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Abstract

Crowdsourcing is generally used for tasks with minimal coordination, providing limited support for dynamic re-
configuration. M o dern s y stems, e x emplified by  so ci al ma ch ines, ar e su bj ect to  co nt inual flu x i n bot h t he  cli ent  and 
development communities and their needs. To support crowdsourcing of open-ended development, systems must 
dynamically integrate human creativity with machine support. While workflows c a n b e  u s ed t o  h a ndle structured, 
predictable processes, they are less suitable for social machine development and its attendant uncertainty. We present 
models and techniques for coordination of human workers in crowdsourced software development environments. We 
combine the Social Compute Unit—a model of ad-hoc human worker teams—with versatile coordination protocols 
expressed in the Lightweight Social Calculus. This allows us to combine coordination and quality constraints with 
dynamic assessments of end-user desires, dynamically discovering and applying development protocols.
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1. Introduction

Most social computing systems today are based around
patterns of work that can be predictably modelled before
execution, such as translation, bug discovery, image tagging
[1, 2]. However, there are many cases where where a
traditional workflow approach is too rigid to address the
dynamic an unpredictable nature of the tasks at hand, and
more flexible crowd working systems must be developed[3].

One example of such dynamic systems is the field of
social machines—systems where computers carry out the
bookkeeping so that humans can concentrate on the creative
work[4]. This term covers a diverse class of systems, spanning
task-oriented (Wikipedia) to generic (Twitter); scientific or
humanitarian (GalaxyZoo, Ushahidi) to social (Instagram)
[5, 6].

Despite their diversity, a defining feature of social
machines is that interactions between computational intelli-
gence and human creativity are deeply woven into the system,
making it difficult to draw a clear line between the human and
digital parts—rather they must be analysed synergistically.

Hence, creating a social machine requires understanding
of individual and group human behaviour alongside technical
expertise, and a view of the system as an interconnected
whole containing both human and computational elements.

∗Corresponding author. Email: d.murray-rust@ed.ac.uk

Furthermore, social machines are subject to population
dynamics as the user population changes, and must respond
to the exigencies of unfolding situations. In such cases it
is important not to over-regulate participating humans, but
to let them play an active role in shaping the collaboration
during runtime. On the one hand, this points to leveraging
human creativity and embracing the uncertainty that comes
with it, in order to respond flexibly. On the other hand, it is
often necessary to impose certain coordination and quality
constraints for these collaborations in order to manage them.
The constraints delimit the decision space within which the
humans are allowed to self-organize.

Recently, a number of human computation frameworks
supporting complex collaboration patterns were proposed
(Section 7). They mostly build upon conventional crowd-
sourcing platforms offering a process management layer
capable of enacting complex workflows. While these systems
represent important steps on the road to building complex
social machines, in cases where unpredictability is inherent
to the labour process and we cannot know all of the system
requirements in advance, a different approach is needed.

In this paper we present models and techniques for
coordination of human workers in crowdsourced software
development environments. They support the bootstrapping
and adaptation of social machines: using one social machine
to generate or alter another one, allowing for flexible,
community-driven development, with feedback paths from
user populations to development choices. This allows both
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human influence on the execution of a computation and the
embedding of computational intelligence.

The introduced concept augments the Social Compute Unit
(SCU, Section 2.2)—a general framework for management
of ad-hoc human worker teams—with versatile coordination
protocols encoded in Lightweight Social Coordination Calcu-
lus (LSC, Section 2.3). This combination allows us to design
and model social machines oriented towards crowdsourc-
ing software development. Coordination protocols provide
high level organisation of activities around development—
including planning and user assessment/feedback—while a
set of coordination and quality constraints guide the assign-
ment of workers to tasks. The system as a whole strikes a
balance between imposed constraints and creative freedom in
the software development cycle. Concretely, this means that
the proposed model is able to take into account the feedback
from the user population and subsequently alter the process of
the development of software artefacts. Although we focus on
collaborative software development, the solution we present
is generally applicable to a class of similar problems. There
are many situations where some form of social machine or
community infrastructure is being developed, requiring the
developers to react to the changing needs and behaviour of
the community; increasingly, another social machine is used
to crowdsource the development.

This paper is structured as follows: First we present the
motivating scenario of community-influenced, collaborative
software development. In Section 2 we analyse how the
presented scenario can be modelled in terms of social
machines. We then introduce background concepts which
we use to build our model: Feature Oriented Software
Development (FOSD), the Social Compute Unit (SCU)
and the Lightweight Social Calculus (LSC). In Section 3
we present the coordination model for the social machine
employing the previously introduced background concepts. In
Section 4 a proof-of-concept implementation is presented and
evaluated through simulation.

1.1. Motivating Scenario
Developing software for a large user base with diverging
interests can be challenging. As an illustrative example,
let us consider the problem of developing a forum-
like scientific platform—a scholarly social machine—to
facilitate multidisciplinary cross-collaboration and sharing of
results. This includes functionality such as: paper previews,
comments, in-place formulae and data rendering, citation
previews and bookmarking. While these are functionalities
beneficial to all scientists, preferences for particular formats
and services will likely differ among different sub-
communities. For example, chemists and mathematicians
will have different domain-specific requirements from the
platform. Some examples are:

• Computer scientists need code syntax highlighting,
LaTeX rendering, embedding of IEEExplore and ACM
DL citations. If any of these features is missing, the

software is not useful to the community. However,
they do not particularly care about chemistry-specific
features.

