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Abstract

Capacitated vehicle routing problem with pickups and deliveries (CVRPPD) is one of the most challenging
combinatorial optimization problems which include goods delivery/pickup optimization, vehicle number
optimization, routing path optimization and transportation cost minimization. The conventional particle
swarm optimization (PSO) is difficult to find an optimal solution of the CVRPPD due to its simple search
strategy. A PSO with adaptive multi-swarm strategy (AMSPSO) is proposed to solve the CVRPPD in this
paper. The proposed AMSPSO employs multiple PSO algorithms and an adaptive algorithm with punishment
mechanism to search the optimal solution, which can deal with large-scale optimization problems. The
simulation results prove that the proposed AMSPSO can solve the CVRPPD with the least number of vehicles
and less transportation cost, simultaneously.
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1. Introduction

Particle swarm optimization (PSO) is a powerful algo-
rithm for finding an optimal solution in nonlinear
search space. The PSO algorithm has been widely used
in many applications. The main advantages of PSO
algorithm are that it can produce excellent results
with a reasonable resource cost and easy to be imple-
mented in software [1]. However, the conventional
PSO algorithm is difficult to be employed into com-
binatorial optimization problems such as capacitated
vehicle routing problem with pickups and deliveries
(CVRPPD) [2]. It includes several optimization subjects
which are goods delivery/pickup optimization, vehicle
number optimization, routing path optimization and
transportation cost minimization. It is quite difficult for
conventional PSO algorithm to find an optimal solution
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to simultaneously meet the requirements of different
optimization subjects due to its simple search strategy.

Capacitated vehicle routing problem (CVRP) is one
of the most challenging combinatorial optimization
problems, which was introduced by G. B. Dantzig and
J. H. Ramser in 1959 [3]. It concerns the problem of the
goods distribution between depot and customers, which
aims to simultaneously minimize the transportation
cost and the number of vehicles. The CVRPPD is
an extension version of the classical CVRP, where
customers may both receive and send goods with a fixed
capacity of vehicles. In the CVRPPD, the combination
of a possible solution set is much more than the
CVRP, since the pickup derive has a huge impact on
the routing optimization. For example, if the quantity
of both the pickup and delivery is required 20, the
maximum capacity of each vehicle is 100. As shown
in Figure 1, a purple routing path is a classic solution
for CVRP, in which the vehicle can deliver the goods
to customers without exceeding the maximum capacity.
In contrast, a red routing path is an impossible route
for the CVRP, since the total quantity (120) of required
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goods is over the capacity (100) of the vehicle for six
customers. However, if a pickup service is required
in the red routing path, it will become a possible
solution even if there are seven customers. The pickup
service drastically increases the number of the possible
solutions. It becomes much more difficult to find the
optimal solution in the CVRPPD.

In order to overcome the above difficulty, a PSO algo-
rithm with adaptive multi-swarm strategy (AMSPSO)
is proposed. It can provide an adaptive search behav-
ior for dealing with large-scale optimization problems.
The proposed approach divides a particle swarm into
various small groups which cooperate with an adaptive
algorithm. The each group of swarm employs different
PSO algorithms which can provide different search
abilities such as global search ability, local search ability
and so on. The proposed approach exploits the adaptive
algorithm to regulate the number of the swarm groups
according to the current convergence status of the
whole particle swarm, which can immediately optimize
search strategy for PSO algorithm.

The rest of this paper is organized as follows. In
section 2, the concept of PSO algorithm and CVRPPD
are briefly introduced. In section 3, the details of the
proposed multi-swarm strategy of PSO algorithm is
presented. In section 4, the simulation results of the
proposed and conventional approach are provided. In
section 5, the contributions of the AMSPSO for existing
industrial applications are discussed. Finally, section
6 comprises a summary and the conclusions of this
research.

2. Related Works

2.1. Vehicle routing problem
In the definition of CVRPPD [2], every vehicle (k) has a
fixed cost of f , variable cost per distance unit g, capacity
Q, and service duration limit D. Each customer (i) has
a non-negative pickup quantity pi , delivery quantity
qi , and a service time si . The optimal solution of the
CVRPPD is a set of m routes, which must meet the
requirement as follows

(i) Each route starts and ends at the depot.

