
An Analytical Study of Com putation and
Com munication Tradeoffs in Distributed Graph
Processing Systems
Amirreza Abdolrashidi1,∗, Lakshmish Ramaswamy1

1Department of Computer Science, The University of Georgia, Athens, Georgia, USA

Abstract

Distributed vertex-centric graph processing systems such as Pregel, Giraph and GPS have acquired significant
popularity in recent years. Although the manner in which graph data is partitioned and placed on the
computational nodes has considerable impact on the performance of the vertex-centric graph processing cluster,
there are very few comprehensive studies on this topic. Towards enhancing our understanding of this important
factor, in this paper, we propose a novel model for analyzing the performance of such clusters. Using three
graph algorithms as case studies, we also characterize the inherent tradeoff between the computational load
distribution and the communication overheads of a BSP cluster. This paper also reports a detailed experimental
study investigating the performance of commonly-used graph partitioning mechanisms with respect to their
computational load distribution characteristics and the associated communication overheads.

Received on 18 February 2015; accepted on 04 July 2015; published on 17 December 2015
Keywords: Distributed Vertex-Centric Graph Processing, Performance Modeling, Parallel Processing, Graph
Partitioning.

Copyright © 2015 Amirreza Abdolrashidi and Lakshmish Ramaswamy, licensed to EAI. This is an open access article
distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/
by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is
properly cited.
doi:10.4108/eai.17-12-2015.150810

1. Introduction

Many emerging domains are characterized by massive
graph-structured data. Graphs with millions of nodes
and billions of edges are not uncommon in applications
such as WWW, bioinformatics, and social networks.
These emerging applications have spurred renewed
research into efficient and scalable graph analytics. Since
traditional centralized graph computation has inherent
scalability limitations, recent research has focused on
on harnessing the parallelism offered by shared nothing
clusters for graph analytics. While some of the early
works explored using the MapReduce (MR) paradigm,
it was soon realized that MR is not well suited for this
domain because of the highly iterative nature of many
graph algorithms.

Recent research suggests that bulk synchronous
parallel (BSP) model is better suited for parallelizing
graph algorithms on shared nothing clusters.
Accordingly, many BSP-based graph processing

∗Corresponding author. Email: ara@cs.uga.edu

frameworks have been designed and developed
in the past few years. These include Pregel [1],
Giraph [2], GraphLab [3] and GPS [4]. These
vertex-centric frameworks regard individual
vertices of the graph as the fundamental units
of computation. The computation logic is
expressed as a series of iterations, called supersteps.
In a given superstep, each vertex performs
certain computations, which involve processing
messages that it received from the previous
superstep, updating its own state and sending
messages to its neighboring vertices. The synchronization
occurs at the end of each superstep.

Many factors influence the performance of vertex-
centric BSP frameworks including the number of
machines in the cluster, their relative capabilities, the
characteristics of underlying network, and the nature of
the graph computation algorithm. This paper focuses on
another performance factor that has hitherto received
less research attention but nevertheless has a significant
impact on the performance of vertex-centric graph
processing clusters, namely the manner in which the

1

EAEAI Endorsed Transactions
on Collaborative Computing Research Article

EAI Endorsed Transactions on
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

http://creativecommons.org/licenses/by/3.0/
mailto:<ara@cs.uga.edu>

A. Abdolrashidi, L. Ramaswamy

graph data is partitioned and placed on various machines
of the cluster. This factor is uniquely important because
graph partitioning and placement not only affect the
amount of communication that needs to happen at the
end of each superstep but also the computational loads
placed on the machines during the computation.

Random and min-cut are two commonly adopted
graph partition and placement strategies. As the name
suggests, the random strategy distributes the vertices
of the graph to the compute nodes in a random
fashion. Min-cut, on the other hand, aims to reduce the
communication in the cluster by distributing the nodes
in a way that minimizes the number of inter-partition
edges (edges whose end vertices are allocated to two
different partitions and, hence, assigned to two different
compute nodes). However, to the best of our knowledge,
there are no comprehensive studies about the impact of
these or other graph partitioning strategies on cluster
performance.

Analyzing the impact of graph partitioning on the
communication and computation loads of a vertex-
centric BSP cluster is quite challenging because it
is intertwined with other performance factors such
as the cluster setup, communication and computation
capabilities of various nodes in the cluster and the
nature of the graph computation. In this paper, we make
three important contributions towards addressing this
important challenge:

• First, we propose a novel analytical model for
vertex-centric graph cluster performance. This
model incorporates an important and diverse set
of performance parameters such as computational
loads on processors, messaging loads between
pairs of processors and available computation and
communication resources within the cluster. A
unique aspect of our model is that it can be used to
analyze and compare different graph partitioning
strategies.

• Second, we highlight the tradeoffs between
computational load distribution on the processors
of a BSP cluster and the communication loads
within the cluster. We discuss three distinct graph
algorithms and illustrate how the above tradeoff
manifests differently in each algorithm.

• Third, we introduce novel metrics to accurately
quantify the load balancing and communication
characteristics of vertex-centric graph computa-
tions. We have also conducted a detailed experi-
mental study involving massive real world graphs
(millions of vertices and edges) on Amazon EC2
clusters with a varying number of compute nodes.
This experimental study highlights the relative
benefits and costs of random and min-cut graph

partitioning strategies with respect to communi-
cation overheads and computational load distribu-
tions.

The remainder of the paper is organized as follows: In
section ??, we provide a brief discussion on vertex-centric
graph processing model of computation. In section 3, we
describe the performance cost of this model and provide
formal specifications. Section 4 discusses the metrics used
for measuring the performance in our experiments. This
section also includes the experiments’ setups and results.
We briefly discuss related works in section 5 and conclude
the paper in section 6.

2. Vertex-Centric Graph Processing

Since the introduction of MapReduce [5], many
systems have used this model to process large graphs
[6], [7], [8], [9], [10], [11], [12] and [13]. In these systems,
graph algorithms have to be modeled as a sequence of
chained MapReduce jobs. However, this model is not
appropriate for graph algorithms from the perspective
of both data and computation model [14], [15] and [16].

Initially, the data need to be modeled as key-
value pairs in order for MapReduce jobs to proceed.
However, modeling graph algorithms as sequences of
such functional programming constructs that operate
on key-value pairs is not necessarily efficient or easy.
Additionally, graph algorithms by nature are iterative
where computation includes several iterations of similar
operations that are performed on graph vertices. Using
MapReduce to model graph algorithms will yield
iterative disk intensive jobs in which the entire state
of graph should be transferred from one iteration to
another in order for the computation to proceed. During
computation of the arbitrary graph algorithm in a large-
scale environment, distribution over many machines
makes memory access time as well as I/O overhead
worse and, consequently, affects the performance of the
framework [1].

Another computation model that has been used
recently for parallel processing of large graphs is
Valiant’s Bulk Synchronous Parallel (BSP) model.
BSP is a “bridging model” for general purpose
parallel computation [17], that is, parallelism across
a wide range of applications and architectures.
In the BSP paradigm, computation consists of
a series of iterations named supersteps. Each superstep
is divided into three phases as follows:

• Computation, where each process using local data
stored in memory of its processor performs the
computation.

• Communication, where the processes send and
receive messages needed for the computation to
proceed.

2
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

• Barrier Synchronization, where all the communica-
tions are complete and the data sent by processors
are available for the destination processors in the
next superstep.

Computation based on this parallel model will finally
be terminated once it goes through the desired number
of supersteps, or a specific convergence criterion is met.

Pregel [1] used the above computation model to
process large graphs by applying a vertex-centric
approach to the implementation of graph algorithms.
In this approach, vertices of the graphs are considered
as the work units that are partitioned among processor
nodes of a cluster. At the beginning of each superstep,
in the computation phase, the processor nodes of the
cluster receive messages from the previous superstep
and perform the user defined logic of computation in
parallel on each of the work units by running a compute
method on each of the vertices. Once a processor node
finishes the processing of its work units, it begins the
communication phase where it sends messages to other
vertices (possibly located at other processor nodes) along
graph edges. Finally, in the synchronization phase, the
processor nodes will wait for the slowest processor to
finish processing and sending its messages, and then,
they become synchronized. This marks the end of one
superstep, and afterwards, all the processor nodes start
the next superstep.

In order for the computation to terminate, graph
vertices need to inform each other whether they
participate in the computation. In other words, they
need to be stateful. Pregel considers two states for
each graph vertex along with a mechanism called voting
to halt (which involves graph vertices changing their
states between the two states) to achieve statefulness of
vertices and subsequently mark the end of computation.
Initially in the first superstep all the graph vertices are
in the active state. Active graph vertices participate in
the computation. After the computation on each active
vertex is completed, it changes its state to inactive in
order to inform other vertices that it has no further
work to do. Inactive vertices will not participate in the
computation in the next superstep unless they receive a
message from other vertices, at which point, they will
change their state back to active and will participate in
the computation. The computation ends when all the
graph vertices are in the inactive state and there are no
messages left among vertices to process.

Vertex-centric processing of graphs with the use
of BSP computational model leads to the interaction
of several factors that ultimately determines the
performance of the underlying cluster. In the next
section, we identify these factors and provide an accurate
and tractable model that describes the role of each of
these elements.

♣r♦❝❡ss♦r ❆ ♣r♦❝❡ss♦r ❇

♣r♦❝❡ss♦r ❈

✶

✹

✼

✶✵
✶✸

✶✻

✶✾

✷✷

✷

✺
✽

✶✶

✶✹

✶✼✷✵
✷✸

✸

✻

✾
✶✷

✶✺

✶✽

✷✶

✷✹

Figure 1. Random partitioning of a sample graph G(24,36)
among three processors; each processor node has 8 vertices;
24 intra-cluster edges (highlighted in bold) and 12 inter-
cluster edges

3. Performance Model for Vertex-Centric

Graph Processing

In vertex-centric processing of graphs, two major factors
that determine the performance of the computation are
the communication cost among the processor nodes of
the cluster and the computation cost of each of the
processor nodes of the cluster. This is similar to other
parallel computations.

As mentioned in the previous section, in the vertex-
centric processing of a graph, an active vertex sends
a message to another vertex if there is an edge
between them. Consequently, the manner in which graph
vertices are placed among processor nodes affects the
communication and computation of the cluster and,
hence, plays a key role in determining the performance
of the cluster.

