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Abstract—In cognitive radio networks, secondary users can
use the licensed frequency bands if the primary user is idle.
In order to protect the privilege of the primary user, detecting
the presence of the primary user in cognitive radio networks is
important. Collaborative sensing is a possible method to improve
the detection performance for the presence of the primary user.
The IEEE 802.22 standard provides an appropriate topology to
perform collaborative sensing. This paper addresses the problem
of collaborative sensing in cognitive radio networks. The proposed
sensing mechanism is not based on any known signal or noise
distributions. The approximations of the distributions for the
signal energy measurements are first derived. The SUM fusion
rule is adopted to make the final consensus about the presence
of the primary user. Based on the derived measurement distri-
butions, detection performance in terms of detection probability
subject to a fixed false alarm probability is evaluated analytically.
The analytic results of the measurement distributions and the
detection performance are very close to the simulation results. In
particular, it is found that adding more users to participate in the
fusion does not improve the detection performance. In fact, it may
hurt the detection performance. A better strategy is to include
only a few users with the highest SNR in the fusion. In this way,
the detection performance is higher while communication costs
can be reduced.

I. INTRODUCTION

Cognitive radio technology allows unlicensed (secondary)
users to reuse frequency bands when licensed (primary) users
are not using the bands. It provides a potential solution to
increase the utilization of the current scarce frequency band
resources. To protect the privilege of the licensed users,
unlicensed users have to sense the presence of the licensed
users and vacate the channel if the licensed users are detected.
Thus, spectrum sensing is an important problem to realize
cognitive radio technology [1]. Collaborative sensing is a
possible method to improve the detection performance. One the
one hand, it provides better protection to the primary users. On
the other hand, it can increases the utilization of the channel
for the secondary users.

The IEEE 802.22 Wireless Regional Area Network
(WRAN) standard specifies the protocol to reuse the spectrum
allocated to TV broadcast service using cognitive radio tech-
niques [2]. The general topology of the network is shown in
Fig. 1. Essentially, the network contains a TV broadcast sta-
tion, i.e., the primary user, a secondary user base station (BS),
and customer-premises equipments (CPE), i.e., the secondary
users. The CPEs will be sensing the spectrum and periodically
send their sensing reports to the BS. The BS then decides
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Fig. 1. Deployment topology of the network

whether to change or stay in the currently used channel and
informs the CPEs. The scenario creates a great opportunity to
perform collaborative sensing where the BS can be the fusion
center and fuse the collected reports to arrive at a consensus
decision about the presence of the primary user.

This paper investigates collaborative sensing for the pres-
ence of uncertain primary user signal based on the IEEE802.22
topology. Generally, each CPE periodically reports to the BS
its local decision about the presence or absence of the primary
user. To reserve energy, the CPEs only need to report a one
bit decision based on their local observations. The BS then
fuses the collected local decisions to arrive at a consensus.
If a positive decision about the presence of the primary user
is made, the BS informs the CPEs to change channel or
stop the current transmission. Two metrics are important to
evaluate the performance of the sensing operation, namely
the detection probability and the false alarm probability. The
detection probability is defined as the probability that the
detector declares a primary user is present while, indeed,
there is a primary user present. In contrast, the false alarm
probability is defined as the probability that the detector
declares a primary user is present while actually no primary
user is present. The detection probability provides a metric to
judge the protection level of the primary user’s privilege and
the false alarm probability can evaluate the level of secondary
user utilization. Basically, a desired detector should have the
characteristics that the detection probability is as high as
possible while the false alarm probability is low. Collaborative
sensing can improve the detection probability while reducing
the false alarm probability.

In this paper, constant false alarm rate (CFAR) detector is
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adopted for making both the local decision at each CPE and
the global decision at the BS. To control a constant false alarm
rate and to evaluate the detection probability, the distributions
of the signal measurements have to be determined. Unlike
many previous studies, this paper does not make any prior
assumptions about the distributions of the monitored signal
and noise. Thus, the distributions of the signal energy mea-
surements are first estimated. The detection performance in
terms of the detection probability subject to a fixed false alarm
probability is analyzed.