(iii) Each customer (i) is visited once by one vehicle
(k).

(iii) The total load of vehicles does not exceed the
capacity (Q) during the deliver and pickup.

(iv) The total transportation time of each vehicle does
not exceed a service duration limit D.

(vi) The total cost (Z) is minimized.

The formulation of CVRPPD is given by [2]:

Figure 1. Concept of CVRPPD

Minimize Z = f
m∑
k=1

n∑
j=1

x0jk + g
n∑
i=0

n+1∑
j=1

m∑
k=1

djixijk (1)

Subject to

n∑
i=0

m∑
k=1

xijk = 1 for 1 ≤ j ≤ n (2)

n∑
j=0

xijk =
m∑
j=1

xijk for 1 ≤ j ≤ n, 1 ≤ k ≤ m (3)

n∑
j=1

x0jk ≤ 1 for 1 ≤ k ≤ m (4)

δik + si + tij − δjk ≤ (1 − xijk)M
for 0 ≤ i ≤ n, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ m (5)

δn+1,k − δ0k ≤ D for 1 ≤ k ≤ m (6)

yijk ≤ xijk for 0 ≤ i ≤ n, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ m (7)

n∑
y=1

y0jk =
n∑
j=1

qj

n∑
i=0

xijk for 1 ≤ k ≤ m (8)

n∑
i=0

yijk + (pj − qj )
n∑
i=0

xijk =
n+1∑
i=1

yijk (9)

for 1 ≤ j ≤ n, 1 ≤ k ≤ m

x ∈ {0, 1} for 0 ≤ i ≤ n, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ m (10)

yijk ≥ 0 for 0 ≤ i ≤ n, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ m (11)

δik ≥ 0 for 1 ≤ j ≤ n + 1, 1 ≤ k ≤ m (12)

where n is the total number of the customers. m is
the number of the total routing paths. xijk represents
that a binary variable indicating status of each path
(i, j) is traversed by vehicle k. yijk is load capability
of vehicle k while traversing path (i, j). ik is starting
service time of customer i by vehicle k. dij and tij are
a distance matrix and a travel time matrix, respectively.
Equation (1) minimizes routing cost, which consists of
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transportation fixed cost and variable cost. Equations
(2) and (3) ensure that every customer is visited by
one vehicle exactly. Equations (5) and (6) define the
relationship between service time (si) and travel time
(tij ). The total transpiration time of vehicle cannot
exceed the duration limit D. Vehicle load constraints
are explained in (7), (8) and (9). Each vehicle cannot
over load the goods during the pickup and deliver.
Equations (10), (11) and (12) state the domain of
decision variables: all xijk are binary variables, yijk and
ik are positive real variables [2].

2.2. PSO algorithm for vehicle routing problem
PSO is a stochastic optimization algorithm based
on swarm intelligence, which was introduced by J.
Kennedy and R. Eberhart in 1995 [4]. The basic
operation of PSO algorithm is updating the position
and velocity of particle to find an optimal solution.
Each particle l has current velocity vl and a personal
best position pld which represents a possible solution
of optimization space. Considering an d-dimensional
evaluation function, the position and velocity of the
particle l in (t + 1)th iteration are updated by the
following equations:

vt+1
ld = ω ∗ vtld + c1 ∗ r1(pld − xtld)

+ c2 ∗ r2(pgd − xtld)
(13)

xt+1
ld = vt+1

ld + xtld (14)

where r1 and r2 are uniformly random numbers in the
range [0,1], pgd is the location of the particle when the
best fitness value is obtained for the whole population,
c1 and c2 are two acceleration constants, ω is called the
inertia weight factor, and d is the number of dimensions
in the search space.

In the conventional PSO algorithm, the position
and velocity of particle are defined in (13) and (14),
respectively. The values of position and velocity are
represented by real number. However, most variables
of the CVRPPD are represented by binary number as
mentioned in previous section. In order to employ PSO
algorithm into CVRPPD, the real number needs to
encode/decode for representing the binary variables.
Some encoding/decoding approaches are introduced in
[5, 6].