One simple approach to placement of graph vertices on
processor nodes is random partitioning of graph vertices.
For instance, consider Figure 1, which illustrates the
distribution of a sample graph vertices on three processor
nodes based on random partitioning. As depicted, each
partition has the same number of vertices. In this
approach the communication volume among processor
nodes is high as there are many intra-cluster edges
(highlighted in bold). In this manner, processor nodes
need to constantly send messages among each other for
the computation to proceed. Despite resulting in a higher
communication cost, we will see that the advantage of
such partitioning is in achieving a better load balance
among processor nodes in case of some graph algorithms.

3
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5

EAI
European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

♣r♦❝❡ss♦r ❆ ♣r♦❝❡ss♦r ❇

♣r♦❝❡ss♦r ❈

✶
✷

✸

✹

✺

✻

✼
✽

✾
✶✵

✶✶

✶✷

✶✸

✶✹

✶✺ ✶✻

✶✼

✶✽

✶✾

✷✵

✷✶

✷✷

✷✸

✷✹

Figure 2. Min-cut partitioning of a sample graph G(24,36)
among three processors; each processor node has 8 vertices;
4 intra-cluster edges (highlighted in bold) and 32 inter-
cluster edges

The other approach for placement of graph vertices
on processor nodes can be applying heuristics based
graph partitioning algorithms in order to compute the
min-cuts of the graphs with the goal of lowering the
communication cost. Figure 2 represents the partitioning
of the same exemplary graph of Figure 1 based on
results of min-cut computation. As illustrated, each
highly connected partition of the graph is located on one
processor node, and there are four intra-clusters edges
(highlighted in bold) among processor nodes. Such an
approach to placement of graph vertices on processor
nodes results in lower communication cost among
processor nodes. This is due to the fact that the majority
of the edges (along which vertices will send messages) are
accessible by each processor. Consequently, there will be
fewer messages that need to be sent among processor
nodes in order to access graph vertices. This approach,
however, leads to load imbalance among processor nodes,
as we will demonstrate later.
As exemplified in both Figs. 1 and 2, there exists a

tradeoff among computation and communication costs
of the cluster depending on how the graph vertices
are assigned to processor nodes. Next, we will propose
a formal performance cost model for vertex-centric
processing of graphs on a cluster, which reflects these
tradeoffs and enables analyzing the efficiency of vertex-
centric graph processing algorithms.

3.1. Performance Cost Model

As described in section 2, a superstep is divided into
three phases. Hence, the cost of a superstep relies on the

cost of each of its three phases: the (maximum) cost of
the local computation on each processor, the (maximum)
cost of the communication among processors and the cost
of the barrier synchronization at the end of the superstep.
Thus the cost of a superstep can be formulated as:

Cost of a Superstep = max
1≤i≤n

(Comp CostPi
)+

max
1≤i≤n

(Comm CostPi
) + l

(1)

where Comp CostPi
and Comm CostPi

are computation
cost and communication cost of the processor node i
respectively and n is the number of processor nodes.
In the following sections we provide formal descriptions
for the cost of each of the three phases and explain the
factors that affect each of them. In this paper, we use
the terms “cost” and “time” interchangeably.

Computation. The cost of computation is related to
the amount of the load on the processors. In order to
model the cost of the computation phase of a single
superstep, the first criterion might be measuring the
number of vertices that each processor has to process
during that superstep.
However, this approach is naive. The reason is due to

the fact that during each superstep not all vertices of a
processor node are active and only the vertices that are in
the active state will participate in the computation and
constitute the load on a processor node. For instance,
all of the processor nodes in both figures 1 and 2 have
the same number of vertices, but this does not mean
that they have the same amount of load because not all
of the vertices might be active during a superstep. This
factor depends on the behavior of the graph algorithm
in terms of message passing as we will see in the next
section. Thus, in order to measure the load of a processor
node, Number of Active Vertices (NAV) reflects the right
metric.
However, the mere measurement of the number of

active vertices is not sufficient to model the load of a
processor node. Another factor in determining the load
is the Number of Messages that a processor needs to
process at the beginning of each superstep. There can
be circumstances where two processor nodes have the
same number of active vertices in a superstep, but one
might have to process more messages to determine the
final number of active vertices that will participate in
the computation. This factor depends on the underlying
graph structure and the distribution of degree of the
vertices. For instance, as can be seen in both figures 1
and 2, vertices 1, 14, 20, 22 and 24 have a degree of
one and hence have to process one message during a
superstep whereas vertices 5, 6, 13, 18 and 21 have a
higher degree and have to process more messages.
Considering the above two factors, the detailed cost

of the computation phase of a single superstep can be

4
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

formulated as:

Comp Cost(SSk) = max
1≤i≤n

(AV)× α+ max
1≤i≤n

(di × γ)× β

(2)
where the first factor is the maximum number of Active
Vertices (AV) over n processor nodes multiplied by cost
of main operation α of computation (e.g. addition of
multiplication) and the second factor is the maximum
number of messages that a graph vertex with input
degree d might receive with probability γ times β, the
cost of processing a message by processor. It should be
noted that in the first superstep the second factor would
be zero because there would be no messages to receive
and process from the previous superstep.

Communication. The second factor that determines
the time of a single superstep is the length of the
communication phase.
Since the processors in the cluster communicate

in parallel, this time is the maximum time it takes
the communication network to deliver messages among
processors. This cost is related to the maximum number
of bytes that have to be sent or received during a
superstep and also is dependent on available network
bandwidth. We model this cost formally as:

Comm Cost(SSk) = max
1≤i≤n

(SentBytesPi
,RcvdBytesPi

)/g

(3)
where the nominator of the fraction is the maximum
number of bytes to be sent or received by processor i
among n processors and g is network bandwidth.

Synchronization. The final determining factor of time
of a superstep is the time it takes for all processor nodes
to become synchronized and ready for the execution of
the subsequent superstep. This is a constant cost that is
dependent on the cost of sending a single message across
the diameter of the network in order to synchronize
processor nodes. We will not measure this cost in our
experiments and consider it as l.
Considering the above equations, we measure the time

of a single superstep when processing a vertex-centric
graph computation as follows:

Cost(Superstep) = max
1≤i≤n

(AV)× α+ max
1≤i≤n

(di × γ)× β

+ max
1≤i≤n

(SentBytes
i
,RcvdBytes

i
)/g+ l

(4)

3.2. Tradeoffs between Computation and

Communication

Considering equation 4, it is evident that in vertex-
centric parallel graph processing the interaction
of computation cost on each processor node and
communication cost among them are the two major

factors that can affect the performance of such clusters.
These two factors are also related to both placement
of graph vertices and the nature of graph algorithm
computation in terms of their message passing behavior.

In the processing of algorithms in which communica-
tion among vertices is intensive and vertices constantly
send messages to each other, communication determines
the performance of parallel clusters. In such compu-
tations, lowering communication cost is an important
criterion. Applying heuristic-based algorithms such as
min-cut to place the vertices among processor nodes will
lead to better results for this criterion and consequently
improve the performance.

On the other hand, there are graph algorithms the
computations of which are not communication intensive.
Therefore, the determining factor of the performance
is the computation costs of the processors. To improve
this factor, the load should be evenly distributed among
processor nodes. Random assignment of graph vertices
to processor nodes can be a candidate to meet this goal.
In next section, we consider different graph algorithms

and show the differences in terms of their message
passing behaviors when a vertex-centric approach is used
to implement them.

3.3. Graph Algorithms

We begin our discussion by providing the pseudo codes
for three graph algorithms, namely the PageRank [18],
Dijkstra’s algorithm for the Single Source Shortest
Path problem [19] (SSSP, here after) and the Weakly
Connected Components (WCC, here after) which is
similar to the distributed version of the HCC (Highly
Connected Components) mentioned in [7], in Alg. 1, 2
and 3, respectively. These graph algorithms behave
differently in terms of message passing among graph
vertices. In vertex-centric parallel processing of a graph,
a vertex changes its state to active upon receiving a
message from the previous superstep. Thus, the manner
in which a graph vertex sends messages to other vertices
can be different for different graph algorithms.
As seen in Alg. 1 (line 13) during the computation of

PageRank, a vertex changes its state to inactive when the
maximum number of supersteps is reached. Otherwise,
it will continue to update its value and participate in
computation. In other words, in each superstep, the
vertices of the graph are active, and they continue to
send messages to their neighbors. The computation of
PageRank will terminate when the maximum number of
provided supersteps has been executed and finished.

On the other hand, as shown in Alg. 2, an SSSP vertex
will vote to halt whenever its value does not update
to a newer one (line 10). Otherwise, it will update its
value with the new shortest distance from the source
vertex. By becoming active, it will also send messages
to its neighbors and inform them about it updated

5
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

Algorithm 1 Vertex-Centric Implementation of PageRank

1: function ComputePR(msgs,superstep)
2: if vrtx has no ngbr then

3: V ote to Halt

4: end if

5: if superstep ≥ 1 then

6: sum← 0
7: for msg in msgs do

8: sum← sum+msg.val

9: end for

10: numV rts = len(ngbrs)
11: prV al← PR(sum, nmV rts)
12: sendMsg(ngbrs, numV rts)
13: if superstep = maxSuperStep then

14: V ote to Halt

15: end if

16: end if

17: end function

value. The computation of the SSSP algorithm might
not necessarily terminate when exactly the predefined
number of supersteps is reached. It might end earlier due
to the above mentioned message passing behavior.

Alg. 3 shows the pseudo code of the Weakly
Connected Components (WCC). The approach used for
computation of the WCC is as follows: During multiple
iterations of the WCC algorithm, vertices send their
labels to each other and then store the maximum value
that they have received until their convergence criterion
is met. In vertex-centric implementation of the WCC,
in first superstep, the vertices begin the computation
by assigning their IDs to their component IDs (the
identifier that shows which component a vertex belongs
to). Then, they send this value to the vertices that
they are connected to. In the next supersteps, the
vertices update their component IDs to the value of the
component ID that they have received the most up to
that point. If this value (component ID) gets updated,
they inform their neighbors by sending the updated value
to them. Otherwise, they become inactive and do not
participate in the computation. This kind of message
passing behavior is similar to that of SSSP where

Algorithm 2 Vertex-Centric Implementation of SSSP

1: function ComputeSSSP(msgs,superstep)
2: if IsSource(vID) then

3: minDis← 0
4: else

5: minDis←∞

6: end if

7: for msg in msgs do

8: mindDis = min(mindDis , msg.val)
9: end for

10: if minDis ≤ vrtxV al then

11: vrtxV al← minDis

12: sendMsg(ngbrs, vrtxV al)
13: else

14: V ote to Halt

15: end if

16: end function

Algorithm 3 Vertex-Centric Implementation of WCC

1: function ComputeWCC(msgs,superstep)
2: if IsFisrtSuperstep(superstep) then

3: wccID← vID

4: sendMsg(ngbrs,wccID)
5: else

6: for msg in msgs do

7: recwccID← getwccID(msg)
8: updatewccCounter(recwccID,wccCounter)
9: end for

10: maxSeenwccID = maxSeen(wccCounter)
11: if wccID 6= maxSeenwccID then

12: wccID← maxSeenwccID

13: sendMsg(ngbrs,wccID)
14: else

15: V ote to Halt

16: end if

17: end if

18: end function

the computation might end before it goes through the
maximum number of provided supersteps. However, in
SSSP, the computation begins from a single source vertex
and moves throughout the topology of the graph until
its termination, whereas in computation of the WCC,
all of the vertices become active at the beginning of the
first superstep and, depending on the manner in which
their component IDs get updated, might participate in
the next phases of computation or not.

