) and a 
computational agent may interact while working on a 
task, or multiple different agent architectures have to be 
employed to solve an issue because the problem is beyond 
the scope of an individual agent [49]. 

MAS can be classified into homogeneous and 
heterogeneous architectures. In case of a homogeneous 
structure, all agents have the same underlying 
architecture. They only differ with regards to the 
environment they are in. Every agent contributes to the 
overall system by observing parts of the environment that 
other agents can not perceive. Sometimes there is an 
overlap between the observations made, in case those 
agents partially share the same part of the environment. In 
contrast, heterogeneous systems are made of agents of 
different architectures. The agents perform different tasks 
in different ways and complement each other. The most 
extreme example for a heterogeneous structure might be a 
MAS of human and computational agents. Homogeneous 
systems are relatively fast to create as they only require a 
single agent architecture. The advantage of heterogeneous 
systems is their ability to account for a wide range of 
different tasks, while keeping the individual agent 
relatively simple [49]. 

This research aims to combine interactive computation 
with autonomous computational agents. Therefore, the 
concept of MAS is important to understand. But as this 
study uses MAS in a very specific way, communication 
between agents and their hierarchical structure differs 
from common MAS and is detailed in the context of 
Human-Based Genetic Algorithms (HBGA).  

Human-Based Genetic Algorithms 
First introduced by Alex Kosorukoff as part of his 
research into knowledge management, Human-Based 
Genetic Algorithms [50] are an additional class of genetic 
algorithms. Kosorukoff describes them as a form of 
outsourced primary genetic operators, which are the 
processes of selection, crossover and mutation. Drawing 
the parallel to a business organization, he exemplifies 

outsourcing as the transfer of “ownership of a business 
process to an external agent” [50]. Kosorukoff further 
points out, that outsourcing effectively means the transfer 
of a function from the organization to an external agent. 
This function will be performed independently and 
unsupervised by the agent, sometimes even without any 
knowledge of how the agent works, which methods the 
agent employs and most importantly, partially or fully 
beyond the control of the organization. The organization 
only controls the choice of agents, but not their 
functionality. Similarly, an organizational function is 
introduced to coordinate the system of multiple agents. 

In Human-Based Genetic Algorithms, the three 
primary operators are simplified into selection and 
recombination (merging crossover and mutation). These 
two main functions can be taken over by either human or 
computational agents – not just exclusively, but even in 
combination. For example, there may be a computational 
recombination agent, a human selection agent like in 
Interactive Genetic Algorithms plus an additional 
computational selection agent. This is the defining feature 
of Human-Based Genetic Algorithms. The term Human-
Based Genetic Algorithms may be considered to be 
slightly misleading for a number of reasons. Firstly, this 
class of Genetic Algorithms does not exclusively 
incorporate human agents. Secondly, the distinguishing 
feature is the use of a multi-agent system not necessarily a 
human-based system. Kosorukoff’s own publication [50] 
also used the term Multi-Agent Genetic Algorithms, 
which would be a more distinguished term and probably 
less prone to be misinterpreted. This is not to be confused 
with what Zhong et al. [51] introduced as MAGA, which 
is a Genetic Algorithm, where each candidate is an agent.  

Kosorukoff also identified a significant implication of 
Human-Based Genetic Algorithms. The organizational 
function needs to be efficiently and carefully designed in 
order to allow for effective agent-agent or agent-human 
interaction [50]. While this indication seems to be correct, 
it is equally true for simple Genetic Algorithms and 
especially Interactive Genetic Algorithms. The program 
structure defines how the entities (computational or 
human) interact, how effectively they perform and 
whether it is possible to achieve any sensible, desired 
outcomes at all. Therefore it seems as if this seemingly 
generic problem is outweighed by the robustness and 
flexibility of a multi-agent system.  