• Chemists often use InChi strings to represent chemical
formulae. If the software supports InChi, then chemists
would also want support for compound lookup on
PubChem, and visualisation with pyMol. Without these
features, the platform does not help them particularly.
On the other hand, syntax highlighting and IEEExplore
integration is not important.

• Individual scientists may be bothered by (lack of)
certain features. For example, users may dislike being
forced to use a LinkedIn account to log in, due
to possibility of a third party accessing unpublished
scientific findings.

Some of these features are orthogonal—code syntax
highlighting and LaTeX rendering are both useful in their own
right—while some are synergistic: a chemist might require
both parsing InChi strings and PubChem lookup in order to
carry out their particular workflow.

The complexity of developing such software lies in
catering to the heterogeneous user needs, requiring numerous
trade-offs when deciding which features to implement.
Furthermore, different sub-communities tend to change
preferences regarding required or newly developed features
during the development process which need to be taken
into account. Finally, certain members of the scientific
community (i.e., targeted users) may decide to take part in
the development process themselves.

2. Modelling Community-Based Software
Development

The previously presented scenario is representative of many
social machines, where a dynamic community forms around
a particular (software) artefact. The population is likely
to change, and feedback between the human participants
and technological infrastructure can lead to changes in the
purpose and direction of technological development.

This means that there are two social machines: i) the target
social machine which includes the forum software and its
community of users and ii) the development social machine,
which is the software developers and their coordination
architecture (Figure 1). We use the term utility to denote
some metric for the benefits which a user (in the target
social machine) derives from participation. While in principle
this metric could include a multitude of components, within
this paper we narrow our focus to treat utility as measuring
how well the software’s feature set matches the user’s
requirements.

The aim of the development social machine is to increase
the overall utility of the user population, by creating features
which match community needs and desires. The developers
do not know ahead of time the true preferences of individuals,
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Development Social Machine Target Social Machine

Forum PlatformCoordination Protocols

deploy

monitor

i ii

Figure 1. Two connected social machines: i) the
development social machine, where crowdsourced
workers follow coordination protocols to create a
software artefact; ii) the target social machine, where
a community of practice forms around the software
artefact created by i).

or the constitution of the community, and hence the effects
of software changes on community behaviour are difficult to
predict ahead of time.

Since crowd-labour is increasingly used for the develop-
ment of software, we assume it is necessary to use devel-
opment methodologies which split work into tasks that are
amenable to crowdsourcing. This means that tasks have
to be disassembled into simpler subtasks, and mapped to
appropriate developers. The latter is itself a complex problem,
as it also includes taking care of inter-task implementation
dependencies. Hence, the development social machine must
be able to i) assess user desires and preferences; ii) identify
and prioritize features for development; iii) coordinate the
development and deployment of these features; iv) organise
these tasks over time with respect to a dynamically changing
population and limited resources.

These operations and their relation to the user population
are outlined in Figure 2

2.1. Feature Trees for Artefact Development
A requirement of our model is the representation of
the current state of the artefact under development—the
development artefact in Figure 2. Since our example is
based on software development, we use the Feature-Oriented
Software Development (FOSD) paradigm, where software
artefacts are represented as trees of features: “prominent or
distinctive user-visible aspect, quality, or characteristic[s] of
a software system”[7]. This representation is used so that
development can be decomposed into small sets of related
tasks that can be handled relatively independently, to aid
collaborative creation of software artefacts.

Based on the requirements and possibilities in the scenario
outlined in Section 1.1, the feature tree in Figure 4 can
be constructed1. Here, broad classes of functionality, such
as visual embedding of graphical objects are represented as

1The tree was created using FeatureIDE. Details of assumed semantics can
be found at http://www.iti.cs.uni-magdeburg.de/iti_db/
research/featureide/
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Figure 2. Interaction between the development and
target social machines, including development steps,
developer interaction, user observation and community
interaction.

Possible Potential
Potential
Util=4.35

Impl.

Expand Evaluate Implement

Figure 3. States and operations on a single node in
the feature tree. Potential nodes are expanded into
Possible nodes, which can be evaluated against user
preferences, before being implemented.

branches of the tree, with specific instances such as pyMol
viewers forming sub-branches and leaves.

Feature trees can be used to represent the current state
of software development; by labelling each node with a
state, the team knows whether or not functionality for that
feature has been implemented, and whether the conditions
for implementing that functionality have been met. This
forms a coordination artefact used by the development social
machine, to organise construction and monitoring of the
software artefact used in the target social machine. As shown
in Figure 2, once features in the tree are implemented, the
software artefact can be deployed to the user population.

Software development can be modelled as modifications to
the feature tree: the re-labelling of nodes as new functionality
is conceived of and implemented (before being deployed to
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Figure 4. An example feature tree for a scientific forum software system.

the target artefact). In this paper, we use a simple state model
(Figure 3), where each node is either:

i) Implemented—code has already been created for this
feature, and it is available to users; ii) Potential—the feature
has been conceptualised and designed, but no code exists
yet; iii) Possible—part of the universe of possible features,
but one which is not currently under consideration for
implementation2

Based on this representation, development can contain the
following steps, or development primitives, which map to
operations of the feature tree:

1. Expansion of the tree converts nodes from possible to
potential by finding new features to implement. This
might be through expert designers, co-creation or direct
user solicitation.