3.4. Illustration of Tradeoffs

In this section, we demonstrate the tradeoffs between
computation and communication by tracking the
execution of the vertex-centric implementation of SSSP
algorithm on a sample graph during six supersteps.
Consider the graph in Figure 3. It has ten vertices
(labeled ‘A’ through ‘J’) and eleven weighted edges. We
assume that vertex ‘A’ is the source, and we want to
find a path with minimum cost from this vertex to all
other vertices. In Figure 3, this graph is placed among
two processor nodes (shown with dotted lines) based
on the result of min-cut computation. As shown, there
are two inter cluster edges. For each vertex, we also
show the minimum cost seen so far from vertex ‘A’
next to the vertex. The gray vertices denote those that
are active during each superstep. Figure 3.a shows the
first superstep. In this superstep, only vertex ‘A’ (source
vertex) is active. The number on top corner shows the
number of vertices that are active (and hence participate
in the computation). Superstep one continues as vertex
‘A’ sends a message to each of it neighbors. These
messages will be received in next superstep. In superstep
two, shown in Figure 3.b, three vertices are active and
all of these active vertices are in the same processor
node as the previous superstep. Notice that vertex ‘A’
is in an inactive state because it has not received any
messages in this superstep. Figure 3.c shows the third
superstep, where four vertices are active. Vertices ‘B’ and

6
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

Pr♦❝❡ss♦r ❆ Pr♦❝❡ss♦r ❇

❆

✵

❈

■

❊

●

❇

❋

❏

❉

❍

✻

✽

✷

✶

✺

✶�

✶
✸

✷

✻

✶
✁ ✂

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭✄✮

Pr♦❝❡ss♦r ❆ Pr♦❝❡ss♦r ❇

❆

❈

☎

■✆

❊

✝

●

❇

❋

❏

❉

❍

✻

✽

✷

✶

✺

✶�

✶
✸

✷

✻

✶
✞ ✂

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭✟✮

Pr♦❝❡ss♦r ❆ Pr♦❝❡ss♦r ❇

❆

❈

✠

■

❊

● ✼

❇

✡✝

❋

❏ ✠

❉

❍

✻

✽

✷

✶

✺

✶�

✶
✸

✷

✻

✶
☛ ☛

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ ✷

✭☞✮

❆

❈

■

❊

●

❇

❋ ✡✠

❏

❉ ☎

❍

✻

✽

✷

✶

✺

✶�

✶
✸

✷

✻

✶
✂ ☛

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭❞✮

❆

❈

■

❊

●

❇

✆

❋

❏

❉

❍ ✡✝

✻

✽

✷

✶

✺

✶�

✶
✸

✷

✻

✶
✂ ☛

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭✌✮

❆

❈

■

❊

●

❇

❋

❏

❉ ✾

❍

✻

✽

✷

✶

✺

✶�

✶
✸

✷

✻

✶
✂ ✁

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭✍✮

Figure 3. Execution of SSSP on Graph G(10,11) when graph vertices are partitioned based on result of min-cut.

‘J’ become active by receiving messages from vertex ‘E’
that has sent two messages from the first processor to
the second processor. The computation continues until
the last superstep where vertex ‘D’ updates its value
(Figure 3.f), and then since there is no active vertex,
it will terminate. As can be seen in 3, one processor is
always idle since no active vertex resides on it and does
not participate in the computation.

Figure 4 depicts the same computation on the same
graph where the vertices are partitioned among two
processor nodes at random. In the first superstep
(Figure 4.a), vertex ‘A’ is active and starts the
computation. The vertex sends messages to its
neighbors. In second superstep, the vertices residing
on it become active and hence the processor node
performs the computation. The computation proceeds
by nodes exchanging their states from active to
inactive and updating their values. However, the number
of supersteps in which only one processor node is
participating in computation is half compared to that
of the min-cut approach (figures 4.a, 4.e and 4.f). Such
adjustment comes with a greater number of messages
that are sent among processor nodes.

Table 1 summarizes the above example of existing
tradeoffs between computation and communication costs
of vertex-centric parallel processing of graphs. In the
second column, we show the ratio of number of
supersteps in which only one processor node contains
the active vertice(s) to the total number of supersteps
for the execution of the SSSP. This ratio is a measure
of load imbalance. The last column displays the total
number of messages that are sent between two processor
nodes during execution of the SSSP. The communication

Table 1. Summary of tradeoffs between Communication
and Computation cost for the SSSP example

Ratio of ♯ of imbalanced Total ♯ of

Partitioning supersteps to total messages sent among

♯ of supersteps processor nodes

Min-cut 5/6 2

Random 3/6 6

cost is related to the communication cost. As depicted,
minimizing the amount of communication can create a
significant load imbalance, which is a determinant of the
overall system’s performance.

4. Experimental Evaluation

In this section, we define new performance metrics for
better quantifying the computational load distribution
among the nodes of a vertex-centric BSP cluster and the
communication load within the cluster. We also discuss
the experiments we have performed and their results.

4.1. Performance Metrics

The existence of the cost model that is both tractable and
accurate makes it possible to analyze efficiency of graph
algorithms when the vertex-centric programming model
is utilized. As shown in eq. 4, the following strategies
should be considered in order to achieve high efficiency
for a superstep time:

• balance the computation in each superstep among
processors for two reasons. First, we must consider
the maximum number of active vertices and the

7
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

Pr♦❝❡ss♦r ❆ Pr♦❝❡ss♦r ❇

❆

✵
●

❏

■

❉

❈

❊

❋

❇

❍

✽ ✻

✷

✺
✶

✶ ✶�

✸

✽

✷

✶

✁ ✂

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭✄✮

Pr♦❝❡ss♦r ❆ Pr♦❝❡ss♦r ❇

❆

●

❏

■

☎
❉

❈ ✆

❊

✝
❋

❇

❍

✽ ✻

✷

✺
✶

✶ ✶�

✸

✽

✷

✶

✁ ✞

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ ✷

✭✟✮

Pr♦❝❡ss♦r ❆ Pr♦❝❡ss♦r ❇

❆

●

✼
❏✠

■

❉

❈ ✠

❊

❋

❇ ✡✝

❍

✽ ✻

✷

✺
✶

✶ ✶�

✸

✽

✷

✶

✞ ✞

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ ✷

✭☛✮

❆

●

❏

■

❉✡✠

❈

❊

❋ ✆

❇

❍

✽ ✻

✷

✺
✶

✶ ✶�

✸

✽

✷

✶

✁ ✁

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ ✷

✭❞✮

❆

●

❏

■

❉

❈

❊

❋

❇ ☎

❍

✡✝✽ ✻

✷

✺
✶

✶ ✶�

✸

✽

✷

✶

✂ ✞

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭☞✮

❆

●

❏

■

❉✾

❈

❊

❋

❇

❍

✽ ✻

✷

✺
✶

✶ ✶�

✸

✽

✷

✶

✁ ✂

♥✉♠❜❡r ♦❢ ✐♥t❡r ♣r♦❝❡ss♦rs ♠❡ss❛❣❡s✿ �

✭✌✮

Figure 4. Execution of SSSP on Graph G(10,11) when nodes are randomly partitioned.

number of messages among processors. Second,
in the barrier synchronization phase, processors
must wait for the slowest processor to complete its
computation.

• balance the communication among processor nodes
since the maximum of received bytes and sent bytes
of data is taken among processor nodes.

In order to measure the load balance of a superstep in
terms of both of the factors (number of active vertices
and number of messages to receive) that affect the
computation phase of a superstep, we define the following
metrics. For the first factor, we define the average of
standard deviations of number of active vertices over
all supersteps to be the first metric to measure the
performance of load balance as follows:

Load Balanceav(N,K,A) =

K
∑

k=1

(

√

N∑

i=1

(AV (Pik)−µ)2

N
)

K
(5)

where Load Balanceav(N,K,A) is the load balance of
N processor nodes during K supersteps when running
graph algorithm A (in terms of number of active
vertices), AV(P

ik
) is the number of active vertices for

processor i at superstep k and µ is the average number
of active vertices on processor nodes in superstep k.
Similarly for the second factor of load balance, we

define the following metric:

Load Balancerm(N,K,A) =

K
∑

k=1

(

√

N∑

i=1

(RM(Pik)−µ)2

N
)

K
(6)

where Load Balancerm(N,K,A) is the load balance of
N processor nodes during K supersteps when running
graph algorithm A (in terms of number of received
messages), rm(P

ik
) is the number of received messages

for processor i at superstep k and µ is the average number
of received messages by all processor nodes in superstep
k. In order to measure the cost of the communication
phase among N processor nodes during K supersteps
when running graph algorithm A, we define the following
metric which is the sum of the averages of sent and
received bytes.

Comm Cost(N,K,A) =

K
∑

k=1

(

N
∑

i=1

(SentBytes(P
ik
)

N
)+

K
∑

k=1

(

N
∑

i=1

(ReceivedBytes(P
ik
)

N
)

(7)

4.2. Experimental Setup

In order to measure the performance of vertex-centric
graph algorithms in terms of the above metrics, we
have performed extensive experiments on different graph
datasets. The graph dataset information is shown
in table 2. The first three datasets (web-Stanford,
Amazon0601 and web-Google) are from [20]; the rest are
obtained by using Webgraph software [21].
We have used Amazon EC2 instances in order to

set up our clusters with different sizes. We performed
our experiments on clusters with 2, 4, 8 and 16 nodes
in order to investigate the effects of load balancing

8

EAI Endorsed Transactions on
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

and communication cost on clusters with different sizes.
Each node in our cluster is an Amazon’s “m3.medium”
instance type with single core high frequency Intel Xeon
E5-2670 v2 cpu, 3.75 GB of memory running Ubuntu
Server 14.04. The performance of our communication
network among processor nodes is set at a moderate
level. We also have used GPS to implement vertex-centric
the implementation of PageRank, SSSP and WCC graph
algorithms as provided in Algorithms 1, 2 and 3.
As the baseline for our experiments, first we examine

the random partitioning of graph vertices on processor
nodes. In this scenario, the graph vertices are randomly
placed on the processor nodes of clusters and no
structural properties of the graph are examined for the
placement of the graph vertices on cluster nodes. In
our experiments we refer to this approach as RND.
We also used the Metis [22] graph partitioning software
to partition the graphs and then distribute the graph
vertices among processor nodes based on the results of
Metis graph partitioning software. Metis uses multilevel
k-way partitioning algorithms to compute the min-cut
of a graph. Metis’ heuristic-based algorithms try to find
the best partitions where the number of inter-partitions
(cuts) are minimum while each partition holds the same
number of vertices. The idea here is that by performing
min-cut the communication cost of the cluster will be
lowered. We partitioned the graph so that each partition
has the same number of vertices while the number
of cross cluster edges are minimal. Then we assigned
each graph partition to a processor node. As we will
see in section 5, however, lowering communication cost
using Metis will result in lower load balance for SSSP
and WCC graph algorithms. We referred to this graph
partitioning scheme as MTS in our experiments.