Extensive simulations are conducted to verify the cor-
rectness of the analyses for the detection performance. The
detection performance of the proposed SUM fusion rule is
also compared to those of the conventional used AND fusion
and OR fusion rules [3]. The SUM fusion outperforms AND
and OR fusion in detection probability based on a constraint
of a fixed false alarm rate. In particular, it is shown that having
all the secondary users to participate in the fusion may not be
beneficial to the detection performance. In fact, the detection
probability may be decreased if too many users participate in
the fusion. To include a small number of users who have the
highest signal to noise ratio in the fusion can perform better
than include all.

The paper is organized as follows. Section II reviews the
related work. Section III describes the preliminary assumptions
and basic analysis of the signal energy measurements. Section
IV presents the performance evaluations of the collaborative
sensing technique. Section V shows the simulation results. The
paper concludes in Section VI.

II. RELATED WORK

It has been shown that most of the licensed spectrum
is surprisingly under-utilized [4]. Cognitive radio provides a
potential mechanism to increase the utilization of the limited
spectrum. One of the most important problems in cognitive
radio is spectrum sensing. In general, spectrum sensing meth-
ods can be separated in two categories, i.e., energy detection
[5], and feature detection [6], [7]. Energy detection is based on
checking the likelihood of the observed signal occurring in two
hypotheses which assume the conditions of the presence and
absence of the target signal. If the probability density functions
(PDF) under both hypotheses are perfectly known, energy
detector has been shown to be close to the optimal detector
[6], [8]. In [8], it has been shown that the performance of
energy detector is asymptotically same as the optimal detector
when the signal to noise ratio is low based on the assumptions
that the signals are modulated with a zero-mean finite signal
constellation and the PDFs are perfectly known as well as
symbols are independent. Similar results are presented for
detecting an OFDM signal in [6]. However, a fundamental
limit for energy detection is the SNR wall problem when the
SNR is relatively small [9], [10]. The detection performance
of the energy detector may deteriorate if the noise variance
is not perfectly known [11]. Moreover, if the noise variance
is unknown, energy detector cannot be used since the it is
required to set the detection threshold.

Signal used in practical communications usually contains
certain features. For example, OFDM modulation adds a
cyclic prefix (CP). Some other systems multiplex known pilots

into the transmitted data or superimpose pilot signal on the
transmitted signals. Feature detection employs the distinctive
features to discriminate the presence of the primary user
[12], [13]. Two typical methods for feature detection is the
autocorrelation-based detector [12] and the cyclostationarity
detector [14]. These detectors differentiate the primary user
signal from the local noise signal by exploiting certain peri-
odical features shown in the mean and autocorrelation of a
signal based on a particular modulation. When the parameters
like the noise power and signal power are not known, feature
detection could outperform energy detection [15].

It is inevitable to increase the interference of primary users
in cognitive radio, since reliable sensing is not always guaran-
teed because of the impact of multipath fading, shadowing, and
other factors. Consequently, a variety of studies have focused
on cooperative spectrum sensing to provide reliable detection
of the presence of the primary users [16]–[19]. In [20], it is
shown that it may not be beneficial to involve all secondary
users in the cooperation due to the different locations and
channel conditions of the secondary users. Consequently, the
optimal secondary user selection for cooperative sensing is also
investigated in [21]. Recently, there is also research studying
the security problems for cooperative sensing in cognitive radio
[22], [23] or power control for coordinating spectrum sharing
[24]. However, the problem we consider differs in that it is
restricted to detect a known primary user signal. In fact, the
primary user signal can be in any distributions. Further, it
considers different fusion methods to improve the detection
performance.