2. Evaluation of community needs and their relation
to individual features results in labelling nodes with
some indication of how well the community will react.
There are many ways to do this, including surveying

2The possible state is largely a convenience for simulation.

the participants; public consultations; focus groups;
monitoring of behaviour; and social media analysis.

3. Prioritisation of features to implement, which may
be driven by the result of evaluations, voting by the
population, investor demands, expert opinion etc. This
decision may depend on which type of costs the
controllers of the artefact would like to optimise (e.g.,
economic, temporal, social).

4. Implementation of the selected features, whether in-
house, or crowdsourced, using some particular software
design methodology. When implementing features,
the constraints contained in the feature tree must
be observed (e.g., mandatory features, alternative
features).

Within our model, these tasks are carried out by assembling
teams of crowd professionals—SCUs (Section 2.2), capable
of executing complex workflows. The formation of SCUs
and coordination of their actions are carried out through the
Coordination Model (CM), introduced in Section 3, which
allows flexible workflows that adapt to emerging situations.
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2.2. Social Compute Unit (SCU)

An SCU [8] is a loosely-coupled virtual team of socially-
connected experts with skills in the relevant domain. The
SCU is created upon request to solve a given task. It
uses the crowdsourcing power of its members and their
professional connectedness toward addressing the problem
which triggered its creation and is dissolved upon problem
resolution. The SCU is a programmable entity. This
means that its various properties and functionalities (team
assembly, task decomposition, runtime collaboration patterns,
coordination, task aggregation) can be ‘programmed’ to
support different types of human/machine collaborative
efforts. For example, in [9] the authors show how the SCU can
support well-defined business-processes, such as workflow
patterns for IT incident management. However, SCU can also
be used to perform looser collaboration patterns leaving space
for human improvisation and creativity [10].

In this paper we use SCUs within the development social
machine to execute tasks in the software development cycle,
such as implementing a concrete software feature. Concretely,
we build upon the particular SCU model presented in
[11] and use it in the context of the encompassing social
machine’s coordination model. Whenever a development
primitive (from Section 2.1) needs to be executed, a request
with input parameters is sent to the SCU provisioning
engine to form a team of developers/experts suitable for
that particular primitive (task). The provisioning engine
returns the closest-to-optimal matching subset of available
developers, representing a SCU for that task.

The full list of available input parameters and descriptions
of the team formation algorithms are available in [11]. In
this paper, however, we vary only the parameter named job
description set (J), while assuming default values for the
remaining parameters. J contains job descriptions for each
subtask: J = {j1, j2, · · · , jk}. A job description is a set of
tuples ji = {(t1, q1), (t2, q2), · · · , (tm, qm)}, where tl is a
skill type (e.g., ‘java developer’, ‘test engineer’) and ql =
{‘fair′, ‘good′, ‘verygood′} is a fuzzy quality descriptor.
The job description (tl, ql) specifies which skills a worker
needs to possess in order to perform the subtask l successfully.

2.3. Lightweight Social Calculus (LSC)

LSC is an extension of LCC [12], which has been
used to represent interaction in many systems [13]. LCC
is a declarative, executable specification which can be
communicated between agents at runtime; it is designed to
give enough structure to manage fully distributed interactions
by coordinating message passing and the roles which
actors play, while leaving space for the actors to make
their own decisions. LSC augments LCC with extensions
designed to make it more amenable to mixed human-machine
interactions; in practice, this means having language elements
which cover user input, external computation or database
lookup and storing knowledge and state.

a(invitee(C), A ) ::
  dinner(Time,Place) <= a(confirmer, C)
  then 
    confirm(yes) => a(confirmer, C) <-- ok(Time,Place)
    or
    confirm(no)  => a(confirmer, C)
  then 
  a(invitee(C), A) .

Role: description and agent idMessage in:
content <= 
sender role

Sequencing

Choice

Resume invitee role Implication: if RHS can be
satisfied, substitute and execute LHS

Message out: 
content => 

receiver role

Body

Figure 5. Example LSC clause from the meal
organisation interaction model (slightly modified for
clarity). An agent playing the role of invitee will wait
for a message from a confirmer specifying the time
and place for dinner; the values in the message for
Time and Place are substituted in, and the agent
then decides if it will_attend, and sends back
the appropriate message. It then resumes the role of
invitee in case of alternate suggestions.

An LSC protocol consists of a set of clauses; the
head of each clause is a role specification, and the
body a description of what an agent should do when
playing that role (see example in Figure 5). The body
contains message sending (M ⇒ a(role, ID)) and receiving
(M ⇐ a(role, ID)), sequencing and choice (then and or),
implication (action← condition), the assumption of new
roles (a(role, ID)) and any extra computation or conditions
necessary.