4.3. Results

Load Balancing. In terms of the first performance
metric for load balancing (Load Balanceav) as shown

Table 2. Graph Datasets Information

Name of Graph Vertices Edges Description

web-Stanford 281,903 2,312,497
Web graph of
Stanford.edu

Amazon0601 403,394 3,387,388

Amazon product
co-purchasing
network from
June 1 2003

web-Google 875,713 5,105,039
Web graph from
Google

in-2004 1,382,908 16,917,053
the .in domain of
WWW graph

itwiki-2013 1,016,867 25,619,926
the italian part of
Wikipedia as late
as Feb 2013

ljournal-2008 5,363,260 79,023,142

LiveJournal
virtual
community social
site

in Figure 5, when the graphs are partitioned randomly
the load is evenly distributed among processor nodes.
However, when the graph vertices are distributed among
processors based on graph partitioning scheme (Metis)
the load of processors is very unbalanced as it is shown
with high values for average of standard deviation for
active vertices (see Eq. 5 for definition of this metric).
Figure 5 depicts the results for this metric for the
PageRank, SSSP and WCC algorithms for six different
graph datasets. As shown in this Figure, the load is
evenly distributed if the graph vertices are randomly
distributed among processor nodes compared to the case
when vertices are assigned to processors based on the
results of Metis. For instance, during computation of
PageRank algorithm for web-Stanford dataset (shown
in Figure 5.a) when the graph is partitioned between
two compute nodes in a random fashion, the average
of standard deviation for number of active vertices is
1. However, when the graph is partitioned between two
nodes based on the result of Metis, the same performance
metric will be 4,021. It is also noticeable that as the
number of processor nodes in the cluster increases from
2 to 16 the load imbalance decreases to almost half (for
instance from 7,349 for two nodes to 479 for sixteen nodes
in the case of in-2004 dataset and from 254,433 for two
nodes to 1,713 for sixteen nodes in the case of itwiki-
2013 dataset) when PageRank algorithm is computed.
Consequently, a possible solution for having a more
balanced load among processor nodes when running a
graph algorithm such as PageRank is to add more nodes
to the cluster.

In the case of the SSSP algorithm, the load balance
worsens as the number of processor nodes increases from
2 to 16 (for all graph datasets except ljournal-2008).
This is because during execution of the SSSP algorithm
the computation starts at some region of the graph,
and it propagates to other regions of the graph until
it terminates. Hence, the load balancing of this graph
algorithm in terms of active vertices is sensitive to the
starting vertex (source vertex) of the computation. For
ljournal-2008, however, this is not true since the starting
vertex for this graph is in a very dense part of the graph
where, by adding more nodes to the cluster, the load on
processor nodes becomes more balanced, and hence, the
average of standard deviation across supersteps becomes
lower. Similarly to the circumstances for PageRank,
random partitioning always outperforms the assignment
of graph vertices to processor nodes based on Metis in
terms of average standard deviation of active vertices
across supersteps.

Considering the computation of the WCC, we can see
that adding more compute nodes has a similar effect
to the SSSP on the first metric of load balancing for
different graph datasets. For instance, for itwiki-2013
graph dataset (Figure 5.e) the value for performance
metric 5 is 11,136 when the graph is partitioned among

9
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

 0

 1000

 2000

 3000

 4000

 5000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

a
v

web-Stanford
RND-2Nodes

1 26 24

MTS-2Nodes

4021

1007
871

RND-4Nodes

0 20 22

MTS-4Nodes

2407

1812

1441

RND-8Nodes

0 18 19

MTS-8Nodes

1085

2611

2225

RND-16Nodes

0 20 16

MTS-16Nodes

479

3514
3637

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

a
v

Amazon0601
RND-2Nodes

0 30 28

MTS-2Nodes

5884

1236

715

RND-4Nodes

1 28 27

MTS-4Nodes

2689

2165

1280

RND-8Nodes

0 30 26

MTS-8Nodes

1219

3605

2789

RND-16Nodes

0 22 23

MTS-16Nodes

683

4525 4647

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

a
v

web-Google
RND-2Nodes

0 28 27

MTS-2Nodes6262

542
374

RND-4Nodes

0 24 21

MTS-4Nodes

4894

1036
709

RND-8Nodes

1 22 17

MTS-8Nodes

2435

1447 1495

RND-16Nodes

0 18 14

MTS-16Nodes

747

1783

2601

a) web-Stanford b) Amazon0601 c) web-Google

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

a
v

in-2004
RND-2Nodes

0 32 28

MTS-2Nodes7349

751 634

RND-4Nodes

0 31 21

MTS-4Nodes

4994

1207 1047

RND-8Nodes

1 23 24

MTS-8Nodes

3653

1941 1837

RND-16Nodes

1 19 20

MTS-16Nodes

1379

2195

2745

 0

 50000

 100000

 150000

 200000

 250000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

a
v

itwiki-2013
RND-2Nodes

1 20 50

MTS-2Nodes254433

3358
11136

RND-4Nodes

0 25 66

MTS-4Nodes

220283

23046
13942

RND-8Nodes

0 20 60

MTS-8Nodes

14834
26704

16226

RND-16Nodes

0 15 51

MTS-16Nodes

1713

31067
19053

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

a
v

ljournal-2008
RND-2Nodes

0 56 231

MTS-2Nodes78232

21735

11193

RND-4Nodes

0 47 197

MTS-4Nodes

39088

12586
15572

RND-8Nodes

1 32 132

MTS-8Nodes

17754

6412

35784

RND-16Nodes

0 23 137

MTS-16Nodes

9276

3603

54210

d) in-2014 e) itwiki-2013 f) ljournal-2008

Figure 5. Load Balanceav performance metric for web-Stanford, Amazon0601, web-Google, in-2004, itwiki-2013 and
ljournal-2008 datasets

two compute nodes based on the results of Metis.
However, when the number of compute nodes increases
to sixteen (again, partitioning based on the results of
Metis), this metric has the value of 19,053.

The results for the second performance metric of the
load balance (Load Balancerm) is depicted in Figure 6.
Similarly to the first metric for the load balance,
randomly assigning graph vertices to the processor nodes
leads to a lower average of standard deviations across
supersteps for the number of received messages by
processors as compared to instances in which a graph
partitioning scheme such as Metis is used. This is because
of the correlation between the number of active vertices
and received messages and the fact that the graph vertex
changes its state from inactive to active upon receiving
messages. This also demonstrates that, when graph
partitioning mechanisms such as Metis are used, the load
among processors is distributed unevenly in terms of the
active vertices that processors have to handle in order to
perform the computation.

In conclusion, as it is shown both in Figure 5 and 6,
the random assignment of graph vertices to processor of

clusters leads to better load distribution among processor
nodes of a cluster compared to when a graph partitioning
scheme such as Metis is used. However, as we will see in
the next section, using Metis has advantages in terms
of communication cost of the cluster when the nature of
the graph algorithm requires high communication among
processors. We also notice that one way to have better
load balancing in a cluster is to add more nodes to the
cluster.

Communication. For the performance metric related
to the communication cost, Comm Cost (see Eq. 7),
utilizing graph partitioning solutions such as Metis
can be beneficial as illustrated in Figure 7. The
communication cost is in MB(s) and as is shown
when the number of nodes in the cluster increases,
the communication cost increases too. This situation is
worse for a graph algorithm such as PageRank, which
is communication intensive. However, when Metis is
used this cost drops down significantly because by using
graph partitioning the vertices that are highly connected
and formed into dense clusters are grouped together
and assigned to the same processor node. Hence, the

10

EAI Endorsed Transactions on
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

 0

 200

 400

 600

 800

 1000

 1200

 1400

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

rm

web-Stanford
RND-2Nodes

190

0 16

MTS-2Nodes
1484

11

241

RND-4Nodes

167

1
36

MTS-4Nodes

1019

17

337

RND-8Nodes

125

0
59

MTS-8Nodes

729

28

614

RND-16Nodes

101

1
72

MTS-16Nodes

314

38

723

 0

 500

 1000

 1500

 2000

 2500

 3000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

rm

Amazon0601
RND-2Nodes

229

1 31

MTS-2Nodes
3053

20

496

RND-4Nodes

195

3 56

MTS-4Nodes

2167

29

572

RND-8Nodes

141
2 68

MTS-8Nodes

1906

37

837

RND-16Nodes

117
3

81

MTS-16Nodes

827

47

998

 0

 1000

 2000

 3000

 4000

 5000

 6000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

rm

web-Google
RND-2Nodes

238
1 52

MTS-2Nodes

6109

23

818

RND-4Nodes

202
3 67

MTS-4Nodes

5839

35

1199

RND-8Nodes

165
3 76

MTS-8Nodes

4362

41

1671

RND-16Nodes

131 5 87

MTS-16Nodes

2834

49

1893

a) web-Stanford b) Amazon0601 c) web-Google

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

rm

in-2004
RND-2Nodes

249
1 65

MTS-2Nodes

7655

31

880

RND-4Nodes

216
1 72

MTS-4Nodes

7287

44

1491

RND-8Nodes

179
1 81

MTS-8Nodes6060

48

1853

RND-16Nodes

147 0 93

MTS-16Nodes
5798

53

2017

 0

 10000

 20000

 30000

 40000

 50000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

rm

itwiki-2013
RND-2Nodes

641 3 97

MTS-2Nodes

47841

50
1462

RND-4Nodes

528 3 103

MTS-4Nodes41423

192
2149

RND-8Nodes

337 2 159

MTS-8Nodes

2381
165

4467

RND-16Nodes

323 1 192

MTS-16Nodes

1947
253

9669

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

PageRank SSSP WCC

L
o

a
d

 B
a
la

n
c
e

rm

ljournal-2008
RND-2Nodes

404 1 159

MTS-2Nodes

84480

265

30180

RND-4Nodes

250 1 99

MTS-4Nodes

46018

200

20637

RND-8Nodes

157 1 62

MTS-8Nodes

28214

119

11733

RND-16Nodes

83 1 56

MTS-16Nodes

14278

91
3313

d) in-2014 e) itwiki-2013 f) ljournal-2008

Figure 6. Load Balancerm performance metric for web-Stanford, Amazon0601, web-Google, in-2004, itwiki-2013 and
ljournal-2008 datasets

processor node does not need to send a message across
the cluster to another node as it holds the neighboring
vertices.