III. PRELIMINARY FOUNDATION

A. Sensing hypotheses

To model the signal received by a secondary user, let S(t)
denote the signal emitted from the primary user at time instant
t. Assume that S(t) is an i.i.d. random process with mean
µs and σs. Let di be the distance from the primary user to
secondary user i. The primary user signal received by user i
at a certain time instant t can be modeled as follows:

Si(t) =
S(t)

dαi
, (1)

where α is the path loss exponent. Obviously, the mean and
variance of Si(t) is given by

µs,i =
µs
dαi

and σ2
s,i =

σ2
s

d2αi
, (2)

respectively. It is noted that the distribution of the signal is
assumed to be unknown in this paper. However, it is relatively
easy to estimate the mean and variance of the signal by users.
In addition, the received signal is usually corrupted by noise.

In cognitive radio networks, since the primary user may be
absent, there are two hypotheses for the received signal. Let
H0 denote the null hypothesis that the primary user is absent
and H1 denote the alternative hypothesis that the primary user
is present. The received signal of user i can be expressed as
follows:

H1 : yi(t) = Si(t) +Xi(t), and (3)
H0 : yi(t) = Xi(t), (4)



where Xi(t) denotes the noise, which is assumed to have mean
µx,i and variance σx,i.

B. Measurement PDF estimation

Energy detector is usually exploited to sense the presence
or absence of a certain signal. The detector periodically
collects the signal energy, which is given by the following
statistics:

Mi =
1

T

T∑
t=1

|yi(t)|2. (5)

However, the probability distribution of the signal energy
measurement is critical for making detection decisions. Since
the probability distribution of the signal is assumed to be
unknown, the probability distribution of the measurements is
first evaluated by approximation.

Under the hypothesis H0, the measurements contain only
noise, i.e.,

Mi =
1

T

T∑
t=1

|Xi(t)|2. (6)

Assume that Xi(t) is i.i.d.. For large T , the distribution of Mi

can be approximated by Central Limit Theorem (CLT) if the
mean and variance of Xi(t)

2 can be determined. It is easy to
obtain the mean of Xi(t)

2 is µ2
x,i + σ2

x,i. However, no close
form expression can be derived for the variance. Fortunately,
the approximation of the variance of Xi(t)

2 can be obtained
by Delta method [25], which is described in Proposition 1.

Proposition 1: (Delta method) Let x be a random variable
with mean µ and variance σ2. The variance of a function f(x)
can be approximated by

V ar(f(x)) ≈ [f ′(µ)]2 × σ2.

�

Assume f (Xi(t)) = Xi(t)
2. From Proposition 1, the

variance of Xi(t)
2 can be approximated by 4µ2

x,iσ
2
x,i. Thus,

using CLT, the probability density function (PDF) of Mi

converges in distribution to a Gaussian distribution with the
mean and variance as follows:

mean: µi,0 = µ2
x,i + σ2

x,i (7)

variance: σ2
i,0 =

4

T
µ2
x,iσ

2
x,i. (8)

Under the hypothesisH1, the energy measurement statistics
are given by

Mi =
1

T

T∑
t=1

|yi(t)|2 =
1

T

T∑
t=1

|Si(t) +Xi(t)|2. (9)

To evaluate the PDF of Mi, eq.(9) is decomposed to three
terms as follows:

Mi =
1

T

T∑
t=1

|Si(t)|2 +
1

T

T∑
t=1

|Xi(t)|2 +
2

T

T∑
t=1

|Si(t)Xi(t)|

(10)

Fig. 2. Constant false alarm rate detection

Similarly, the first two terms in eq.(10) can be approximated
by CLT and proposition 1. Thus,

1

T

T∑
t=1

|Si(t)|2 ∼ N
(
µ2
s,i + σ2

s,i,
4

T
µ2
s,iσ

2
s,i

)
(11)

1

T

T∑
t=1

|Xi(t)|2 ∼ N
(
µ2
x,i + σ2

x,i,
4

T
µ2
x,iσ

2
x,i

)
(12)

For the third term in eq.(10), since Si(t) and Xi(t) are
independent, the mean of Si(t)Xi(t) can be derived as