Each agent’s interaction starts with a clause from a
protocol, which is then repeatedly re-written in response to
incoming events: incoming messages are matched against
expected messages, role definitions are replaced with the
body of matching clauses, values are substituted for variables
and so on. As the interaction progresses, this state tree keeps
a complete history of the agents actions and communications.
This supports the creation of multi-agent institutions [14]
where interaction is guided by shared protocols and a
substrate which keeps track of state.

LSC is formal enough that it can be computationally
manipulated, for example to synthesise new protocols[15]. It
shares features with workflow languages—while providing
more flexibility—and can be derived from e.g. BPEL4WS
to create completely decentralised business workflows [16].
LSC has also been used in the creation of social machines
by binding formal interaction models into natural interaction
streams [17].

Within our model, LSC is used to model the develop-
ment social machine, by specifying the interactions among
developers, and between developers and the feature tree
representing the state of the software artefact. It provides a
means to create a formal representation of software devel-
opment processes, allowing for computational coordination
of their enactment, while providing more flexibility than
a workflow would allow. LSC provides a bridge between
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low level operations—e.g. implementing a particular node—
and high level concepts such as “agile methodologies”. By
formalising the coordination protocols and making them first
class objects, it is possible to share, modify, discover and
rate individual protocols; by separating the protocol from
the domain of application, it is possible to apply the same
methodology to new domains. The flexibility of the language
allows for sub-protocols to be chosen dynamically, so that
development can be adapted in response to changing needs.
Over time the system can build up a view of when each
protocol is appropriate, and be able to assist with selection
of protocols for novel situations.

3. Coordination Model
The coordination model represents the artefact regulating the
interactions among social machines. It contains the following
submodels, regulating different interaction aspects:

• Data Submodel: A formal data model used to represent
the data that is processed and exchanged by social
machines. It serves both as input and output for the
social machine. In our example, the data model is
represented by the feature tree representing the forum
software. For the development social machine it serves
to indicate the features to develop and dependencies;
but also to track the progress of the development cycle.
The resulting tree is then subsequently also used as the
input of the target social machine for calculating the
overall population utility, as well as to mark elicited
features for future development cycles.

• Quality-of-Service Submodel: In essence, the devel-
opment social machine is providing a software-
development service to the target social machine.
Therefore, we need a set of metrics to express the
requested and measure the obtained quality of this
service. In this paper, we adopt the metrics already
provided by the SCU [11] to formulate requested QoS.

• Interaction Submodel: The coordination submodel
contains a collection of LSC-encoded protocols
managing interactions between social machines and
their workers. The coordination submodel contains
multiple possible protocols. A metalevel protocol is
used to make real-time selection and enactment of
an appropriate subset of concrete protocols, based
on the current state of the coordination model, input
from stakeholders or the current behaviour of the
community interacting with the artefact. Selection
could also include discovery of new protocols to
use (e.g., as new development methodologies are
introduced) as well as analysis of the historic
performance of existing protocols in similar situations.
The use of metaprotocols is crucial in order for
the development social machine to be responsive
to community requirements, and for it to adjust
development trajectories accordingly.

Figure 6 illustrates the usage of the coordination model
artefact for the scenario introduced in Section 1.1. An
iteration in the software development cycle starts by having an
active LSC protocol send a request to the SCU Provisioning
Engine (Figure 6, 1 ). The request contains the necessary
QoS input parameters (described in Section 2.2) for creation
of multiple SCUs. Based on these parameters the SCU
Provisioning Engine selects appropriate workers from the
crowd of professionals (2 ), assembles and returns the SCUs.
The newly created SCUs are passed the feature tree with
nodes selected for implementation (3 ), finally constituting
a functional development social machine. The development
social machine starts performing the designated actions on the
feature tree (4 ). The active LSC protocol from the interaction
submodel takes care that the actions performed by different
SCUs are properly ordered and repeated if necessary (e.g.,
due to failure, or insufficient quality). After the SCUs finish
executing, the resulting feature tree is passed to the target
social machine (5 ).

The modified tree is then evaluated by a function assessing
the population utility (6 ). As explained earlier, this is
a measure of target community’s satisfaction with the
implemented features. Based on the this value, and the new
requests from the community, the metaprotocol can decide
whether new development iterations are necessary, and if yes,
which protocols to use (7 ). Depending on the new priorities,
a different protocol can be chosen to control the development
social machine in the new iteration. For example, for the
evaluate action, new candidate features may be identified
by a single SCU of experts, or by having multiple SCUs
suggesting new features and then deciding by majority voting.
Or, in case of a failure, we may decide to repeat the task with
the same SCU, or escalate to a more reliable (and thus a more
expensive) one.

In the following sections, we present a proof-of-concept
implementation of this coordination model. We evaluate
the implemented prototype by simulating a population
and running a number of LSC protocols to showcase its
functionality.

4. Implementation and Evaluation

4.1. Prototype Implementation

In order to demonstrate the operation of the coordination
model, we have implemented a simulation prototype
which covers a subset of the conceptual model’s possible
functionality. In the simulation, a pool of crowd workers
participate in improving the scientific forum software
introduced in Section 1.1. The (simulated) workers are
managed by a system running various LSC protocols,
representing different approaches to software development.
This includes all of the task selection and implementation
activities from Section 2, as well as the team selection work
discussed in Section 2.2.
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Figure 6. Using the Coordination Model to support the community-based, collaborative software development
scenario.