T. J. Ai and V. Kachitvichyanukul proposed two dif-
ferent encoding/decoding approaches that are named
SR-1 and SR-2 [5]. These two approaches transform the
position and velocity of particle from real number to
binary number. In the SR-1, they increased the dimen-
sion number of particle to represent n customers and m
vehicles. The dimension number of particles is defined
by (n + 2m). In the SR-2, they transform a particle into
the vehicle orientation points and the vehicle coverage
radius. The dimension number of particles is defined

Figure 2. Concept of the proposed PSO with multi-swarm

by (3m). Their simulation results proved that SR-2 can
produce better result than SR-1, since SR-1 leads to a
larger number of particle’s dimension than SR-2. In the
comparison of calculation speed, the calculation speed
of the SR-1 is much faster than SR-2. In addition, SR-1
is more suitable for dealing with CVRPPD, since SR-2
is difficult to take the requirements of customers into
encoding/decoding procedure. However, it is difficult
for the conventional PSO algorithm to find the opti-
mal solution under (n + 2m) dimension search space.
In order to overcome this difficulty, the AMSPSO is
proposed. The SR-1 is also employed in the proposed
AMSPSO.

3. PSO with Adaptive Multi-Swarm Strategy
The proposed MSPSO divides particles into several
groups, as illustrated in Figure 2. Each group employs
the different PSO algorithms, which can maintain
global search ability and local search ability. In
addition, the search behavior of proposed algorithm is
more similar to human society.

3.1. Multi-swarm strategy with mixed PSO
As shown in the Figure 2, the particles are divided into
three groups as an example. One group is expert in
the searching optimization solution on a global area,
which employs quantum-behaved PSO (QPSO). Li et al.
proved that QPSO is powerful on searching the optimal
solution even if it is applied into a high dimensional
search space [7]. The second group employs a PSO with
random time-varying inertia weight and acceleration
coefficients (PSO-RTVIWAC) which has a powerful
searching ability on a local area [8]. The third one
is PSO with passive congregation (PSOPC) which can
help individuals to avoid misjudging information and
becoming trapped by poor local optimal solution [9].
By employing the above PSO algorithms into different
groups, the proposed approach cannot only prevent
particles from converging on a local optimal solution,
but also achieve powerful search ability on global and
local area.

In this paper, different PSO algorithms are combined
into generic equations based on the method which is
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Table 1. The examples of particle motion coefficient for changing type of PSO

Type of PSO Particle Motion Coefficients
algorithm sel1 sel2 sel3 sel4 sel5 sel6 sel7 sel8 sel9 sel10 sel11 sel12 sel13

Original PSO [4] 1 0 1 1 0 0 0 0 0 1 2 2 0
PSO-RTVIWAC [8] 1 0 1 * 0 0 0 1 0 0 0 0 0

QPSO [7] 0 0 0 0 rand 1 − sel5 1 0 0 0 0 0 0
PSOPC [9] 1 1 1 1 0 0 0 1 0 0 0.5 0.5 *

Standard PSO [10] cst. 0 1 1 0 0 0 0 0 0 0 0 0
PSO-TVIW [11] 1 0 1 1 0 0 0 1 0 0.4 2 2 0
PSO-TVAC [12] 1 0 1 1 0 0 0 0 0 0.9 c1min c2max 0

PSO-RANDIW [13] 1 0 1 1 0 0 0 0 1 0.5 1.49 1.49 0
Gaussian PSO [14] 1 0 1 1 0 0 0 0 0 cst. cst. cst. 0
*:The value of the particle motion coefficient changes dynamically.
rand :A uniform random number [0,1].
cst. :A constant value.

introduced in [1]. The generic equations are given by

vt+1
ld = sel1 ∗ [ω ∗ vtld + c1 ∗ r1(pld − xtld)

+ c2 ∗ r2(pgd − xtld)
+ sel2 ∗ c3 ∗ r3(Rtgd − x

t
ld)]