In relation to this study, it seems to be a huge 
advantage to be able to utilize one or more agents in 
addition to human selection in order to augment the 
before mentioned issue of user fatigue. If a computational 
agent performs one or many iterations of selection instead 
of the human user, the capability of the human is probably 
utilized in a better, more effective way, and therefore 
allows for an overall larger number of iterations, which in 
turn leads to a better convergence of desired and achieved 
results. This is one of the core ideas which this research 
seeks to explore. 
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3. Multi-agent Human-Based GA

This section outlines the architecture of the multi-agent 
human based genetic algorithm. The elements of the 
system are shown in Figure 1, with specific reference to 
the procedural city generation application outlined in 
Section 4. 

Figure 1. Human-Based GA architecture 

An initial population of cityscapes is generated and 
presented to the human agent after being rendered. The 
human selects the candidate solutions to be used in the 
evolution of the next generation of cityscapes. The 
learning agent monitors the selections made by the human 
agent. The learning agent classifies new generations of 
candidates based on several available classification 
algorithms and makes new decisions following these 
classifications. The decisions made lead to actions, in this 
case selections of new candidates for future breeding. 
These selections are fed back into the Genetic Algorithm. 
While this architecture is relatively straight forward, it is 
still following the common view of what an agent is. 
Fogel [20] as well as Russel and Norvig [40], all 
differentiate an agent from any other software by 
assuming that the agent observes (at least part of) its 
environment, makes decisions based on these 
observations and takes actions accordingly. All three of 
those assumptions are found in the agent architecture used 
in this research. 

The main classifiers used in this research are based on 
decision trees and naïve Bayes. The reasoning behind this 
is to evaluate different learning approaches from different 
classes of learning algorithms. Employing the WEKA 
machine learning framework allows for a fast switch 
between different approaches, which provides an insight 
into the performance of learning algorithms based on very 
small training sets as used in this study. Given that the 
aim was to counteract the effects of fatigue by running as 
few iterations as possible, only a small number of user 
selections per run were available for training the agent, 

before the trained classifier had to evaluate a generation 
of candidates itself. 

This paper utilizes the C4.5 algorithm [52], which was 
used to induce the decision trees. Specifically, WEKA’s 
J48 classifier, which is an open source implementation of 
C4.5 revision 8, created the decision tree at runtime and 
refined it after each selection made by the user. This is 
how the initially untrained agent is able observe the 
actions taken by the user and utilize this information to 
build the decision tree independent of the goal desired by 
the user at the start of each run. It adapts every time the 
whole interactive process is started and does not rely on 
any assumptions made by the software developer. Every 
time the user gives new input, the resulting generation of 
cities is considered a new supervised input. Subsequently, 
the increasing size of the training set, growing with the 
iterative selection process by the user, improves the 
classifier of the learning algorithm due to the increasing 
number of valid test samples, and therefore the ability of 
the agent to predict user preference more accurately is 
improved with every interactive step. This also implies 
that the user only gives feedback to the agent’s actions by 
making new selections, not through a direct 
rewards/punishment system. Therefore, the frequency of 
interactive and computational runs has to be relatively 
high at the start. Only when the agent has received a 
certain number of valid test samples to build the classifier 
can its involvement be increased and more computational 
selections conducted by the agent. This ratio between 
interactive user selection and computational selection by 
the agent can be set before the start of the interactive 
modelling process. Nearly all experiments of this study, 
are based on a run of 10 interactive selections, followed 
by another 10 selections, where the agent and the user 
made selections every other time. From the 20th selection 
run, the agent was responsible for 9 generations, while the 
user only interacted every 10th time. While this required 
the user to provide an initially high number of selections, 
the workload was relatively quickly reduced to a very low 
number.  