The implementation uses the scalsc LSC library, with
extensions to model feature trees, labour and team selection,
and user populations3. Concretely, this comprises:

1. A population of simple software agents representing
community members; this is simulated as a hetero-
geneous group of individuals, each with their own
preferences about which features the community soft-
ware should contain. The preferences are represented
as scores for the presence of conjunctions or disjunc-
tions of implemented feature-tree nodes. A typology
approach is used, where archetypal users are defined for
two classes (chemists and mathematicians), differing
in their preferences for functionality. These users are
sampled with multiplicative noise (N (1, 0.1)) added to
their preference scores to provide limited heterogene-
ity.

2. A feature tree representing the current state of the
software, as defined in Section 3, following the example
in Figure 4;

3Complete source code and installation instructions can be found at
https://bitbucket.org/mo_seph/social-institutions

3. A simplified, idealised SCU model, where teams are
formed in response to quality constraints, and perform
tasks on the feature tree. In this simplified model, we
assume that one worker is returned per task, with a skill
set that exactly matches the quality constraints [11].
Workers have scores for four skills: implementation,
evaluation, prioritisation, design, each of which ranges
from 0..1.

4. A labour model, relating worker qualities to the
time, cost and quality of carrying out primitive tree
operations. This model has been designed to represent
the issues at hand in a stylised manner, while having a
reduced parameter set to help understand the model’s
behaviour. Operations are assigned a basic cost Co,
which is then multiplied by the cost of the worker who
is carrying it out; worker cost is the sum of the worker’s
skill levels (S) raised to an exponent k = 0.5, so the
complete cost of a worker w operation o is: C(w, o) =
Co

∑
sk (for s ∈ S). Details of operator cost, time and

implementation specifics are in Table 14.

4We acknowledge that the simulation will be sensitive to the parameter
values chosen (especially k); the results we present are intended only to give
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Table 1. Model of primitive tree operations, showing base costs, assumptions made and implementation details.
ereal is the true population utility for a feature tree, and sx is the team’s skill in x.

Operation Assumptions Implementation Cost, Time

Expand Only children of potential nodes are considered. A better
design process will create nodes which better match the
population’s need

Order nodes by
erealN (1, (1− sdesign)) and
select the first.

2, 0.5

Evaluate A better evaluation process will be closer to the true value
population’s need

Label nodes with eest =
erealN (1, (1− seval)).

0.5, 0.5

Prioritise Better prioritisers order nodes more closely to their true
evaluation order with respect to population’s need

Order nodes by
eestN (1, (1− sprioritise))
and label with index.

0.01, 0.01

Implement Select highest priority node; better implementers have more
chance of success.

Pimpl = simplementation 1, 1

In order to effect changes to the feature tree, a set of LSC-
based intra-unit- and meta-protocols are used to construct
SCU according to quality metrics, and schedule them to
carry out operations. Listing 1 shows an example high-level
LSC protocol coordinating an agile development process:
form_scu triggers the SCU formation, based on a set of
required skills and the action to enact, while do_task
controls the execution of the selected actions5. These
protocols can be written as standard LSC [12], with a small
set of extra predicates for forming teams and manipulating
trees: form_scu and do_task mentioned above, as well
as current_tree and highest_priority, which are
demonstrated in Listing 1.

4.2. Initial Scenarios
In order to illustrate the operation of the prototype, we run
it under two contrasting scenarios, with three different LSC-
based workflows imposed through appropriate LSC protocols.
In the first scenario—StablePopulation, a population of 1000
members of the chemistry community (chemists) is simulated
throughout the entire simulation runtime. In the second
scenario—DynamicPopulation the initial population of 1000
chemists is replaced by 200 chemists and 800 mathematicians
at timestep 20. This is a crude and stylised approach to
representing a shift in user population, where the platform is
adopted by a different user community, but it allows us to
illustrate the prototype implementation’s behaviour.

The coordination models we use are loosely based on
current or past practice in software development:

• The traditional model starts with a large public
consultation, where most of the tree is explored and

an indication of capabilities, so no formal sensitivity analysis has been carried
out.
5Further details on the prototype implementation, as well as the
source code can be found at https://bitbucket.org/mo_seph/
social-institutions

assessed before any implementation takes place. Actual
feature implementation is then carried out by teams
(i.e., SCUs) of average-skilled programmers, who have
three attempts to implement any given node.

• The escalation model begins with the same initial
public consultation, but is followed by a development
process where initially an average (and cheap)
developer attempts to implement each node. If that
fails, a high quality, but more expensive, developer
is found and brought in to finish the job. This is an
example of a simple metaprotocol, allowing alternative
development pathways to be chosen at runtime.

• The agile model defines a a tight loop of evaluation and
implementation, to allow development to respond to a
changing set of user requirements.

4.3. Protocol Assessment and Discovery
To illustrate the possibility of evaluating and discovering
protocols—due to their status as first-class objects [18]—we:
i) implement a collection of performance metrics which might
relate to real-world quatitites of interest; ii) assess different
parameterisations of the agile protocol discussed above. The
agile protocol was picked due to its potential for use in
the dynamic protocol described in Section 4.4. The protocol
consists of a role which two parameters: EvalQ and ImplQ,
the skill levels of the evaluating and implementing SCUs
respectively, both in the interval [0, 1]. The values of these
two parameters were varied separately so that the effects of
prioritising resources towards the implementation or design
stages of the process may be apparent.