(15)

xt+1
ld = sel3 ∗ xtld + sel4 ∗ vt+1

ld + sel5 ∗ pld
+ sel6 ∗ pgd
± sel7 ∗ β ∗ |mbest − xtld |∗ ln

(
1
r4

) (16)

mbest =
N∑
i=1

Pid
N

(17)

where sel1, sel2, sel3, sel4, sel5, sel6 and sel7 are the
particle motion coefficients, other parameters have
been defined in [1]. N is the population size of the
particle swarm and mbest is mean of the personal best
position of all particles. The type of PSO algorithm
can be changed by setting the values of particle
motion coefficients, as presented in Table 1. The generic
equation did not define the parameters (ω, β, c1, c2 and
c3) of PSO algorithm. In order to provide the better
search performance of PSO algorithm, new calculation
equation of ω, β, c1, c2 and c3 are given by:

ω = sel8 ∗ r5 ∗ (ωmax − t ∗ (ωmax −ωmin)/T )
+ sel9 ∗

r6
2 + sel10

(18)

c1 = r7 ∗ (c1max −
t ∗ (c1max − c1min)

T
) + sel11 (19)

c2 = r8 ∗ (c2max −
t ∗ (c2max − c2min)

T
) + sel12 (20)

c3 = r9 ∗ (c3max −
t ∗ (c3max − c3min)

T
) + sel13 (21)

where t is the current iteration times, T is the
maximal iteration times. The examples of particle
motion coefficient for changing type of PSO algorithm
are shown in Table 1.

3.2. Adaptive multi-swarm strategy
In the proposed approach, the particle swarm is divided
into three groups to maintain the global search and
local search ability. However, the particle number of
each group cannot be a fixed value, since the global
search ability has a huge impact on the early stage of
the iterations. In contrast, the local search ability plays
an important role during the later stage. Therefore,
an appropriate regulation of the particle number can
drastically improve the performance of the proposed
approach.

Punishment mechanism. In order to figure out the appro-
priate regulation, an adaptive algorithm with pun-
ishment mechanism is proposed in this section. The
adaptive algorithm aims to find the best combination
of the particle numbers for each group. It exploits
the punishment mechanism to arbitrate all the swarm
groups for the current convergence status. Meanwhile,
the punishment mechanism increases/decreases par-
ticle number of the swarm groups. The punishment
mechanism makes swarm groups compete with each
other, which is like resource plunder in human society.
The winner can plunder most resources in the whole
society. It means that the particle number of each swarm
group is going to be increased or decreased which is
based on its search performance. The search perfor-
mance of all swarm groups has to be evaluated until all
iterations is finished. In the beginning of the iterations,
the punishment mechanism assigns the same particle
number to each swarm group with a same credibility
which is used for evaluating its search performance.
The higher credibility can win more number of particles
from other groups to assign into its swarm group.

Search performance evolution with credibility. The credibil-
ity of each swarm group is a counting value when global
best(pgd) is updated by the own particles. The equation
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of credibility (Credi) is given by

Credit+1
ϕ = Creditϕ + t ∗ reward + 1 (22)

where ϕ is the number of swarm group. t is the
current iteration times. reward is an additional reward
for updating the global best during the iteration. The
additional reward is used to encourage the swarm
group when it can produce better global best during
searching procedure. Considering the global best is
very easy to be updated during the early iterations,
the additional reward is proportional to the number of
iterations.

The punishment mechanism ranks the credibility of
each swarm group with a fixed iteration cycle named
punishment cycles. For example, the punishment
mechanism calculates the credibility of each swarm
groups at each 25 iteration times. The total particle
number of whole groups is 50. The ranking credibility
at first place (Group 1) can assign 2 particles into its
group. The particle number of the second place (Group
2) is not changed. The particle number of the third
group (Group 3) is deceased 2 particles. To prevent
number of the swarm groups decrease to zero, the
particle number of each group must to keep a fixed
minimum value (Pmin). Once the particle number of
third group reaches Pmin, Group 1 can get 2 particles
from the Group 2. After the particle number of each
swarm groups is reassigned, the credibility of each
swarm group is reassessed by punishment mechanism
to avoid that one group possess a great number of
particles.