E [Si(t)Xi(t)] = E [Si(t)]E [Xi(t)] = µs,iµx,i, (13)

and the variance can be obtained by

V ar (Si(t)Xi(t)) = E
[
(Si(t)Xi(t)− µs,iµx,i)2

]
(14)

= E
[
Si(t)

2
]
E
[
Xi(t)

2
]
− µ2

s,iµ
2
x,i(15)

= µ2
s,iσ

2
x,i + µ2

x,iσ
2
s,i + σ2

s,iσ
2
x,i. (16)

Again, by CLT, the PDF of the third term of eq.(10) is given
by

2

T

T∑
t=1

Si(t)Xi(t) ∼ (17)

N

(
2µs,iµx,i,

4

T

(
µ2
s,iσ

2
x,i + µ2

x,iσ
2
s,i + σ2

s,iσ
2
x,i

))
. (18)

Obviously, one can add the three Gaussian distribution in
eq.(11), eq.(12), and eq.(18) to get the PDF of the measurement
Mi. Thus, under the hypothesis H1, the PDF of Mi can be
approximated by a Gaussian distribution N(µi,1, σ

2
i,1), where

µi,1 and σ2
i,1 are as follows:

µi,1 = σ2
s,i + σ2

x,i + (µs,i + µx,i)
2 (19)

σ2
i,1 =

4

T

(
µ2
s,i + µ2

x,i

) (
σ2
s,i + σ2

x,i

)
+ σ2

s,iσ
2
x,i. (20)

Note that the mean in eq.(7) and eq.(19) are exact, but the
variance in eq.(8 and eq.(20) are estimated by Proposition 1.

IV. COLLABORATIVE SENSING

A. Local detction

For collaborative sensing, the secondary users first make
their own local decisions about the presence of the primary
user. Then, report the local decision to the BS. With the
probability distributions of the measurements under the two



hypotheses, constant false alarm rate (CFAR) detector is one
of the potential detectors which can be used to make binary
decision between the two hypotheses. As shown in Fig. 2,
the CFAR detector uses a threshold ηi to detect anomaly
measurements. When the measurement Mi is greater than ηi, it
declares that the primary user is present. Otherwise, it decides
that the primary user is absent. False alarm is defined as the
cases that the detector declares a primary user present when
the primary user is actually absent.

Consequently, given the PDF of the measurements under
H0 and a tolerable false alarm probability, one can determine
the threshold ηi. Formally, the false alarm probability can be
derived as

Pf,i = P (Mi > ηi |H0 ) (21)

= Q

(
ηi − µi,0
σi,0

)
, (22)

where Q is the tail probability of a standard normal distribu-
tion, i.e.,

Q (x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du.

Recall that µi,0 and σi,0 are the mean and standard deviation
estimated for the PDF of the measurement under H0 in eq.(7)
and eq.(8).

In contrast, detection probability is defined as the proba-
bility that the detector declares a primary user present when
there is actually a primary user present. Therefore, with the
threshold ηi obtained from the above constraint of false alarm
probability, the detection probability can be derived by

Pd,i = P (Mi > ηi |H1 ) (23)

= Q

(
ηi − µi,1
σi,1

)
, (24)

where µi,1 and σi,1 are from eq.(19) and eq.(20), respectively.

Note that in case the detection probability is more impor-
tant than the false alarm probability, one can also determine
the threshold ηi by specifying a desired constraint on detection
probability and then derive the resulting false alarm probability.
In this way, the detection performance in terms of detection
probability is guaranteed.

B. Global decision making

The BS collects the local decisions from secondary users
and fuse the local decisions to arrive at a consensus. Denote the
binary decision from secondary user i as Ii = 0, 1. An intuitive
fusion method is to count the number of positive decisions as
in eq.(25). If the total number of positive decisions is greater
than a threshold λ, it declares that a primary user is present.
Otherwise, it decides that the primary user is absent.