In the case of the SSSP and WCC algorithms, the
benefits of using a graph partitioning solution such as
Metis is not very significant since the graph algorithm
is not very intensive in terms of communication
volume. As mentioned before, the computation of the
SSSP algorithm starts at a source vertex and the
communication among graph vertices initiates at a local
region of the graph that contains the source vertex.
The communication among vertices then propagates
throughout the graph structure until all the graph
vertices update their value (shortest distance from
source). This marks the end of the SSSP computation.
Compared to the PageRank algorithm, the SSSP
computation involves less communication.

In conclusion, as it is shown in Figure 7, when the
communication volume of the graph algorithm in terms
of bytes the network has to deliver to processor nodes
is very high, the application of the graph partitioning
solution is beneficial to the communication cost of the

network. However, this solution leads to load imbalance
as we saw previously in Figure 5 and 6.

Time. Figure 8 shows the total time of completion for
three graph algorithms for clusters with different sizes
when random partitioning and Metis based partitioning
is used. The bar graphs in this figure reveal several
findings. First, for PageRank computation of all datasets,
as the number of nodes in the cluster increases, the total
time of completion decreases and execution is completed
faster. This is because of better load balancing both in
terms of number of active vertices and received messages
(as shown previously in Figure 5 and 6).
Second, when the graph algorithm has a high volume

of communication (e.g. PageRank), using Metis in order
to decrease the communication cost leads to a significant
benefit in terms of faster execution time. This reveals
the fact that, in the case of the PageRank computation
for these three datasets, communication among processor
nodes is the dominant factor in determining the ultimate
cost of execution.
Third, for the computation of the SSSP and the WCC

algorithms, as shown in the middle and right parts of the

11
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

 0

 5

 10

 15

 20

 25

 30

PageRank SSSP WCC

C
o

m
m

u
n

ic
ta

ti
o

n
 (

M
B

)

web-Stanford
RND-2Nodes

1
3

.8
6

.5
1

5
.0

1

MTS-2Nodes

4
.3

4

0
.0

1 1
.8

4

RND-4Nodes

2
0

.8
1

.6
3

8
.9

3

MTS-4Nodes

7
.7

2

0
.0

2

2
.5

2

RND-8Nodes2
4

.2
6

.7
4

1
0

.2
1

MTS-8Nodes

9
.4

1

0
.0

3

3
.9

7

RND-16Nodes

2
6

.0
1

.8
9

1
1

.0
3

MTS-16Nodes

1
0

.7
5

0
.0

4

4
.2

1

 0

 5

 10

 15

 20

 25

 30

 35

 40

PageRank SSSP WCC

C
o

m
m

u
n

ic
ta

ti
o

n
 (

M
B

)

Amazon0601
RND-2Nodes

2
1

.1
2

.6
3

1
3

.9
1

MTS-2Nodes

6
.0

1

0
.0

1

3
.6

7

RND-4Nodes

3
1

.4
4

.7
5

2
0

.7
0

MTS-4Nodes

8
.3

2

0
.0

2

4
.8

2

RND-8Nodes

3
6

.3
0

.8
0

2
3

.9
1

MTS-8Nodes

1
0

.0
3

0
.0

3

5
.4

2

RND-16Nodes

3
8

.5
0

.9
3

2
5

.3
5

MTS-16Nodes

1
2

.8
6

0
.0

4

6
.9

6

 0

 10

 20

 30

 40

 50

 60

 70

 80

PageRank SSSP WCC

C
o

m
m

u
n

ic
ta

ti
o

n
 (

M
B

)

web-Google
RND-2Nodes

3
6

.6
3

1
.2

8

1
4

.9
2

MTS-2Nodes

7
.3

2

0
.1

3 5
.1

3

RND-4Nodes

5
1

.9
3

1
.7

2

2
2

.3
8

MTS-4Nodes

1
0

.5
3

0
.1

6

6
.2

1

RND-8Nodes

5
9

.5
9

2
.0

1

2
6

.1
1

MTS-8Nodes

1
2

.6
1

0
.1

8

7
.0

6

RND-16Nodes

6
6

.3
6

2
.0

6

2
7

.4
7

MTS-16Nodes

1
4

.3
8

0
.1

9

8
.3

8

a) web-Stanford b) Amazon0601 c) web-Google

 0

 50

 100

 150

 200

 250

PageRank SSSP WCC

C
o

m
m

u
n

ic
ta

ti
o

n
 (

M
B

)

in-2004
RND-2Nodes

1
0

2
.8

0

0
.8

1

4
2

.3
1

MTS-2Nodes

3
2

.3
2

0
.0

1

5
.2

4

RND-4Nodes

1
5

3
.9

1

1
.2

1

5
7

.7
8

MTS-4Nodes

3
9

.6
8

0
.0

2 1
1

.5
9

RND-8Nodes

1
7

6
.9

6

1
.3

3

7
2

.0
7

MTS-8Nodes

4
7

.8
4

0
.0

3

1
5

.8
7

RND-16Nodes

2
0

0
.4

7

1
.4

7

8
6

.0
1

MTS-16Nodes

5
8

.3
1

0
.0

4

2
1

.7
3

 0

 50

 100

 150

 200

 250

 300

 350

PageRank SSSP WCC

C
o

m
m

u
n

ic
ta

ti
o

n
 (

M
B

)

itwiki-2013
RND-2Nodes

1
5

5
.6

1

1
.9

1

5
2

.3
3

MTS-2Nodes

4
2

.4
4

.5
1 1

3
.9

8

RND-4Nodes

2
3

2
.6

2

2
.8

2

7
8

.2
2

MTS-4Nodes

6
4

.4
3

.6
2

2
2

.8
7

RND-8Nodes

2
7

0
.5

1

3
.2

1

9
0

.9
0

MTS-8Nodes

7
1

.7
3

.6
4

2
6

.0
5

RND-16Nodes

2
8

8
.9

8

4
.0

7

9
7

.1
6

MTS-16Nodes

8
4

.6
5

.7
3

2
9

.2
3

 0

 200

 400

 600

 800

 1000

PageRank SSSP WCC

C
o

m
m

u
n

ic
ta

ti
o

n
 (

M
B

)

ljournal-2008
RND-2Nodes

4
8

1
.0

3

4
.5

1

2
3

0
.2

0

MTS-2Nodes

8
3

.4
1

.4
1 2
2

.8
5

RND-4Nodes

7
1

6
.6

4

6
.6

0

3
4

3
.0

4

MTS-4Nodes

9
1

.4
1

.8
5 4

3
.8

5

RND-8Nodes8
3

1
.5

5

7
.8

0

3
9

7
.7

3

MTS-8Nodes

1
1

6
.7

3

1
.1

3 5
5

.0
7

RND-16Nodes

8
8

5
.9

3

8
.2

4
2

3
.9

8

MTS-16Nodes

1
2

1
.1

8

1
.3

9 6
0

.9
9

d) in-2014 e) itwiki-2013 f) ljournal-2008

Figure 7. Communication Cost performance metric for web-Stanford, Amazon0601, web-Google, in-2004, itwiki-2013 and
ljournal-2008 datasets

graphs, it is evident that when Metis based partitioning
of graph vertices to the processor nodes is applied the
total time of completion is longer compared to random
partitioning. In fact, utilizing graph partitioning has
a negative effect on the performance of the system.
The explanation for this phenomenon is depicted in
the results of load balancing as well as communication
cost for this graph partitioning scenario. As shown in
Figure 7, the achieved benefit in terms of lowering the
communication volume is insignificant when Metis is
used for the SSSP graph algorithm. On the other hand,
the load imbalance in terms of both number of active
vertices and received messages is high for the SSSP and
the WCC when Metis is used (Figure 5 and 6). These
two factors (low benefit of graph partitioning and high
load imbalance) lead to higher completion time for all
datasets.

Finally, it is noticeable in Figure 8 that the time of
completion for the SSSP also increases as more nodes are
added to the cluster. This reemphasizes that the number
of active vertices and received messages by the processors

(load) is the dominant factor in determining the total run
time of the SSSP.

5. Related Work

The extensive body of research in the field of distributed
processing of large graphs covers a variety of topics
including different computational models, graph storage
and query processing, static and dynamic graph
partitioning, minings and analysis of social networks
data, etc. Here, we will review the contributions to the
field that are closely related to our work. First, we
will review the contributions and trends in algorithms
for graph partitioning. Then, we will review different
systems and frameworks, as well as computational
models for processing large graphs.