Credibility reassessing. In the (22), the additional
reward is proportional to the number of iterations.
However, it still cannot stop the Group A to rapidly
accumulate the credibility in the early iterations. It
leads to Group C never win the first place of the ranking
credibility. In the punishment cycles, the value of the
credibility is reassessed by

Credit+1
ϕ = Creditϕ ∗

(
1 −

Pϕ
Ptotal

)
(23)

where Pϕ is assigned particle number of its swarm
group. Ptotal is the population size of whole swarm
groups. Equation (23) can drastically decrease the
credibility of the winner group when its search
performance is not good enough. The proposed
AMSPSO employs the punishment mechanism which
can regulate the search strategy with considering the
convergence status of all particles. The above proposed
approaches are evaluated in CVRPPD.

4. Simulation Results
The proposed AMSPSO algorithm is implemented by
C# language with using Microsoft Visual Studio 2013

Table 2. Summary of simulation parameters

Parameters Values

Number of particle 50
Number of iteration 500
Punishment cycles 25 iterations

Type of PSO algorithm
QPSO,

PSO-RTVIWAC,
PSOPC

PSO paramenters

ω = 0.4 to 0.9,
β = 0.4 to 0.9,
cmin = 0.5,
cmax = 2.5,

reward = 0.004,
Pmin = 10

Particle motion 0.171 to 1.0
coefficient (sel4) (PSO-RTVIWAC)

Table 3. Parameters of CMT instances

Instances Capacity of Service Time Service
(T, Q, H) Vehicle (Q) Limit (D) Time (si )

CMT1 160 ∞ 0
CMT2 140 ∞ 0
CMT3 200 ∞ 0
CMT4 200 ∞ 0
CMT5 200 ∞ 0
CMT6 160 200 10
CMT7 140 160 10
CMT8 200 230 10
CMT9 200 200 10
CMT10 200 200 10
CMT11 200 ∞ 0
CMT12 200 ∞ 0
CMT13 200 720 50
CMT14 200 1040 90

(.Net Framework 4.5) on a PC with Intel Core i7
3.6 GHz and 32 GB RAM. Three sets of benchmark
instance data (CMT1 to CMT14) which are named
CMTnT, CMTnQ and CMTnH [15]. The pickup ratio
of the three sets is referred to 10% (CMTnT), 25%
(CMTnQ) and 50% (CMTnH). In our previous research
[16, 17], a performance analysis has been carried out
by using CMTnT. In this paper, some parameters are
changed to further evaluate the performance of the
proposed AMSPSO. The required parameters of the
simulation are shown in Table 2. The parameters of each
benchmark instance are shown in Table 3.

In the CMT1 to CMT5 and CMT11 to CMT12, the
vehicle can deliver/pickup the goods to customers
without considering the service time limitation during
the transportation, since the transportation time of the
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Table 4. Simulation results of CMTnT

Benchmark Customer Best Solution of Conventional PSO [2] Best Solution of AMSPSO Improve
Instances Numbers No. of Vehicles Total Cost (Z) No. of Vehicles Total Cost (Z∗) Ratio (%)

CMT1T 50 5 520 5 520 0.00%
CMT2T 75 9 810 9 794 1.98%
CMT3T 100 7 827 7 807 2.54%
CMT4T 150 11 1014 11 1014 0.00%
CMT5T 199 15 1297 15 1296 0.08%
CMT6T 50 6 555 6 555 0.00%
CMT7T 75 12 942 11 914 2.97%
CMT8T 100 9 904 9 876 3.10%
CMT9T 150 14 1206 14 1201 0.41%
CMT10T 199 18 1502 18 1470 2.13%
CMT11T 120 7 1026 7 1027 -0.10%
CMT12T 100 9 792 9 788 0.51%
CMT13T 120 11 1548 11 1556 -0.52%
CMT14T 100 10 846 10 848 -0.24%

Average Improve Ratio 0.92%

Table 5. Simulation results of CMTnQ

Benchmark Customer Best Solution of Conventional PSO [2] Best Solution of AMSPSO Improve
Instances Numbers No. of Vehicles Total Cost (Z) No. of Vehicles Total Cost (Z∗) Ratio (%)