Several metrics are used based on a combination
of implementation pragmatics and applicability to the
scenario—these are by no means a recommended or complete
set—and the most relevant of these are displayed based on
the above factors and an ability to meaningfully distinguish
between different protocol settings. As well as four basic
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Listing 1. Example protocol used to coordinate “agile” development. An SCU is first formed to identify the next best
node to implement. Then, another SCU is formed to implement that node. This sequence is then run in a tight loop
to carry out responsive development.

a(agile(ExpQ,ImplQ),A) :: %Agent role for doing "agile" development
%Create an SCU to expand the next best node

form_scu(expand(1), [expansion(ExpQ)], ExpAssign ) then
current_tree(InTree) then %Get the current tree
do_task(ExpAssign, InTree, ExpTree ) then %Carry out the expansion
highest_priority(ExpTree,Next) then %Find the best node to implement

%Form an SCU to implent it
form_scu(implement, [implementation(ImplQ)], ImplAssign ) then
do_task(ImplAssign, ExpTree, Result ) . %Carry out the implementation

Dynamic, Utility Dynamic, Cost Dynamic, Nodes Dynamic, NodeAvg

Stable, Utility Stable, Cost Stable, Nodes Stable, NodeAvg
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Figure 7. Simulation outcomes for the two scenarios and three workflows. Faint lines represent individual runs
(n = 30 in each condition), and solid lines are smoothed ensemble averages. Utility is the average utility of the
feature tree across the population; Cost is the financial cost of developing the community-software; Nodes is the
number of features (nodes) implemented; and NodeAvg is the average utility provided by each feature (an indication
of the quality of community fit). The dotted vertical lines indicate the time where the Dynamic scenario undergoes a
step change in the population composition.

properties—average utility, cost, number of nodes and cost
per node, five more complex metrics were chosen:

UtilityAvgCost is the cost of creating one unit of utility, that
is Cost/Utility. This represents the effectiveness of the
protocol at creating high value nodes cheaply.

UtilityIncreaseRate-10 is the increase in utility over the last
10 timesteps, showing the protocol’s ability to respond
to changes and rapidly develop new features.

UtilityPerNode indicates how good the protocol is at
targeting crucial nodes, how precise the development
is.

IntegratedUtility is aimed at analysing the development
of the population. Since we do not model feedbacks

between the user population and the state of the
artefact, this helps to separate situations where the
artifact maintained high utility throughout—and hence
is likely to have maintained an active userbase—from
situations where development was initially slow, which
might have led to users leaving early on.

NodesPerTime measures the average throughput of the
protocol in terms of implemented nodes per timestep.

In order to get a better sample, random trees and
populations were used for this experiment, according to the
following principle:

• a tree was generated, with a given branching factor
and maximum depth, with random unique IDs for each
node;
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• two archetypes were generated for this tree which
gained utility for the presence of up to 15 of the
nodes in the tree, with the level of utility sampled from
N (0, 2).

• these were then used in a population dynamics model,
following the template of the dynamic scenario above,
with a step change from purely one type to an equal
mix of both types at timestep 20.

Based on the availability of metrics, a simulated protocol
discovery mechanism is implemented. This takes the form
of a database of protocols and roles, searchable according
to individual scores for each metric. These scores were
taken from the average across multiple runs of either i)
the maximum value or ii) the final value recorded in the
simulation as appropriate for the metric. The discovery
mechanism uses the calculated scores to select the protocol
and role that are expected to either increase, decrease,
maximize, or minimize particular metrics.

This discovery mechanism is made available to the agents
within the simulation, by means of a special predicate: sat-
isfying i(discover(“CostPerNode′′,min, Proto,Role))
would return substitutions such as Proto→ agile, Role→
agile(0.5, 0.8), indicating that the way to minimise the cost
per node is to enact the role agile(0.5, 0.8) in the agile
protocol.

4.4. Dynamic Protocols

Another key benefit of protocols is their flexibility. State can
be brought in, allowing the protocol to adapt to changing
situations. In order to demonstrate this, Listing 2 shows
a simple dynamic protocol. Here, the agents are provided
with an extra predicate—metric(M,U)—which retrieves
the current value U of a metric M . For example, the predicate
metric("AvgUtility",U) gives the average utility of
the population at this moment in time. Protocols can then
be written which react to this. For example, a protocol can
use this in order to prioritise economic development when the
population is happy, but increase utility at any cost when the
population is less happy. There are two steps to this: choosing
which goal to prioritise in terms of a metric to minimise or
maximise, and then using the discovery mechanism to select
the protocol which best fits that goal.

For simulation purposes, a more complex protocol was
used which would:

• start with the most rapid development strategy
(maximise NodesPerT ime);

• monitor the CostPerNode and AvgUtility;

• if CostPerNode is too high, find a role with a lower
expected cost per node

• if the AvgUtility is too low, find a role with a higher
UtilityIncreaseRate− 10

This protocol was run alongside the previous protocols
from Section 4.2: traditional,escalation and agile, as well
as the best performing set of agile parameters (Agile1,
with EvalQ = 0.9, ImplQ = 1.0) in order to observe the
effects of dynamically selecting protocols and parameters.
The output of the search over the agile parameter space was
used, so that all of the roles which were selected were of the
form agile(E,I).