5.1. Graph Partitioning Applications and Methods

Graphs are one of the mathematical abstractions that
are used by many for modeling different applications.
Partitioning the graph into smaller clusters in order
to lessen the complexity of a problem is an important

12
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

 0

 10

 20

 30

 40

 50

 60

PageRank SSSP WCC

T
im

e
 (

S
e
c
o

n
d

s)

web-Stanford
RND-2Nodes

4
8

.4

2
2

.8

2
9

.6

MTS-2Nodes

3
8

.2

2
4

.8

3
3

.2

RND-4Nodes

3
7

.4

2
3

.3

3
1

.4

MTS-4Nodes

2
9

.9

2
6

.4

3
6

.0

RND-8Nodes

2
7

.7

2
4

.6

3
3

.1

MTS-8Nodes

2
1

.1

2
8

.0

3
8

.8

RND-16Nodes

1
9

.9

2
5

.9

3
5

.6

MTS-16Nodes

1
7

.8

3
1

.7

4
1

.1

 0

 10

 20

 30

 40

 50

 60

 70

PageRank SSSP WCC

T
im

e
 (

S
e
c
o

n
d

s)

Amazon0601
RND-2Nodes

5
7

.1

2
6

.3

3
4

.7

MTS-2Nodes

4
3

.1

3
0

.8

3
9

.1

RND-4Nodes

4
0

.1

2
4

.7

3
2

.6

MTS-4Nodes

3
0

.1

2
8

.7

3
6

.3

RND-8Nodes

2
7

.7

3
1

.6 3
4

.9

MTS-8Nodes

2
9

.6

3
5

.4 3
8

.7

RND-16Nodes

2
5

.1

3
4

.9

3
6

.2

MTS-16Nodes

2
0

.4

3
9

.1 4
1

.4

 0

 20

 40

 60

 80

 100

 120

 140

PageRank SSSP WCC

T
im

e
 (

S
e
c
o

n
d

s)

web-Google
RND-2Nodes

8
3

.2

8
1

.7

8
4

.8

MTS-2Nodes

6
6

.6

8
5

.8

8
8

.2

RND-4Nodes

6
2

.7

8
7

.4

8
9

.3

MTS-4Nodes

4
7

.9

9
1

.3

9
3

.1

RND-8Nodes

4
6

.0

8
9

.3

8
4

.8

MTS-8Nodes

3
6

.7

9
3

.9 9
7

.3

RND-16Nodes

3
4

.9

9
2

.6 9
6

.7

MTS-16Nodes

2
8

.8

9
6

.9 1
0

2
.2

a) web-Stanford b) Amazon0601 c) web-Google

 0

 20

 40

 60

 80

 100

 120

 140

PageRank SSSP WCC

T
im

e
 (

S
e
c
o

n
d

s)

in-2004
RND-2Nodes

9
4

.1 9
9

.3

9
6

.7

MTS-2Nodes

7
6

.1

1
0

8
.2

1
0

6
.1

RND-4Nodes

7
2

.2

9
7

.6

9
8

.1

MTS-4Nodes

5
5

.2

1
0

5
.9

1
0

8
.9

RND-8Nodes

5
6

.2

1
0

3
.5

1
0

1
.0

MTS-8Nodes

4
7

.2

1
1

1
.4

1
1

2
.1

RND-16Nodes

4
5

.8

1
0

7
.6

1
0

2
.9

MTS-16Nodes

3
3

.5

1
1

6
.1

1
1

5
.3

 0

 50

 100

 150

 200

PageRank SSSP WCC

T
im

e
 (

S
e
c
o

n
d

s)

itwiki-2013
RND-2Nodes

1
6

4
.1

7
1

.2

1
1

4
.6

MTS-2Nodes

1
4

4
.1

7
8

.2

1
2

4
.8

RND-4Nodes

1
5

0
.4

7
0

.3

1
1

6
.4

MTS-4Nodes

1
0

0
.2

7
8

.4

1
2

6
.2

RND-8Nodes

1
2

9
.4

7
4

.9

1
1

9
.8

MTS-8Nodes

6
5

.3

8
1

.1

1
2

9
.5

RND-16Nodes

1
0

1
.2

7
9

.3

1
2

4
.8

MTS-16Nodes

3
0

.7

8
6

.4

1
3

3
.1

 0

 100

 200

 300

 400

 500

 600

 700

PageRank SSSP WCC

T
im

e
 (

S
e
c
o

n
d

s)

ljournal-2008
RND-2Nodes

5
8

9
.2

1
3

3
.2

2
2

0
.3

MTS-2Nodes

5
1

9
.2

1
4

3
.2

2
3

5
.3

RND-4Nodes

3
0

3
.2

1
1

9
.2

2
2

6
.6

MTS-4Nodes

2
7

8
.1

1
2

9
.3

2
4

3
.1

RND-8Nodes

1
5

9
.2

1
0

3
.5

2
3

2
.4

MTS-8Nodes

1
4

3
.2

1
1

7
.5

2
5

3
.1

RND-16Nodes

1
1

4
.7

9
7

.8

2
5

6
.7

MTS-16Nodes

1
0

1
.9

1
0

6
.6

2
7

1
.7

d) in-2014 e) itwiki-2013 f) ljournal-2008

Figure 8. Time performance metric for web-Stanford, Amazon0601, web-Google, in-2004, itwiki-2013 and ljournal-2008
datasets

subproblem that has extensive applications in many
different areas including parallel scientific computing
and mesh partitioning ([23], [24], [25], [26]), power grids
design ([27], [28], [29]), biological networks analysis
([30], [31]), social networks analysis ([32], [33]), road
networks design ([34], [35], [36], [37], [38], [39]), image
processing([40], [41]) and VLSI design ([42], [43]).
Graph partitioning is an NP-Complete problem,

however, there are many algorithms that find near
optimal solutions. These methods and techniques can
be classified into two broad groups, Static methods and
Dynamic ones.

Static Graph Partitioning Methods. Static Graph
partitioning involves partitioning of the vertices of a
graph in p roughly equal partitions such that the
number of edge cuts (edges connecting vertices in
different partitions) is minimized. In this class of graph
partitioning methods, the global information about the
graph is known and the structure of the graph is
stable and does not change. One well known class
of methods for static graph partitioning is spectral
partitioning methods that are used extensively, and

are known to produce good partitions. These methods
were first pioneered by [44], [45] and [46] and involve
the computation of the eigenvector (Fielder vector)
corresponding to the second smallest eigenvalue of the
Laplacian matrix L of the graph. However, these methods
are very expensive in terms of computation and further
improvements were introduced in works of [47], [48], [49]
and [50]. In [49], a multilevel spectral bisection method
is introduced for fast approximation of the Fielder vector
that leads to an order of magnitude faster solution time
with no loss in the quality of edge cuts.

Another type of static graph partitioning techniques
utilizes the geometric information of the graph vertices in
space to find good solutions. Although these algorithms
([51], [52], [53], [54], [55]) tend to be fast, they often
find partitions that are worse compared to those yielded
by spectral methods. The more promising in this class of
algorithms are [52] and [53] that use recursive coordinate
bisections to map the graph vertices onto coordinate
axis with the longest expansion of domains. Applications
of geometric graph partitioning algorithms are limited
to the graphs in which the coordinates of their nodes

13
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

are available. These applications include finite elements
models and graphs from traditional scientific computing
where the information about the geometry of the nodes
are known. However, in the field of VLSI design and
integer programming where such information is not
available, geometric algorithms are not applicable.
Multilevel static graph partitioning schemes are

another class of techniques that have shown to be
the most successful solutions for partitioning large
graphs. The idea in these methods is to coarsen
the graph by collapsing the vertices and edges,
partition the smaller graph and finally uncoarsen the
graph to construct a partition for the original graph
([56], [57], [58], [59], [60], [61] and [62]). The goal
of coarsening (or contraction) phase is to gradually
decrease the size of the original graph by creating a
hierarchy of consecutive graphs that are decreasing in
size in a manner that partitions (cuts) of the coarsened
graphs indicate the partitions (cuts) of the fine graph
in higher levels of hierarchy. Multiple heuristics have
been proposed for this step including Random Maximal
Matching [56], Light Edge Matching and Heavy Edge
Matching [63], [64]. The contraction phase terminates
when graph is small enough to utilize a fast, efficient
and near optimal technique such as Kernighan-Lin
algorithm [65] to compute the initial partitions. During
the uncoarsening phase, two steps will take place. First,
the solution of the coarsened graph is projected on to
the fine graph at the higher level. Second, using different
metaheuristics such as node-swapping local search such
as [66] or [67] further improvements are provided on
quality of partitions. These two steps are performed
during the uncoarsening phase until the finest level of
hierarchy (original graph) has been processed.

Intuitively speaking, the multilevel graph partitioning
algorithms perform so well for several reasons. First, by
grouping the vertices of the graph together during the
coarsening phase, the granularity at which the graph
partitioning heuristics will be applied is increased. In
other words, partitioning the coarsened graph results
in the partitioning of lots of graph vertices without
escalating the execution time. Second, the movement of
a single node during the coarsening phase results in a
lot of change in the final solution. Thus, it would be
easier to find improvements at this level compared to
finest level. Third, because solutions at coarser level
yield good results as starting points for next level in
hierarchy during uncoarsening phase, the improvments
at finer level are expected to run faster. These methods
can also be easily parallelized because the global solution
is achieved by local processings [68], [69].

Similar to the above idea of multilevel graph
partitioning, the authors in [70] have proposed a
framework based on label propagation that enables
partitioning of a billion node graph. In this system,
the graph iteratively is coarsened by the result of the

label propagation. Then, once the graph size is sufficient,
a graph partitioner will partition the graph and, the
result is projected back to the graph. This framework
is applicable for static graphs and is not suitable when
the topology of the graph changes.

The authors in [71] considered the problem of
static graph partitioning for large scale-free (power
law) graphs. They have shown the benefits of the
two-dimensional (edge partitioning) graph partitioning
methods over the one-dimensional (vertex partitioning)
layouts by performing an empirical comparison of several
distributions of each of the above categories for the
problem of sparse matrix-vector multiplication on large
scale-free graphs. They also have proposed a new two-
dimensional graph partitioning scheme that exploits the
information in the graph structure and the topology
which outperforms other edge partitioning methods for
the problem of sparse matrix-vector multiplication.

Dynamic Graph Partitioning Methods. In dynamic
graph partitioning, the structure of the graph changes
with time and only local information about parts of
the vertices and edges of the graph might be available.
These algorithms assign edges and vertices based on the
local information they have. Their goal is to find a close-
to-optimal balanced partitioning with minimal memory
usage and computational overhead while maintaining
good edge cuts compared to that of static graph
partitioning methods.

With regards to dynamic graphs partitioning or
streaming graph partitioning, [72] considered various
heuristics to assign graph vertices to the processor
nodes. The difference between this work and static
graph partitioning is the underlying assumption that
information about all vertices and their adjacent
neighbors is not known beforehand and that we must
partition the graph as the stream of graph vertices
are added to the system. [72] shows that their ‘Linear
Deterministic Greedy’ (LDG) heuristics performs best
when the incoming vertex is assigned to a processor
node based on both the capacity of the processor node
and the number of adjacent vertices. This heuristic is a
single process that can be done as a pre step to other
graph partitioning mechanisms. An extension of [72] is
reflected in [73], where streaming graph vertices becomes
an iterative process. The “restreaming” version of (LDG)
has the ability to reassign the vertices of graph to
processor nodes upon changes in graph topology. In [73],
the problem of stratified graph partitioning is addressed,
which assumes that graph vertices have many attributes.
The problem of stratified graph partitioning would then
be how to do so such that each partition has a similar
distribution for each of the different strata.