Λ =

n∑
i=1

Ii

H1

≷
H0

λ (25)

CFAR detector can also be used as the detector for
global decision making. However, to determine an appropriate
threshold λ subject to a fixed global false alarm probability
constraint, the PDF of Λ =

∑n
i=1 Ii under H0 is required.

Analogously, given the threshold λ, the PDF of Λ under H1

must be available to evaluate the detection probability.

Obviously, Ii follows follows Bernoulli distribution with
Pf,i(Pd,i) as the probability of success under the condition
H0(H1). However, each secondary user is not necessary to
set the same local false alarm probability as the constraint. In
addition, since the detection probability is highly dependent
on the distance from the primary user to the secondary user,
it is highly possible that the local detection probability is
different at different users. Consequently, the total number
of detections (Λ) does not follow a Binomial distribution. It
is very complicated and difficult to get the exact expression
for the distributions of Λ. Thus, the approximations of the
distributions are derived.

Note that {I1, ..., In} are mutually independent. According
to CLT as well as Lyapunov condition [26], when n is large,
the distribution of Λ converges to a Gaussian distribution with
mean µ and variance σ2, where

µ = E [Λ] =

n∑
i=1

E [Ii], and (26)

σ2 = var [Λ] =

n∑
i=1

var [Ii]. (27)

It is easy to see that under H0, E[Ii] = Pf,i and var[Ii] =
Pf,i(1−Pf,i). Therefore, Λ converges to a Gaussian distribu-
tion with mean µ0 and variance σ2

0 , where

µ0 =

n∑
i=1

Pf,i and σ2
0 =

n∑
i=1

Pf,i (1− Pf,i) . (28)

Analogously, under H1, E[Ii] = Pd,i and var[Ii] =
Pd,i(1 − Pd,i). Thus, Λ converges to a Gaussian distribution
with mean µ1 and variance σ2

1 , where

µ1 =

n∑
i=1

Pd,i and σ2
1 =

n∑
i=1

Pd,i (1− Pd,i) . (29)

The global false alarm probability can then be derived as

Pf = P (Λ ≥ λ |H0 ) = Q

(
λ− µ0

σ0

)
. (30)

Given a global false alarm probability pf , one can determine
the threshold λ as follows:

λ =
⌈
Q−1 (pf )× σ0 + µ0

⌉
. (31)

Note that λ is an integer threshold for the number of users who
report a positive detect. Then, the global detection probability
can be evaluated as

Pd = P (Λ ≥ λ |H1 ) = Q

(
λ− µ1

σ1

)
. (32)

In particular, if all the users set the same local false alarm
probability, i.e., let Pf,i = pf ,∀i, the exact global false alarm
probability can be derived as

Pf =

n∑
i=λ

(
n
i

)
pif
(
1− pif

)n−i
. (33)



Pf follows Binomial distribution. When n is large, eq.(33)
can be approximated by Laplace-DeMoivre approximation as
follows:

Pf ' Q

(
λ− npf√
npf (1− pf )

)
,

which is the same as in eq.(30).

V. SIMULATIONS

In the simulations, the correctness and performance of the
addressed collaborative sensing method are investigated. The
simulations are conducted in a topology as shown in Fig. 1.
There 50 secondary users who are uniformly distributed within
the 50km radius region of the BS. The users cooperates to
sense the presence of a signal from the primary user, who is
100km away from the BS. The signal strength, S(t), of the
primary user is assume to be a random variable with mean
200 and variance 3. The path loss exponent α is set to be 2.
The noise process at each individual user is randomly set to
have mean 1 to 3 and variance between 0 to 1. If no further
described, the local false alarm probability is set to be 0.2 for
each individual user and the number of samples T used in the
energy measurement in eq.(5) is set to be 50. Without loss
of generality, Gaussian random process is used to generate the
signal and noise. However, the signal and noise can follow any
other processes without affecting the correctness of the results.