4. Procedural City Generation

The first important decision that led to the underlying idea 
of combining Interactive Evolutionary Computation and 
Agents for this research, was to computationally generate 
a model of a city. The reasoning behind this shift from 
manual laborious modelling to significant computational 
support, is the complexity and number of parameters that 
are necessary to create such model. While Parish and 
Müller [9] point out that the creation of systems of high 
visual complexity is an established process in computer 
graphics, it still requires a very high level of skill, 
knowledge and consumes a lot of time. Even breaking the 
overall model down into smaller units such as buildings, 
streets and layout, does not lead to a significant 
simplification or is less demanding towards the computer 
graphics expertise of the designer. Using computational 
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approaches exclusively pose the same problem on the 
software developer. Many different approaches have been 
taken to combine smaller, simple elements into a large 
system. These include L-systems for plant generation 
[53], dress design [54], level generation for jump and run 
games [55] and the before mentioned L-system based city 
engine by Parish and Müller [9]. But none of these 
processes close the gap between highly complex systems 
and the inclusion of the designer in the creation process. 
This is where the novelty of the solution proposed in this 
paper lies. It enables a moderately skilled designer to 
create a large model of high complexity without 
compromising on the aesthetic demands to achieve said 
complexity.  

In principle it is possible to use the proposed system of 
IGA and Agents for nearly any computer generated asset 
for games, film or virtual reality. A city has intentionally 
been selected as an example of high complexity and 
composed of many individual parts. The design and 
creation of CG cities is a complex undertaking as pointed 
out in previous sections. 

Some of the decisions that could be considered limiting 
to the achievable design, such as using a square matrix to 
place buildings, separate land and water and drive the 
height and density of the city centre with its higher 
buildings, are indeed not limiting at all. For example, 
considering a map of the Manhattan peninsula of New 
York City and overlaying a simple square grid as shown 
in Figure 2 it is possible to break the complexity of 
Manhattan down into few small units, for example streets, 
buildings, water and land.  

Figure 2. City grid overlay 

Taking the idea further, the same grid overlay could be 
used to build a height-map of the buildings on the 
peninsula by assigning different height values to each grid 
cell as shown in Figure 3a. This is effectively reverse 
engineering the main spatial and aesthetic features of the 

city. Further, this approach does not limit the street layout 
to be square and grid like. Figure 3b is based on an 
underlying square grid, but shows typical non-square, 
European like cities, which evolved from a city centre and 
spread outwards like a web. And this reverse approach is 
the foundation of the city model as discussed in this study. 
A simple grid structure is introduced to represent 
buildings, land and water. A street-map is used to build 
the network of streets between the buildings on land, and 
finally an occupancy grid is used to indicate the presence 
of water. 

(a) (b) 

Figure 3. Street layout styles 

A height-map is applied to the buildings in the grid, 
which drives the height of the buildings plus a pre-defined 
variance so that the elevation does not appear too 
uniform, but believable and aesthetically similar to what 
is expected based on looking at actual cities. Further, only 
simple instances of buildings are used during the design 
process. This is for two reasons, one being the very 
practical realization that creating and rendering times 
have to be as short as possible to reduce additional user 
fatigue. Secondly, the instances can easily be replaced 
with prebuilt or purchased models of very different 
architectural styles. The applicability of this approach is 
therefore much broader than the presented prototype 
might suggest. Further investigation is of course needed to 
verify this, but again the limiting factor is predominantly 
the scope of this study and not the presented process 
itself. 

The GUI was written in Java using the Processing 
framework to provide some graphics functions. There are 
only two input parameters, which reflect the two main 
parents of each population of the Genetic Algorithm. The 
GUI therefore simply presents a number of candidate 
solutions from which the user selects the two chosen 
parents. The GUI is therefore represented by the figures 
presented in the results section of this paper. The 
motivation behind this simple mode of interaction is the 
desire to reduce user fatigue. Additional inputs would 
require additional user attention. And as the models, 
which the user designs, grow in complexity, the risk of 
extending the required attention and interaction beyond 
the point of human capacity is rising as well. Minimizing 
the number of required interactions per iteration seemed 
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the most appropriate way to focus the results of this study 
on said fatigue and avoiding it by adding agents. 