14

EAI Endorsed Transactions on
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

5.2. Big Graphs Processing Systems and

Computational Models

Bulk Synchronous Parallelism (BSP) was first introduced
at [17] as a computational model for general purpose
parallelism. Its fundamental properties are being able
to write simple parallel programs that are independent
of target architecture and also having predictable
performance on a given architecture. Pregel [1] was
the first system to extend this computational model
to graph processing and is a proprietary product of
Google. In this system, efficient, scalable and fault-
tolerant implementation of the BSP model is utilized on
clusters of thousands of nodes. Google has introduced a
simple API that facilitates writing vertex-centric graph
algorithms that can be used on their cluster.

Apache Giraph [2] is an open source counterpart of the
Pregel that is in use at Facebook to analyze their social
graph data formed by its users and their interactions.
Compared to basic Pregel, Giraph has several additional
features such as master computation and out of core
computation.

GraphLab [3] is another computation abstraction that
was developed by Carnegie Mellon University and is
tailored for machine learning tasks. Their computational
model is different than BSP as they use asynchronous
message passing among processors in order to achieve
a high degree of parallel performance in their machine
learning tasks.

PowerGraph [74] is a distributed adaptation of
GraphLab. In this work, the authors have targeted
processing of graphs with power-law degree distribution.
High efficiency of processing such graphs in this system
is achieved by introducing a new vertex-partitioning
model as well a novel programming model, namely
Gather-Apply-Scatter (GAS). This programing model is
conceptually very similar to that of Pregel, however, it
utilizes the internal structure of the graphs to partition
the vertices among processor nodes.

GraphChi [75] is a system that has been introduced for
efficiently processing graph algorithms. The computation
model of GraphChi is vertex-centric. However, it is based
on a single machine, and it accomplishes computation
of different graph analytics using sequential disk access
with a parallel sliding window method. This method
implements the asynchronous model of computation and
resembles the single machine based version of GraphLab.
This is an advantage over synchronous manner of
computation of BSP (and Pregel-like) system as the
convergence of graph algorithms can accelerate.

Spark [76] is another framework that extends
MapReduce model of computation in order to support
iterative machine learning and graph algorithms. This
extension is done through introduction of a read-only
collection of resilient distributed datasets (RDDs). These
datasets can be placed across a set of machines running

MapReduce and have the ability to recover a partition if
lost.
Pegasus [7] utilizes a MapReduce model of compu-

tation. It models iterative graph algorithms as general-
ized matrix-vector multiplications. It then uses different
methods such as block multiplication, clustered edges
and diagonal block iteration (that are based on the
features of a matrix) to achieve faster performance
compared to a single MapReduce job. However, its
performance is lower than systems that are based on
message passing.
Trinity [77] is a framework for general purpose

computation of different online graph query answering
and offline graph analytics over the cloud. It achieves
high performance by providing a distributed low latency
key value graph storage where data is stored in a
binary format. Trinity provides a more restrictive but
similar model of computation to Pregel in which a vertex
can only send messages to fixed number of vertices
(usually neighbors). This restrictive model is used in
offline graph algorithms. The rationalization behind
this restrictive design decision is two-fold. First, the
authors have observed that the computation of many
offline algorithms can be accomplished by limiting the
access of vertices to their neighbors. Second, it provides
the opportunity to predict the communication pattern
among graph vertices during each iteration which enables
optimization of network communication.
Mizan [78] follows the Pregel model of computation

and is implemented in C++. It provides dynamic load
balancing and vertex migration based on monitoring
the results of vertex computation. This provides the
opprotunity to optimize the computation by reducing
the communication cost among the compute nodes.
Mizan uses the Metis graph partitioning software before
distributing the graph vertices and edges among the
compute nodes, which can lead to lower performance
compared to other systems such as Giraph.
Kineograph [79] considers the problem of graph

processing from a different perspective. It is a distributed
computing engine to support execution of different graph
mining algorithms on time-evolving graphs. It creates a
constantly changing graph from a stream of data with
relationships among the entities in datasets and then
uses the proposed new epoch commit protocol to build
different consistent and static snapshots of the graph
to be used by graph-mining algorithms. The authors
have performed different experiments to analyze Twitter
data feeds including user ranking, approximating the
shortest path between users and detection of disputed
topics at rates higher than reported peaks of Twitter
and reported different levels of guarantees for response
time for different rates of tweets as well as cluster sizes.
In [80], the authors have made an experimental

comparison among vertex-centric graph processing
systems. They proposed a framework for comparisons

15
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

A. Abdolrashidi, L. Ramaswamy

among four open-source Pregel-like systems and
measured different performance metrics including
memory and network bandwidth usage and running time.
They also have discussed different aspects of each system
in terms of ease of use and development of graph data
processing.
Ligra [81] (LIghtwieght Interface for GRaph Algo-

rithms) differs from above-mentioned systems in several
ways. First, compared to the other systems, Ligra is
designed for shared memory multicore machines where
a graph with tens or even hundreds of billions of vertices
and edges can fit into the shared memory. The benefit
of utilizing a single multicore server of that caliber for
processing large graphs is the significant reduction of
communication costs. Second, Ligra is well suited for
graph traversal problems such as shortest paths, graph
radii estimation, graph connectivity and betweenness
centrality. The authors have focused on Breadth-First
Search (BFS) like algorithms where at each iteration
of algorithm a subset of vertices are considered. For
this types of graph algorithms, they have proposed a
new abstraction called Vertex Subset. They also have
proposed two other constructs for mapping vertices
(Vertex Map) and mapping edges (Edge Map) and have
developed different graph algorithms based on these
constructs. However, they have not mentioned what kind
of graph partitioning has been used in their system.

In [82] a new parallel abstraction named Blogel has
been proposed to address the bottlenecks of Pregel-
like systems when processing large graphs with three
main characteristics. The examined graphs in this work
have three main attributes including skewed degree
distribution, large diameter and (relatively) high density.
To overcome the poor performance of vertex-centric
system when processing such graphs, Blogel works with
collectivized units of graphs. More specifically, the level
of abstraction in Blogel is blocks of graphs where a
block is a connected subgraph of the original graph.
The idea behind Blogel is that by considering blocks of
graphs as units of processing, the problems of skewed
degree distribution, heavy communication due to high
density and large diameter will naturally be addressed.
However, a key issue in Blogel is how an arbitrary graph
can be partitioned into blocks efficiently. To answer
this question, a new fully distributed graph partitioning
algorithm based on Voroni diagrams is proposed. The
experiments reveal that the results of applying the
proposed partitioning mechanism for graph abstractions
at the level of blocks are promising.

Authors in [15] have compared three different types
of parallel graph processing abstractions and systems in
terms of their performance and reported their findings.
Specifically, they have compared MapReduce, map-side
join (an extension of original MapReduce) and BSP
implementations of the single source shortest path and
collective classification of graph vertices by use of

Relational Influence Propagation. The latter algorithm
is type of graph node classification based on label
propagation and is similar to [70] and [83]. Their
results show that the BSP implementation of these
two graph algorithms outperform both MapReduce and
its improved extension (map-side join) by an order of
magnitude in terms of performance. Compared to BSP,
MapReduce in an alternative that provides the capability
of processing immense graph whose size is larger than
memory of a BSP cluster.
Performance evaluation of different graph processing

systems have led to the benchmark proposed in [84]
where several performance metrics are introduced for
various platforms. More specifically, a broad process
of representing different performance metrics, across
seven graph datasets for various graph algorithms have
been defined. The performance metrics include resource
utilization and scalability and are measured for six
different systems including [85], [86], [87], [3], [88] and [2].
Apart from MapReduce and Bulk Synchronous

Parallel models of computation, Stratosphere [89]
is another platform for large scale processing of
graph datasets. Stratosphere’s design is based on the
amalgamation of MapReduce programming model and
the Dyrad [90] distributed data processing engine.
In other words, Stratosphere consists of two major
components. The parallel data processing engine of
Stratosphere is Nephele [91] where jobs and the dataflow
among them are modeled using Directed Acyclic Graphs
(DAG), a similar job modeling to the distributed
platform [90]. Pact [88] is the programming model of
Stratosphere which is an extension of MapReduce to
support more flexible dataflow. In addition to map and
reduce functions, Pact provides second-order functions
such as Match and Cross as well as several code
annotations by user that informs the Pact compiler about
the expected behavior of such added functions.
There have also been several works on the vertex-

centric approaches to different applications such as
graph pattern matching and simulation where given
a query graph Q and a distributed data graph G, a
graph pattern matching algorithm has to find matches
of graph Q in G. In [92], different versions of this
problem are considered. More specifically, the authors
in [92] developed different heuristics such as graph
simulation, dual simulation, strong simulation and strict
simulation based on a vertex-centric BSP based model of
computation where they have achieved high performance
compared to centralized approaches.
To the best of our knowledge, our work is the

first to provide mathematical and formal specification
of the cost of a superstep in terms of the basic
graph structures, as well as to provide definitions of
metrics for measuring different aspects of performance
on several large datasets. Moreover, we have used two
graph partitioning mechanisms to show the effects and

16
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

interactions among the factors that affect the costs of
vertex-centric implementation of graph algorithms.

6. Conclusion

Vertex-centric parallel programming frameworks such
as Pregel [1], Giraph [2] and GPS [4] have acquired
significant popularity for scalable processing of graph-
structured data. One of the factors that has an
impact on the performance of such clusters is the
manner in which the graph data is partitioned and
placed on the various compute nodes of the cluster.
Unfortunately, to the best of our knowledge, this
issue has received very little research attention. This
paper provides a detailed mathematical model for
analyzing the performance of various graph partitioning
strategies. We have also illustrated the inherent tradeoff
between communication overheads and computational
load distribution by considering three distinct graph
algorithms as case studies. Our experiments on massive
real world graph datasets validate our analytical model
and show the benefits and costs in two commonly used
graph partitioning strategies.

7. Acknowledgement

This research has been partially funded by the
National Science Foundation under Grant Number CNS-
1338276. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors, and do not necessarily reflect the views of
the NSF.

References

[1] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert,

J.C., Horn, I., Leiser, N. and Czajkowski, G. (2010)
Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data (ACM): 135–146.

[2] Apache giraph. URL http://giraph.apache.org.
[3] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C.,

Kyrola, A. and Hellerstein, J.M. (2012) Distributed
graphlab: A framework for machine learning and data
mining in the cloud (VLDB Endowment), 5: 716–727.

[4] Salihoglu, S. and Widom, J. (2013) Gps: A
graph processing system. In Proceedings of the 25th
International Conference on Scientific and Statistical
Database Management (ACM): 22.

[5] Dean, J. and Ghemawat, S. (2008) Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM 51(1): 107–113.