The distributions of energy measurements Mi are first
investigated. Note that the derived means of Mi in eq.(7)
and eq.(19 are exact, but the variance in eq.(8 and eq.(20)
are approximated. Since the signal and noise are generated by
Gaussian distribution, the true variance of Mi can be derived.
Let x be a random variable with mean µx and variance σx.
Assume that

y =

(
x− µx
σx

)
.

Taking the square and rearranging the equation, we can get

σ2
xy

2 = x2 − 2µxx+ µ2
x.

Taking the variance of both sides, one can get

var(σ2
xy

2) = var(x2)− var(2µxx).

Since y2 is a random variable of Chi-square with one degree
of freedom, the variance of y2 is 2. Therefore,

var(x2) = 2σ4
x + 4µ2

xσ
2
x.

Finally, the variance of 1
T

∑T
t=1 x

2 is

1

T

(
2σ4

x + 4µ2
xσ

2
x

)
.

Thus, let x be the noise, the variance of Mi under H0 can be
obtained. Analogously, let x be the primary user signal plus
noise, one can calculate the variance of Mi under H1.

The user at location (98.7, 48.7) is chosen as an example to
show the statistics of the sampled energy measurements. The
noise process at this user is assumed to have mean 1.5654
and variance 0.2835. Table I shows the statistics of the mean
and variance of the energy measurement Mi. The estimated
variances are very close to the true values. Fig. 3 shows the
corresponding histograms of the collected statistics and the

TABLE I. MEASUREMENT STATISTIC CHARACTERISTICS OF A USER
AT (98.7, 48.7)

H0 Mean Variance
T Simulation True Simulation Estimation True
10 2.517312 2.530849 0.083116 0.078780 0.080072
50 2.528358 2.530849 0.016317 0.015756 0.016014
100 2.529594 2.530849 0.007571 0.007878 0.008007

H1 Mean Variance
T Simulation True Simulation Estimation True
10 2.760625 2.774720 0.091265 0.078967 0.087914
50 2.772109 2.774720 0.017906 0.015793 0.017583
100 2.773406 2.774720 0.008317 0.007897 0.008791

estimated pdf of the energy measurements. From the figures,
when T = 10, the distributions of the energy measurements
under H0 and H0 overlap over a large area. This implies that
the CPE may be difficult to differentiate the measurements
with and without the presence of the primary user. However,
when T increases, the variance of the measurements decreases,
and the distributions of the measurements under H0 and H0

are separated more obviously. Thus, the CPE can have higher
local detection probability when T is larger, given a certain
false alarm probability constraint.

Fig. 4 shows the ROC curves for the collaborative sensing
operations with different number of samples used in evaluating
the energy measurements. The local false alarm probability is
set to be 0.2 for each user and the detection threshold ηi is
calculated by eq.(22). The users report their local decisions to
the BS where the consensus is arrived. The global detector uses
eq.(31) to determine the global detection threshold. Each data
point in the figure is the result from 1000 runs of the detection
operations. From the figure, the estimated results are very close
to the simulated results. The small discrepancy is resulting
from the approximation when evaluating the variance of the
energy measurements and the application of CLT to evaluate
the distributions of the energy measurements under the hy-
potheses H0 and H1. In addition, the detection performance is
better if the number of samples, T , used to evaluate the average
energy measurement in eq.(5) is large. This is because when
T is large, the distributions of energy measurements under H1

and H0 are separated more clearly with less overlap as shown
in Fig.3. Therefore, secondary users can be much easier to
tell the presence of the primary with higher probability. In
other words, the local detection probability is higher. From
eq.(29, the mean of the sum of local decision µ1 would become
larger and the variance may not be affected too much. Thus,
the global detection probability in eq.(32) will increase as T
increases.