The resulting city model is being kept fairly simple in 
order to make rendering of 9 candidates for a number of 
iterations feasible. This is just a limitation of the available 
hardware and could easily be changed in a commercial 
environment by using a small render farm. But to manage 
the rendering times (which are purely a result of the 
commercial render engine and not the software system 
presented here), only simple geometric primitives such as 
cylinders and cubes have been used for the object 
instances. Also, the texture is very small and simple, due 
to the limited memory available in the test system. Given 
that the software system has been designed to use 
instances of small building blocks instead of copies of 
existing models, the process of changing from this simple 
type of geometry to a fully textured, shaded, high polygon 
model for each house is just the mere adjustment of one 
configuration parameter. The system to produce feature 
film quality renders has been established and poses no 
limitation to the validity of the results. It is just a matter of 
using high end workstations, which could also be done in 
future research, assuming that the resources would be 
accessible. 

A typical model, as it is shown to the user for selection, 
is shown in Figure 4. Some of the defining features 
include a New York style street system which divides the 
city into square blocks, some water visible in the far 
background as well as a distinct city centre on the far left 
with a number of larger than average buildings 
surrounding it. 

Figure 4. Typical candidate solution 

The DNA string used in the implementation of the 
Genetic Algorithm is made of the following parameters: 

• Ground: 2D integer array, reflecting land or water
• Heightmap: 2D integer array, height of buildings
• Streets: 2D integer array, street map layout
• Buildings: 2D integer array, type of building
• City: 2D integer array, location of city center(s), a

few distinct buildings

One of the necessities for inducing decision trees is to 
keep the number of attributes as low as possible, while 
still arriving at a solution in form of a usable classifier 
[56]. To accommodate this requirement, the parameters 
for the agent are abstracted from the candidates DNA.  

Instead of using each attribute of the DNA, some have 
been consolidated. For example, the height map is a grid-
like structure represented as a 2D array in the DNA, 
which has been pre-processed into three parameters, 
namely average building height, number of buildings and 
height of buildings in the city centre (or scale of the 
buildings compared to the average height in the remainder 
of the city). This reduces the number of parameters from 
originally 10,000 cells in the 2D grid, holding the height 
value for each individual cell, to just 3 attributes, which 
make induction of a decision possible for the agent. 

In summary, the attributes for the agent are: 

• Land/Water ratio
• Street type (European or New York style)
• Average building height
• Number of buildings
• Height of city centre

Additionally, the agent receives the class value, which 
indicates whether this instance of the training set has been 
selected or rejected. Finding the correct class value in new 
instances is ultimately the task of the agent. 

5. Experimental design

The overall experimental process for procedural cities 
involves three different runs, namely Random, IGA and 
HBGA, but not necessarily in this order so that the user 
does not attempt the design with a preoccupied idea of 
how the software might perform. For all three variants, 
the user interaction is exactly the same, so that the 
underlying strategy is hidden from the user. The 
differences between the three variants are detailed in the 
following subsections.  

In any case, each iteration of the user interaction starts 
with a set of 9 rendered city models. These are created by 
the software system depending on the underlying model, 
for example random selection, interactive genetic 
algorithm without agent and interactive genetic algorithm 
with agent. The user selects two parents with the mouse 
(both show a coloured border around the selection to give 
visual feedback) and starts the algorithm with a press of 
the space button. Everything else such as log information, 
render file creation and sub-processes for the render 
engine are hidden from the user. This keeps the user 
interface as simple as possible, with the idea to utilize 
maximum user focus for the actual task of selection. 

After computation, which includes creating the new 
population of 9 cities, writing the render archives and 
rendering the resulting images, the user is presented with 
the next generation ready for selection. Each generation 
typically takes around 10 seconds to render the cities and 
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the average time taken for a user to conduct an evaluation 
was an additional 5 seconds. 