CMT1Q 50 4 490 4 489 0.20%
CMT2Q 75 8 739 8 734 0.68%
CMT3Q 100 6 768 6 753 1.95%
CMT4Q 150 9 938 9 921 1.81%
CMT5Q 199 13 1174 13 1162 1.02%
CMT6Q 50 6 557 6 555 0.36%
CMT7Q 75 12 933 11 904 3.11%
CMT8Q 100 9 890 9 869 2.36%
CMT9Q 150 14 1214 14 1191 1.89%
CMT10Q 199 18 1509 18 1444 4.31%
CMT11Q 120 6 964 6 972 -0.83%
CMT12Q 100 7 733 7 730 0.41%
CMT13Q 120 11 1570 11 1556 0.89%
CMT14Q 100 10 825 10 821 0.48%

Average Improve Ratio 1.33%

vehicle is infinite. In the CMT6 to CMT10 and CMT13
to CMT14, the transportation time of the vehicle is
limited. The vehicles have to finish the deliver/pickup
and return to the depot within the service duration limit
(D), as shown in Table 3. In addition, each vehicle will
spent 10 (CMT6 to CMT10), 50 (CMT13) or 90 (CMT14)
limitation time to service a customer. Both of the fixed
cost (f ) and cost per distance unit (g) is set as 0 and
1, respectively. Each benchmark instance is executed
10 runs with 50 particles and 500 iteration times. The
particle number of QPSO, PSO-RTVIWAC and PSOPC

is set by 17, 17 and 16, respectively. The AMSPSO
is evaluated by the above benchmark instances and
compared with the conventional PSO algorithm [2]. The
all of the simulation environments are set same with [2].
The improve ratio (IR) is defined by

IR(%) =
Z∗ − Z
Z

∗ 100% (24)

where Z∗ is the total cost of AMSPSO. Z is the total
cost of the conventional PSO algorithm. The simulation
results are shown in Table 4, 5 and 6.
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Table 6. Simulation results of CMTnH

Benchmark Customer Best Solution of Conventional PSO [2] Best Solution of AMSPSO Improve
Instances Numbers No. of Vehicles Total Cost (Z) No. of Vehicles Total Cost (Z∗) Ratio (%)

CMT1H 50 3 464 3 461 0.65%
CMT2H 75 6 668 6 661 1.05%
CMT3H 100 4 701 4 697 0.57%
CMT4H 150 6 883 6 826 6.46%
CMT5H 199 9 1044 9 997 4.50%
CMT6H 50 6 557 6 556 0.18%
CMT7H 75 11 943 11 901 4.45%
CMT8H 100 9 899 9 869 3.34%
CMT9H 150 14 1207 14 1186 1.74%
CMT10H 199 19 1499 18 1441 3.87%
CMT11H 120 4 830 4 824 0.72%
CMT12H 100 5 635 5 628 1.10%
CMT13H 120 11 1565 11 1556 0.58%
CMT14H 100 10 824 10 821 0.36%

Average Improve Ratio 2.11%

In most of the benchmark instances (CMTnT), the
performance of the AMSPSO can produce a better
results compared with the conventional PSO algorithm,
even if the customer size is increased from 50 to 199.
In the instance of CMT2T and CMT3T, the AMSPSO
can respectively reduce the total cost by 1.98% and
2.54% within 500 iteration times which is 50% of the
conventional approach. The average improve ratio of
the CMTnT is about 0.92%. The simulation results
prove that the proposed AMSPSO can realize the less
cost than conventional PSO algorithm [2]. In addition,
the AMSPSO can further reduce one vehicle usage for
CMT7T. The conventional PSO algorithm needs 1,000
iteration times to achieve the same level results. In
the other two instance sets (CMTnQ and CMTnH),
the proposed AMSPSO can achieve better performance
than the conventional PSO algorithm, even if pickup
ratios are increased to 25% and 50%, as shown in
Table 5 and 6. The average improve ratio can reach
1.33% and 2.11%, respectively. The vehicle usage of
CMT7Q and CMT10H is also reduced by AMSPSO.
The maximum improve ratio is 4.31% and 6.46%
for CMTnQ and CMTnH, respectively. A simulation
result of the particle number changes is illustrated
on Figure 3. The QPSO (GroupC) is taken about
the half of the total particle numbers, which means
the search performance is much better than PSOPC
(GroupB) and PSO-RTVIWAC (GroupA). However, the
particle number of QPSO is decreased after 250
iteration times. It proved that proposed punishment
mechanism successfully avoid the QPSO to accumulate
its credibility for taking more particles into its own
group. In the end of the iteration times, PSOPC and