Fig. 5 shows the number of users participating in the
collaboration versus the global detection probability. The users
are ordered according to the signal to noise ratio. In the
simulations, if k users participate in the collaboration, only the
k users with the top k highest SNR will participate in making
the final decision. The results look serrated because the final
decision threshold in eq.(31) is taken only an integer. Although
it is serrated, one can still determine that all users participate
in the collaboration may not be helpful for improving the
detection performance. When the number of users participating
in the collaboration is very small, for example less than 10,
adding users in the collaboration could improve the detection
performance. However, adding more users will not improve
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Fig. 3. The histograms of energy measurements
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Fig. 4. The ROC curves with different T values

the detection performance further. It is suggested that it is
enough to choose only around the top 10 users to participate
in the collaboration. Meanwhile, the communication cost can
also be reduced if only a few users need to participate in the
collaboration.

Fig. 6 shows the performance of the proposed SUM fusion
performance versus the performance of AND fusion and OR
fusion. For AND fusion, the final decision is set to be positive
if all the users participating in the fusion report positive local
decisions. In contrast, for OR fusion, the final decision is set
to be positive if at least one user participating in the fusion
report positive local decision. Since it is not beneficial to add
all users in the fusion, in the simulations, only the top 5
and 10 users with the highest SNR are chosen to participate
in the fusion in Fig. 6(a) and Fig. 6(b), respectively. Fig.
6(c) shows the comparisons for all users participating in the
fusion. In general, the SUM fusion rule performs better than
the other two fusion rules. Basically, the case where five
users who have the highest SNR participate in the fusion has
the highest detection performance. Adding more users is not
helpful for the detection performance. In fact, adding more
users could hurt the detection performance. Especially, the
detection performance of the SUM fusion rule is not affected
by the number of users participating in the fusion, but the
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Fig. 5. The number of cooperative users v.s. global detection probability

performance degradation could be more serious if AND fusion
rule is adopted.

VI. CONCLUSION

This paper investigates the problem of collaborative sensing
for the presence of the primary user in cognitive radio net-
works. Both the local and global decision making are based on
CFAR detection mechanism. In particular, the distributions of
measurements under both the hypotheses that the primary user
is present and the primary user is absent are derived without
making assumptions on any known signal distributions. The
detection performance is also derived analytically based on the
SUM fusion rule. From the simulation results, the estimated
distributions of measurements match the true distributions
well, and the derived detection performance is also very close
to the simulation results. In particular, the detection perfor-
mance of the proposed SUM fusion rule outperforms those of
AND fusion and OR fusion. One important investigation result
is that it is not necessary to have all secondary users within the
communication region of a BS to participate in the fusion. It is
better to have only a few users with the top SNR to participate
in the fusion. In fact, adding more users in the fusion may not
be helpful but hurt the detection performance.
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(a) SNR top 5
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(b) SNR top 10
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(c) All 50 users

Fig. 6. Comparison with AND and OR Fusion

This paper investigate the SUM fusion rule for collabora-
tive sensing. Although it performs better than the AND fusion
and OR fusion rules, other fusion rules may be worth to be
explored in the future.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Science
and Technology of Taiwan under grant MOST 103-2221-E-011
-095.

REFERENCES

[1] B. Wang and K. R. Liu, “Advances in cognitive radio networks: A
survey,” IEEE Journal of Selected Topics in Signal Processing, vol. 5,
no. 1, pp. 5–23, 2011.

[2] “IEEE 802.22-2011(TM) standard for cognitive wireless regional area
networks (RAN) for operation in TV bands,” July 2011.

[3] E. Peh and Y.-C. Liang, “Optimization for cooperative sensing in
cognitive radio networks,” in IEEE Wireless Communications and
Networking Conference (WCNC), 2007, pp. 27–32.

[4] Federal Communications Commission, “Spectrum policy task force
report, FCC 02-155,” Nov 2002.

[5] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer, 1998.

[6] E. Axell and E. G. Larsson, “Optimal and sub-optimal spectrum sensing
of ofdm signals in known and unknown noise variance,” IEEE Journal
on Selected Areas in Communications, vol. 29, no. 2, pp. 290–304,
2011.