5. Results
Figure 7 shows the simulation outcomes when running
the described scenarios and workflows. Under the Stable
scenario, the agile workflow initially performs best, as
development starts immediately. Over time, however, the
escalation workflow achieves higher utility with fewer nodes
due to a greater understanding of the complete feature
tree. The traditional workflow is limited by the speed
of its average-skilled developers, but utility does increase
gradually. Under the Dynamic scenario, the initial behaviour
is similar. However, when the population changes at timestep
20, the agile workflow adapts more quickly to the change, and
creates nodes which better represent the desires of the new
population.

To zoom in on the effects of QoS selection, Figure 8
shows the performance of the agile protocol with a range
of parameterisations for a range of metrics 6. In most cases,
the broad shape of the metric curves is similar. It is clear
that the overall system state—few implemented nodes at the
beginning versus many towards the end—and the population
dynamics have a strong effect on the curves. However, the
QoS parameters selected can have a large effect on the ranges
of the curves. It is also clear that the metrics are able to
differentiate between different parameter settings, with most
graphs showing a clear ordering. Different metrics produce
different orderings, for example the Cost graph shows that
for a value of EvalQ = 0.8, the agile algorithm costs more
in total for ImpQ = 0.5 (blue) than for ImpQ = 0.2 (cyan),
but the CostPerNode metric shows the average cost per
implemented node is actually less for ImpQ = 0.5 (thus
indicating it implements nodes faster).

Figure 9 compares the behaviour of the Dynamic protocol
(green) with the previous ones over randomly generated trees.
Comparing the two simple agile protocols to the dynamically
assigned one, it can be seen that the dynamic protocol has
the lowest cost in total, per node, and per unit of utility, while
maintaining utility and throughput to levels comparable to the
‘optimal’ parameter settings.

6. Discussion
The initial round of simulations demonstrates the ability
of the coordination model to represent a flexible process.

6As stated previously, these metrics are intended to be plausible, rather
than comprehensive—the metrics only need to be good enough to drive the
protocol selection described in Section 4.4.
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Listing 2. Example dynamic protocol, used to choose roles The metric predicate retrieves the current value of a
particular metric. In this particular case, metric(”AvgUtility”, U) reports on user satisfaction, which is then fed into
a choice of which metric to prioritise

a( dynamic_process(Count,T),X ) :: % If the average utility is more than a
( i(discover("CostPerNode",min,P,Role)) <- metric("AvgUtility",U) ^ U > T

or % threshold T, minimise cost per node
i(discover("UtilityIncreaseRate",max,Proto,Role)) % Otherwise, maximise utility increase

) then a(Role,X) % recursion for Count nodes elided
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Figure 8. Graph of the performance of the agile protocol on several different metrics over a representative sample
of parameter space. Parameters EvalQ and ImplQ are sampled at 0.5, 0.8 and 0.2, 0.5, 0.8 respectively, giving 6
conditions. The metrics shown are: i) CostPerNode, the average cost for each node implemented; ii-iv) Utility,
Cost, and number of Nodes; v) UtilityAvgCost, the average cost of each unit of utility; vi) UtilityIncreaseRate10.0,
increase rate in utility over a 10 tick window; vii) UtilityPerNode, the total utility divided by the number of
implemented nodes; viii) NodesPerT ime, the average number of implemented nodes per unit of time. All simulations
were carried out on randomly generated trees with branching factor 4 and max depth 3, with a population of 1000.

When the user community changes, the coordination model
can respond dynamically, by prioritising different software
features for implementation. The recovery of the utility curve
in the for the agile workflow in the Dynamic scenario post
population-change, indicate its ability to responsively re-plan;
by not working with a heavyweight process, it can do what the
users need right now.

The difference between the utility curves under the
traditional and escalation workflows demonstrates the effects
of bringing QoS constraints into the development protocol.
The traditional workflow tends to be cheaper per unit time,
using only low quality developers. However, the escalation
workflow creates more nodes per unit cost, by being able to
form SCUs with highly skilled workers when necessary to
carry out difficult jobs. This also results in more nodes created
per unit time, so the population utility rises more rapidly.

In contrast to conventional workflows, the LSC protocols
are dynamic, and can be changed or “plugged in” during
runtime. For example, the dynamic protocol uses the average
population utility to influence the choice of protocols. This
ability to alter the way that work is coordinated allows for
a larger human influence on the execution of complex work
processes.

This demonstrates how a dynamic protocol can be
responsive to population changes and the needs of system
designers at once. In this case, there are two components
of the response. Firstly, the protocol is set up to prioritise
different goals at different times. This is an opportunity for
the system designers to elicit and encode their goals, to
use their human knowledge of the system and declare their
priorities. Secondly, the protocol can bring in computational
machinery to discover protocols which have been previously
found to match those goals, and then implement them. This
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Figure 9. Graph of the performance of the Dynamic protocol compared to the more traditional ones. Metrics are
the same as in Figure 8. All simulations were carried out on randomly generated trees with branching factor 4 and
max depth 3, with a population of 1000.

allows the re-use of community knowledge, and a greater
understanding the behaviour of different methodologies in
different situtations. Synergistically, these capabilities allow
for dynamic, flexible protocols which can draw on a pool
of cloud workers to create software artefacts in response to
community needs.