Each individual evaluation was conducted based on a 
predefined set of goals. Some of the requests that where 
made include relatively specific elements such as: 

• A city with a lot of blue water, a city centre with
very high buildings on the left and some smaller
buildings on the right hand side of frame

• A city without water, multiple city centres with few
or no small buildings visible in frame

• A city without water, no distinct city centre and only
very small buildings

Other requests were kept abstract using high level 
description of the desired features. Again, this was 
designed so that the difference between a tight goal 
driven, perhaps client based approach and in difference a 
free creative design, independent of any strong 
prerequisites and maybe just loosely based on a design 
idea could be simulated. The latter examples include: 

• A harbour city with a large population
• A city in a valley with a suburban feel
• A city by the sea with a lot of tourism

 A number of results were recorded for each different 
approach. These findings include the run times for the 
overall process from start to finding a result that the 
designer deemed final, the number of iterations required 
to get to the final result, and also the subjective feeling 
after performing a full run. While the latter is not 
necessarily representative for the quality of the algorithm, 
with regards to user fatigue, it might provide an idea 
whether the software system is successfully reducing the 
workload on the user. 

6. Results

The experimental process involved three different runs, 
namely random selection, Interactive Genetic Algorithm 
without agent and Human-Based Genetic Algorithm 
including a computational agent. 

6.1. Random selection 

Initial testing did not show any promising candidates, 
even after a larger number of runs. In a few rare cases 
though, a random sample early on in the process could 
have been accepted under the assumption that the brief 
was not taken too rigorously, but none of the candidates 
resembled the previously stated goal for that run exactly. 
But the waiting times for each generation are relatively 
high, with only a slim chance of randomly striking an 
acceptable solution. Involving the human into the full 
process, just to create a random control was deemed to be 
impractical. Instead, batch processing was realized and 
the user went through the results only. While this 

approach did not measure the fatigue generated by the 
actual (redundant) selection plus render times for every 
generation, having to go through 900 pictures proved to 
be very tiring and frustrating. 

Two runs were conducted, and the experiment was not 
continued for the initially envisioned 10 runs. The time it 
took to evaluate the images seemed to justify the 
conclusion that random selection does not necessarily lead 
to a result within a practical time frame. While it could be 
argued that manual creation takes much longer, this 
study’s focus is on computational solutions, and the run 
times in the following sections demonstrate the difference 
between a manual random and a computational approach. 

One interesting finding is the relevance of the design 
goal though. When looking for a very specific outcome, 
for example a large city by the water with many high rise 
buildings on the left of screen and some flat buildings on 
the right, it was clear after 100 generations (or 900 
images) that no solution had been found. But when the 
goal was set in a more abstract way, without any specific 
requirements, for instance large harbour city, some of the 
candidates seemed to fulfil that brief at least very loosely. 
But in saying this, it seems necessary that the set goal has 
to be specific enough, so that any broad interpretation, 
which might include many very different solutions, is 
avoided. A loose goal setting would not provide any 
contestable results with regards to the specific research 
question of this study. This research is concerned with the 
difference between pure Interactive Evolutionary 
Computation and Human-Based Genetic Algorithms to 
address fatigue. 

6.2. Interactive GA 

This section outlines a typical run using Interactive 
Genetic Algorithms without the support of a 
computational agent. This section outlines an example 
case of the system in use. The predetermined goal was 
very specific, stating that a city with a lot of blue water, a 
distinct city centre on the left and much smaller buildings 
on the right was to be created. Figure 5 is the first 
generation of the example generated from the random 
seed. 

Figure 5. Generation 1 of an IGA run 
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Typically, the first generation contains a number of 
mixed results, here with 6 of 9 candidates containing just 
land and no water. Consequently, the user selected 
candidates top/left and bottom/left. 

As a result of mainly choosing candidates that had 
water present, the user improved the number of available 
options in subsequent generations. Figure 6 shows 
generation 10, which has significantly more cities with 
water visible. 

Figure 6. Generation 10 of an IGA run 

Another 10 generations later, a number of candidates with 
water appear and high buildings are emerging on the right 
hand side, and on the left and somewhat smaller buildings 
on the right hand side. This is shown in Figure 7. 