Figure 3. The simulation result of particle number changes

PSO-RTVIWAC performs well for searching a better
solution on middle area and local area. This simulation
result proves that the proposed adaptive multi-swarm
strategy can let the multi-swarm group to compete with
each other for producing a better performance.

The above simulation results prove that proposed
AMSPSO can solve the VRPPD with less cost than
conventional PSO algorithm. In addition, some new
best known solutions of the benchmark instances are
also found by the proposed AMSPSO.

5. Contributions to Existing Industrial Applications
The PSO algorithm is widely employed to deal with
the optimization problem for industrial applications
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such as wireless sensor network [18], power system
optimization [19], motor control [20], production
scheduling [21] and so on. In the above, the PSO
algorithm can produce a better performance than
other conventional algorithms even if the problem
space with high dimension. As a trade-off, the PSO
algorithm is still time-consuming, since the PSO
algorithm requires over several hundred iterative
process to produce the better performance. The all
of the above researches mentioned that once applying
the PSO algorithm into real-time applications or
real applications, the hardware implementation is
highly required. However, it is very difficult to
develop a generic PSO hardware to support various
PSO applications, since the applications require
different PSO algorithms to maintain its performance.
Furthermore, the above mentioned applications require
high adaptive capability for dynamic environment.

The proposed AMSPSO owns two features to meet
the above requirements. The first feature is that
the AMSPSO integrated nine different PSO into (15)
to (21). The type of the PSO algorithm can be
regulated by the particle motion coefficients. Compared
with the conventional PSO algorithms, the hardware
implement of AMSPSO can provide higher flexibility
for various applications [22, 23]. In the [22, 23], the
hardware implementation of AMSPSO can achieve
twice processing speed compared with the hardware
implementation of the conventional PSO algorithms.
Another feature is the adaptive multi-swarm strategy
which leads AMSPSO to provide very high adaptability
for large-scale problem space or dynamic environment.
AMSPSO exploits different PSO algorithms to cooperate
with each others for preventing the particle swam
from premature convergence as shown in section of
simulation. The AMSPSO is expected to produce better
performance for existing industrial applications based
on the above two features.

6. Conclusions and Future Works
In this paper, a particle swarm optimization with
adaptive multi-swarm strategy (AMSPSO) is proposed
to solve a capacitated vehicle routing problem with
pickups and deliveries (CVRPPD). The proposed
AMSPSO employs the multiple PSO algorithms and an
adaptive algorithm with punishment mechanism. The
multiple PSO algorithms can simultaneously maintain
the global and local search ability. The adaptive
algorithm with punishment mechanism can drastically
improve the performance of the multi-swarm strategy
to reduce the iteration times. The proposed approaches
can dynamically regulate the search strategy for
dealing with large-scale optimization applications. The
simulation results prove that the proposed AMSPSO
can reduce 50% iteration times of the conventional

approach. The maximum improve ratios are 2.54%,
4.31% and 6.46% when the pickup ratios are 10%, 25%
and 50%. In addition, the proposed adaptive multi-
swarm strategy can let the multi-swarm groups to
compete with each other for producing a better search
performance. The AMSPSO can solve the CVRPPD
with the less transportation cost. Furthermore, some
new best known solutions of the benchmark problems
are also found by the proposed AMSPSO. As the
future work, the AMSPSO will compare with others
similar approaches to further evaluate the performance
under different kinds of VRP instances and real
industrial applications. The parameter optimization of
the AMSPSO will be carried out by different kinds of
VRP instances.
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