6.1. Simulation Modelling
In order to explore a range of parameters and models
quickly and flexibly, we have taken a simulation modelling
approach. Simulation modelling is used in the computational
social sciences to explore theoretical ideas in the context of
synthetic populations, particularly where real studies would
be impractical [19, 20]. Recently, this has been applied to
crowdsourcing, in order to generalise results which otherwise
would be tied to a particular situation [21]. However,
simulation has the potential to play another role in this area,
as developing a computational model of population behaviour
can be used to “close the loop” and aid in the design of
effective social machines [22].

The simulations presented here represent a highly
simplified version of our conceptual model where intelligent
computational machinery underpins human creative activity
in the development of software artefacts for dynamic
communities. The use of flexible process languages such
as LSC means that the inter-unit protocols used here
could be augmented to embody more refined development
methodologies, with complex patterns of coordination where
necessary. Similarly, at the metaprotocol level, we have a
dynamic adjustment of the protocols and parameters chosen,
but there is room for additional intelligence to be brought to
bear in order to better balance community and stakeholder
demands against time and cost constraints. We have sketched

out a mechanism by which the interactions specified in
LSC can be rated and discovered, but there is scope for
them to be exchanged and modified both computationally
or through human intervention. This can help create a
better understanding of which methodologies work in which
situations. At the intra-unit level, intelligent protocols could
be used to more flexibly assign workers to sub-tasks, reacting
to developing situations and changing requirements.

7. Related Work

Social machines share common ground with other collective
intelligence applications such as human computation and
social computing (diagram in [5, p.2]). Many crowdsourcing
systems can be seen as social machines. Of the existing
commercial platforms, of particular relevance here are
Topcoder7 and ODesk8, which use different mechanisms to
organise diverse participants around software development.
As crowdsourcing platforms are becoming widely used as
research tools, a number of solutions appeared providing
overlay abstractions offering more advanced workflow
management and allowing users to perform more complex
tasks/computations.

TurKit [23] is a library layered on top of Amazon’s
Mechanical Turk offering an execution model (crash-
and-rerun) which re-offers the same microtasks to the
crowd until they are performed satisfactorily. The entire
synchronisation, task splitting and aggregation is left entirely
to the programmer. The inter-worker synchronisation is out of
programmer’s reach. The only constraint that a programmer

7http://www.topcoder.com/
8https://www.odesk.com/
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can specify is to explicitly prohibit certain workers to
participate in the computations.

Jabberwocky’s [24] ManReduce collaboration model
requires users to break down the task into appropriate map
and reduce steps which can then be performed by a machine
or by a set of humans workers. A number of map steps can be
performed in sequence, followed by possibly multiple reduce
steps. Human computations stops the execution until it is
performed. While automating the coordination and execution
management, Jabberwocky is limited to the MapReduce-like
class of problems.

AutoMan [25] integrates the functionality of crowdsourced
multiple-choice question answering into Scala programming
language. The authors focus on automated management
of answering quality. The answering follows a hardcoded
workflow. Synchronisation and aggregation are centrally
handled by the AutoMan library. The solution is of limited
scope, targeting the designated labour type.

CrowdLang [26] brings in a number of novelties in
comparison with the other systems, primarily with respect
to the collaboration synthesis and synchronisation. It enables
users to (visually) specify a hybrid machine-human workflow,
by combining a number of generic collaborative patterns
(e.g., iterative, contest, collection, divide-and-conquer), and
to generate a number of similar workflows by differently
recombining the constituent patterns, in order to generate a
more efficient workflow. The use of human workflows also
enables indirect encoding of inter-task dependencies.

To the best of out knowledge, at the moment of writing,
CrowdLang and SCU are the only two systems offering
execution of complex human-machine workflows. However,
as explained before, both systems need to know the possible
(sub-) workflows in advance. The coordination model
presented in this paper complements the functionality offered
by systems such as these two, by providing a higher-level
coordination management layer.

8. Conclusion

In this paper we introduced a novel coordination model for
teams of workers performing creative or engineering tasks
in complex collaborations. The coordination model augments
the existing Social Compute Unit (SCU) concept with coor-
dination protocols expressed using the Lightweight Social
Calculus (LSC). The approach allows combining coordina-
tion and quality constraints with dynamic assessments of
user-base requirements. In contrast to existing systems, our
model does not impose strict workflows, but rather allows
for the runtime protocol adaptations, potentially including
human interventions. We evaluated our approach by imple-
menting a prototype version of the coordination model for
the exemplifying case-study and simulated its behaviour on
a heterogeneous population of users, running different sce-
narios to demonstrate its effectiveness in delivering end-user
utility, and illustrated responses to a dynamically changing
population.

In summary, we have given a conceptual model for
combining process models with crowdsourced teams to create
software artefacts in support of dynamic communities. This
formalisation paves the way for increased intelligence to be
brought into crowdsourced software development, creating a
more responsive, community-centred process.
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