Figure 7. Generation 20 of an IGA run 

Figure 8 illustrates generation 30 of this exemplary 
IGA run, a few issues can be observed, which are based 
on the slow convergence of the Genetic Algorithm. In this 
case, 8 of the 9 candidates contain water. One candidate 
has high buildings on the left side, and the majority of 
candidates had the buildings on the left. But none of the 
candidates presented the required properties as outlined 
before the run started. Accordingly, another 10 
generations were required in order to achieve the first 
promising results, as depicted in Figure 9. 

Figure 8. Generation 30 of an IGA run 

Figure 9. Generation 40 of an IGA run 

After 7 additional generations, the final candidate was 
found. Figure 10 shows the originally requested water, a 
distinct centre with high buildings on the left and low-rise 
buildings on the right side of frame. While the result 
satisfied all criteria of the brief, it required 47 generations 
to achieve it. 

Figure 10. Selected final solution 

Overall, the Interactive Genetic Algorithm without an 
agent was tested in 36 runs with an average of 37 
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generations per run and the average time per run was 18 
minutes. The standard deviation was 11 generations, 
which shows a fairly wide spread. The smallest run was 
only 1 generation, although this was deemed a special 
case and likely due to the subjective nature of aesthetics 
combined with an element of ‘luck’ arising from the 
stochastic nature of the algorithms. After finding a 
suitable candidate right in the first generation, a few more 
iterations were conducted, which showed even more 
promising results. The fact that the initial conclusion in 
generation 1, was later reviewed and seemingly better 
solutions were found in subsequent generations, 
underlines the implications of judging aesthetics based on 
a high level project brief (which was given for this 
particular run). A more detailed brief would probably 
have led to more iterations in the first place. 

6.3. Human-Based GA 

The Human-Based Genetic Algorithm was tested in 36 
runs, similar to the Interactive Genetic Algorithm and 
with the same predetermined goals, as discussed in the 
previous section. The average number of generations was 
52 with a standard deviation was 14. The maximum was 
91 generations and the minimum 21. The average time per 
run was 12 minutes. It is noteworthy that the total number 
of iterations is higher compared to IGA, but this higher 
number includes both interactive and computational 
generations conducted by the human designer and the 
autonomous agent respectively. The mean number of 
generations using HBGA that required user interaction is 
18 and as such is about half of the number required when 
using the IGA. Table 1 shows an overview of the statistics 
of all runs conducted using the Human-Based Genetic 
Algorithm compared to the Interactive Genetic Algorithm. 
For each run, the same brief was given based on examples 
shown in section 5.  

Table 1. Comparison IGA vs. HBGA 

Approach Performance 
# runs # generations 

(interactive) 
# generations 

(total) 
time 

(average) 
IGA 36 37 37 18 
HBGA 36 18 52 12 

The higher number of generations in total indicates that 
a greater number of possible solutions are being explored, 
though a smaller number are being evaluated by the user 
in person. 

Different initial mutation rates for the Genetic 
Algorithm were verified, with the majority of runs 
conducted at 0.2 probability. This showed a good 
performance in terms of relatively quick convergence, 
without the issue of getting stuck in local maxima. The 
latter was experienced at initial mutation rates of 0.02. At 

this low rate, the system seemed to produce little diversity 
even after only a few runs and the user could not achieve 
the predetermined goal as most candidates looked very 
similar and left no room for additional evolutionary 
breeding. Such lack of diversity is perhaps to be expected 
given the relatively small population size. 

7. Discussion

It is interesting to see that the average number of 
generations using the Human-Based Genetic Algorithm is 
nearly one and a half times of the number of generation 
conducted using the Interactive Genetic Algorithm. This 
is not unexpected though. In case of the Interactive 
Genetic Algorithm, the user has to run every generation 
interactively. The time consumed per iteration is about 10 
seconds render time plus user decision time, which was 
typically about 15 seconds. This means, a run took on 
average just over 18 minutes. Comparing this to the 
Human-Based Genetic Algorithm, the time for the first 10 
runs is identical. But after that, the non-interactive 
generations, driven by the computational agent take 
virtually no time (under 1 second) for the decision making 
process and only the last generation that is to be presented 
to the user for interactive selection again, needs to be 
rendered, which takes the aforementioned 15 seconds. 
Therefore, many additional generations can be run in the 
same time, which the user seems to take advantage of in 
case of the Human-Based Genetic Algorithm.   