[7] S. Enserink and D. Cochran, “A cyclostationary feature detector,”
in the Twenty-Eighth Asilomar Conference on Signals, Systems and
Computers, vol. 2. IEEE, 1994, pp. 806–810.

[8] A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on
cognitive radio,” in Allerton Conference on Communication, Control,
and Computing. Monticello, Illinois, 2004, pp. 1662–1671.

[9] E. G. Larsson and M. Skoglund, “Cognitive radio in a frequency-
planned environment: some basic limits,” IEEE Transactions on Wire-
less Communications, vol. 7, no. 12, pp. 4800–4806, 2008.

[10] A. Mariani, A. Giorgetti, and M. Chiani, “Snr wall for energy detection
with noise power estimation,” in IEEE International Conference on
Communications (ICC). IEEE, 2011, pp. 1–6.

[11] R. Tandra and A. Sahai, “Snr walls for signal detection,” IEEE Journal
of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 4–17, 2008.

[12] S. Chaudhari, V. Koivunen, and H. V. Poor, “Autocorrelation-based
decentralized sequential detection of ofdm signals in cognitive radios,”
IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2690–2700,
2009.

[13] Z. Quan, W. Zhang, S. J. Shellhammer, and A. H. Sayed, “Optimal
spectral feature detection for spectrum sensing at very low snr,” IEEE
Transactions on Communications, vol. 59, no. 1, pp. 201–212, 2011.

[14] J. Lundén, V. Koivunen, A. Huttunen, and H. V. Poor, “Collaborative
cyclostationary spectrum sensing for cognitive radio systems,” Signal
Processing, IEEE Transactions on, vol. 57, no. 11, pp. 4182–4195,
2009.

[15] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum sensing
for cognitive radio: State-of-the-art and recent advances,” IEEE Signal
Processing Magazine, vol. 29, no. 3, pp. 101–116, 2012.

[16] R. Fan and H. Jiang, “Optimal multi-channel cooperative sensing in
cognitive radio networks,” Wireless Communications, IEEE Transac-
tions on, vol. 9, no. 3, pp. 1128–1138, 2010.

[17] S. Li, Z. Zheng, E. Ekici, and N. Shroff, “Maximizing system through-
put by cooperative sensing in cognitive radio networks,” Networking,
IEEE/ACM Transactions on, vol. 22, no. 4, pp. 1245–1256, 2014.

[18] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum
sensing in cognitive radio networks: A survey,” Physical Communica-
tion, vol. 4, no. 1, pp. 40–62, 2011.

[19] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine
learning techniques for cooperative spectrum sensing in cognitive
radio networks,” Selected Areas in Communications, IEEE Journal on,
vol. 31, no. 11, pp. 2209–2221, 2013.

[20] E. Peh and Y.-C. Liang, “Optimization for cooperative sensing in
cognitive radio networks,” in IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2007, pp. 27–32.

[21] Y. Selén, H. Tullberg, and J. Kronander, “Sensor selection for cooper-
ative spectrum sensing,” in 3rd IEEE Symposium on New Frontiers in
Dynamic Spectrum Access Networks. IEEE, 2008, pp. 1–11.

[22] R. Chen, J.-M. Park, and K. Bian, “Robust distributed spectrum sensing
in cognitive radio networks,” in The 27th Conference on Computer
Communications (INFOCOM). IEEE, 2008.

[23] A. W. Min, K. G. Shin, and X. Hu, “Secure cooperative sensing in ieee
802.22 wrans using shadow fading correlation,” IEEE transactions on
Mobile Computing, vol. 10, no. 10, pp. 1434–1447, 2011.

[24] W. Ren, Q. Zhao, and A. Swami, “Power control in cognitive radio
networks: how to cross a multi-lane highway,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 7, pp. 1283–1296, 2009.

[25] A. C. Davison, Statistical Models. Cambridge University Press, 2008.
[26] P. Billingsley, Probability and Measure. John Wiley & sons, 1995.