For the overall process it can be said, that if the user is 
less pleased with the results returned by the agent, the 
user will select candidates that are different, rather than 
similar. This triggers the agent to change course as well, 
running a lower level of confidence due to the inherent 
inability to predict the sudden random selection by the 
user, which in turn creates more diversity through 
increased mutation probability. Consequently, this allows 
the designer to choose a more intuitive, even unstructured 
approach to the modelling process, and a carefully, clearly 
planned execution is not a requirement anymore. The 
designer is essentially able to use playful discovery 
without endangering the end product. In a random or 
manual approach, this would cost either a lot of time, as 
many hundreds or thousands of parameters would have to 
be adjusted, or it would be impossible, given that a certain 
appearance of the buildings in the skyline can only be 
altered by changing the layout of the city blocks and the 
street pattern. 

A few interesting cases could be observed, where an 
originally weak and seemingly unstructured response 
from the algorithm in the first 10 iterations is altered by 
the support of the software agent within a few iterations. 
The software agent suddenly drives the designs into a 
different direction from what the Genetic Algorithm did, 
and closely follows what it identified based on the human 
selections. Therefore, the overall system performed better 
than its individual components and provided a better user 
experience. For example, the brief was to create a city 
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without water and flat buildings with no distinct city 
centre. The Genetic Algorithm showed a high number of 
candidates with water, an average of 7 out of 9 per 
generation. The user inevitably selected candidates with 
land and no water. While the Genetic Algorithm 
continued to present candidates with water in higher 
proportion as shown in Figure 11, the agent’s classifier 
was trained by the user selection. 

Figure 11. Generation 10 of HBGA run presenting 
mostly water, contrary to the brief given 

Once the agent came into effect, after only four 
additional generations most of the candidates were 
containing land. Even the candidate solutions still 
containing water had proportionally more land and 
buildings visible, as shown in Figure 12. 

Figure 12. Generation 14 of the same HBGA run as 
above, showing mostly land-based candidates 

It was a bit surprising that the user did not always 
follow a straight approach towards the goal. For example, 
if a harbour city model was requested, quite a few 
selections involved no water at all. There are a few 
possible reasons for that. First, perhaps most of the other 
parameters did not fit the brief from the perspective of the 
user. Or, the fact that relatively little effort to create a new 
city layout was required, compared to manual modelling, 
led to a more playful attitude. Overall, it seems that the 

user is more adventurous using the Human-Based Genetic 
Algorithm, changing direction a few times, for example 
from water on the left to water on the right when asked to 
make a harbour city. One would probably not attempt a 
drastic change after many man hours of modelling 
manually, as a larger diversion from the original layout 
might require a re-start of the whole manual modelling 
process. Due to the support of the agent and the relatively 
fast ‘modelling’ approach, there seems to be a lower 
boundary for otherwise significant changes. It seems that 
interactivity on one hand, but also the agent reducing 
fatigue on the other hand, allow for more user iterations 
and therefore exploration of different solutions.  

The core of the agent architecture used in this study is 
the decision tree, which is induced at run-time and refined 
in subsequent iterations by use of the additional selections 
made by the user. Figure 13 shows the root node of the 
decision tree after 14 user-driven iterations.  

Figure 13. Decision tree visualization 

The root attribute is land/water ratio, which gives a 
clear indication that any candidate with more water than 
14% is to be rejected, which is true for 86 of all instances 
of the training set. The goal of this run was in fact to find 
a city with no water, and based on the training set, the 
classifier preferred any candidate with less than 14% of 
water. The full tree has 7 branches and shows a high rate 
of confidence (88% correctly classified instances), 
although most of the candidates were rejected right at the 
root, based on the amount of water compared to land 
hence only the root node of the tree is shown. This is one 
indication of a useable classification tree, however, some 
of the other decision trees that have been examined 
throughout this study, were not as clear and had a lower 
level of confidence. There has been no clear indication 
that the J48 classifier produces viable results in every 
case. Sometimes the tree is not able to reliably identify 
candidates with a high confidence and the score was only 
around 60%. However, this is still a marginal 
improvement over a 50/50 ‘coin toss’, so there is some 
value in the use of the agent. It seems that perhaps the 
noise of the training data due to the low number of 
instance compared to other data mining tasks, might be a 
contributing factor. Hall et al. [56] discuss this as a 
possible issue, and other work using J48 has identified 
that when the number of instances is low compared to the 
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number of attributes, the J48 classifier becomes of limited 
use [57], though one possible solution to this problem is 
the use of synthetic data [58]. In the instance of the 
procedural city generation, the classification is conducted 
on 5 attributes and typically the training set would include 
10 initial instances. The selection of J48 was initially 
based on its popularity as a classifier, however a potential 
solution to improve the effectiveness of the classification 
might be the introduction of an alternative classifier, 
which could be part of future research and the matter 
requires further investigation. The WEKA framework 
allows for relatively easy adaption of different algorithms. 

8. Conclusion

This paper has presented initial results comparing the use 
of a simple Interactive Genetic Algorithm with a multi-
agent implementation of a Human-Based Genetic 
Algorithm with the goal of determining whether the 
computation learning agent in the HBGA has the potential 
to reduce user fatigue. Results indicate that the use of the 
HBGA allows greater exploration of the design space in a 
shorter space of time. This suggests that there may be 
lower overhead placed upon the human user which and 
that there is potentially less fatigue experienced to achieve 
the same goal. However, further work with more subjects 
and quantification of the fatigue   

In terms of actual fatigue, an interesting observation is 
the influence of soft factors such as positive emotions. 
Fatigue seems not just to be based on attention span and 
focus, but also to be compensated by subjective positive 
emotions. Evaluating the candidate solutions presented by 
the computational agent seems to positively engage the 
designer more than when evaluating those presented by 
the IGA. The process of using interactive evolutionary 
concepts, which allow the user to observe convergence 
towards selected goals with each iteration, could be 
almost described as playful.  

Looking at the number of iterations run by the Human-
Based Genetic Algorithm compared to pure Interactive 
Genetic Algorithm, it seems that the user might be happy 
to allow more iterations, if they are not interactive but run 
by an agent. It seems not to be about keeping the 
maximum number of iterations low, but more about 
optimizing the final result within a certain time frame. 
The average time of the runs between IGA and HBGA 
were very similar, which could indicate that the user is 
more driven by time consumed, rather than the number of 
selections that have to be made by either the human or the 
agent. This might hint that the driving factor is indeed 
fatigue or attention span, and that a computational agent 
helps to optimize the result by running additional 
iterations. Based on this prototype, it looks as if the 
system of Interactive Evolutionary Computation and 
agents shows some promising benefits towards goal 
optimization, and a wider study could probably confirm 
this indication and provide additional insights. 

The results of this study do not show conclusive 
evidence that agents lead to consistent improvements of 
Interactive Genetic Algorithms. But there are some 
indications that this approach has advantages. First, there 
are some promising signs when adding agents to the 
interactive process, for example the cases where the 
Genetic Algorithm seemed to suffer from a high mutation 
probability, which lead to a high diversity and no clear 
convergence. Once the agent ran some of the generations, 
a clear shift in direction towards the previous user 
selection was observable. This needs further proof, which 
a quantitative experiment could provide. Second, the 
observation that the user seemed to enjoy the interactive 
process more, once the agent was engaged, could prove to 
be a valuable insight. While this needs further 
investigation as well, looking at the psychological aspects 
of perceived intelligence by a computational system could 
provide additional value. This seems like the next logical 
step in understanding the user experience of Interactive 
Evolutionary Computation better.  
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