[6] Kang, U., Tsourakakis, C., Appel, A.P., Falout-
sos, C. and Leskovec, J. (2008) HADI: Fast diameter
estimation and mining in massive graphs with Hadoop
(Carnegie Mellon University, School of Computer Sci-
ence, Machine Learning Department).

[7] Kang, U., Tsourakakis, C.E. and Faloutsos, C.

(2009) Pegasus: A peta-scale graph mining system

implementation and observations. In Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on
(IEEE): 229–238.

[8] Cohen, J. (2009) Graph twiddling in a mapreduce
world. Computing in Science & Engineering 11(4): 29–
41.

[9] Bu, Y., Howe, B., Balazinska, M. and Ernst, M.D.

(2010) Haloop: efficient iterative data processing on large
clusters. Proceedings of the VLDB Endowment 3(1-2):
285–296.

[10] Husain, M.F., Khan, L., Kantarcioglu, M. and
Thuraisingham, B. (2010) Data intensive query
processing for large rdf graphs using cloud computing
tools. In Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on (IEEE): 1–10.

[11] Lin, J. and Schatz, M. (2010) Design patterns for
efficient graph algorithms in mapreduce. In Proceedings
of the Eighth Workshop on Mining and Learning with
Graphs (ACM): 78–85.

[12] Chen, R., Weng, X., He, B. and Yang, M. (2010)
Large graph processing in the cloud. In Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of data (ACM): 1123–1126.

[13] Iván, G. and Grolmusz, V. (2011) When the web
meets the cell: using personalized pagerank for analyzing
protein interaction networks. Bioinformatics 27(3): 405–
407.

[14] Xue, W., Shi, J. and Yang, B. (2010) X-rime: cloud-
based large scale social network analysis. In Services
Computing (SCC), 2010 IEEE International Conference
on (IEEE): 506–513.

[15] Kajdanowicz, T., Indyk, W., Kazienko, P. and
Kukul, J. (2012) Comparison of the efficiency of
mapreduce and bulk synchronous parallel approaches to
large network processing. In Data Mining Workshops
(ICDMW), 2012 IEEE 12th International Conference on
(IEEE): 218–225.

[16] Salihoglu, S. and Widom, J. (2014) Optimizing graph
algorithms on pregel-like systems .

[17] Valiant, L.G. (1990) A bridging model for parallel
computation. Communications of the ACM 33(8): 103–
111.

[18] Page, L., Brin, S., Motwani, R. and Winograd, T.

(1999) The pagerank citation ranking: bringing order to
the web. (Stanford InfoLab).

[19] Dijkstra, E.W. (1959) A note on two problems in con-
nexion with graphs. NUMERISCHE MATHEMATIK
1(1): 269–271.

[20] Leskovec, J. and Sosic, R. (2014), Snap: A general
purpose network analysis and graph mining library in
c++. URL http://snap.stanford.edu/.

[21] Boldi, P. and Vigna, S. (2004) The WebGraph
framework I: Compression techniques. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004) (Manhattan, USA: ACM Press): 595–601.

[22] Karypis, G. and Kumar, V. (1999) Parallel multilevel
series k-way partitioning scheme for irregular graphs.
Siam Review 41(2): 278–300.

[23] Aykanat, C., Cambazoglu, B.B., Findik, F.

and Kurc, T. (2007) Adaptive decomposition and
remapping algorithms for object-space-parallel direct

17

EAI Endorsed Transactions on
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5EAI
European Alliance
for Innovation

http://giraph.apache.org
http://snap.stanford.edu/

A. Abdolrashidi, L. Ramaswamy

volume rendering of unstructured grids. Journal of
Parallel and Distributed Computing 67(1): 77–99.

[24] Buluç, A. and Madduri, K. (2013) Graph partitioning
for scalable distributed graph computations. Contempo-
rary Mathematics 588.

[25] Chu, S. and Cheng, J. (2011) Triangle listing in
massive networks and its applications. In Proceedings
of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining (ACM): 672–680.

[26] Hendrickson, B. (1998) Graph partitioning and
parallel solvers: Has the emperor no clothes? In Solving
Irregularly Structured Problems in Parallel (Springer),
218–225.

[27] Donde, V., Lopez, V., Lesieutre, B., Pinar, A.,
Yang, C. and Meza, J. (2005) Identification of severe
multiple contingencies in electric power networks. In
Power Symposium, 2005. Proceedings of the 37th Annual
North American (IEEE): 59–66.

[28] Li, J. and Liu, C.C. (2009) Power system recon-
figuration based on multilevel graph partitioning. In
PowerTech, 2009 IEEE Bucharest (IEEE): 1–5.

[29] Li, H., Rosenwald, G.W., Jung, J. and Liu,

C.C. (2005) Strategic power infrastructure defense.
Proceedings of the IEEE 93(5): 918–933.

[30] Junker, B.H. and Schreiber, F. (2011) Analysis of
biological networks, 2 (John Wiley & Sons).

[31] Mondaini, R. (2010) BIOMAT 2009: International
Symposium on Mathematical and Computational Biol-
ogy, Brasilia, Brazil, 1-6 August 2009 (World Scientific).

[32] Fortunato, S. (2010) Community detection in graphs.
Physics Reports 486(3): 75–174.

[33] Newman, M. (2013) Community detection and graph
partitioning. EPL (Europhysics Letters) 103(2): 28003.

[34] Delling, D., Goldberg, A.V., Pajor, T. and
Werneck, R.F. (2011) Customizable route planning.
In Experimental Algorithms (Springer), 376–387.

[35] Delling, D. and Werneck, R.F. (2013) Faster
customization of road networks. SEA 13: 30–42.

[36] Möhring, R.H., Schilling, H., Schütz, B., Wagner,

D. and Willhalm, T. (2007) Partitioning graphs to
speedup dijkstra’s algorithm. Journal of Experimental
Algorithmics (JEA) 11: 2–8.

[37] Lauther, U. (2004) An extremely fast, exact
algorithm for finding shortest paths in static networks
with geographical background. Geoinformation und
Mobilität-von der Forschung zur praktischen Anwendung
22: 219–230.

[38] Kieritz, T., Luxen, D., Sanders, P. and Vetter,

C. (2010) Distributed time-dependent contraction
hierarchies. In Experimental Algorithms (Springer), 83–
93.

[39] Luxen, D. and Schieferdecker, D. (2015) Candidate
sets for alternative routes in road networks. Journal of
Experimental Algorithmics (JEA) 19: 2–7.

[40] Grady, L. and Schwartz, E.L. (2006) Isoperimetric
graph partitioning for image segmentation. IEEE trans-
actions on pattern analysis and machine intelligence
28(3): 469–475.

[41] Camilus, K.S. and Govindan, V. (2012) A review
on graph based segmentation. International Journal of
Image, Graphics and Signal Processing (IJIGSP) 4(5):

1.
[42] Cong, J. and Shinnerl, J.R. (2003) Multilevel

optimization in VLSICAD (Kluwer Academic Publishers
Boston).

[43] Kahng, A.B. (2011) VLSI physical design: from graph
partitioning to timing closure (Springer Science &
Business Media).

[44] Donath, W. and Hoffman, A. (1972) Algorithms
for partitioning of graphs and computer logic based
on eigenvectors of connections matrices. IBM Technical
Disclosure Bulletin 15.

[45] Donath, W.E. and Hoffman, A.J. (1973) Lower
bounds for the partitioning of graphs. IBM Journal of
Research and Development 17(5): 420–425.

[46] Fiedler, M. (1975) A property of eigenvectors of
nonnegative symmetric matrices and its application to
graph theory. Czechoslovak Mathematical Journal 25(4):
619–633.

[47] Pothen, A., Simon, H.D. and Liou, K.P. (1990)
Partitioning sparse matrices with eigenvectors of graphs.
SIAM Journal on Matrix Analysis and Applications
11(3): 430–452.

[48] Pothen, A., Simon, H.D., Wang, L. and Barnard,

S.T. (1992) Towards a fast implementation of spectral
nested dissection. In Proceedings of the 1992 ACM/IEEE
conference on Supercomputing (IEEE Computer Society
Press): 42–51.

[49] Barnard, S.T. and Simon, H.D. (1994) Fast
multilevel implementation of recursive spectral bisection
for partitioning unstructured problems. Concurrency:
Practice and Experience 6(2): 101–117.

[50] Hendrickson, B. and Leland, R. (1995) An improved
spectral graph partitioning algorithm for mapping
parallel computations. SIAM Journal on Scientific
Computing 16(2): 452–469.

[51] Heath, M.T. and Raghavan, P. (1995) A cartesian
parallel nested dissection algorithm. SIAM Journal on
Matrix Analysis and Applications 16(1): 235–253.

[52] Miller, G.L., Teng, S.H., Thurston, W. and
Vavasis, S.A. (1993) Automatic mesh partitioning
(Springer).

[53] Miller, G.L., Teng, S.H. and Vavasis, S.A. (1991)
A unified geometric approach to graph separators. In
Foundations of Computer Science, 1991. Proceedings.,
32nd Annual Symposium on (IEEE): 538–547.

[54] Nour-Omid, B., Raefsky, A. and Lyzenga, G.

(1987) Solving finite element equations on concurrent
computers .

[55] Raghavan, P. (1993) Line and plane separators.
In LAPACK WORKING NOTE 63 (UT CS-93-202)
(Citeseer).

[56] Bui, T.N. and Jones, C. (1993) A heuristic for
reducing fill-in in sparse matrix factorization. Tech. rep.,
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA (United States).

[57] Cheng, C.K. and Wei, Y.C. (1991) An improved
two-way partitioning algorithm with stable performance
[vlsi]. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 10(12): 1502–1511.

[58] Garbers, J., Promel, H.J. and Steger, A. (1990)
Finding clusters in vlsi circuits. In Computer-Aided

18
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

An Analytical Study of Computation and Communication Tradeoffs in Distributed Graph Processing Systems

Design, 1990. ICCAD-90. Digest of Technical Papers.,
1990 IEEE International Conference on (IEEE): 520–
523.

[59] Hagen, L. and Kahng, A.B. (1991) Fast spectral
methods for ratio cut partitioning and clustering
(University of California (Los Angeles). Computer
Science Department).

[60] Hagen, L. and Kahng, A.B. (1992) A new approach to
effective circuit clustering. In Computer-Aided Design,
1992. ICCAD-92. Digest of Technical Papers., 1992
IEEE/ACM International Conference on (IEEE): 422–
427.

[61] Hendrickson, B. and Leland, R.W. (1995) A multi-
level algorithm for partitioning graphs. SC 95: 28.

[62] Mansour, N., Ponnusamy, R., Choudhary, A.

and Fox, G. (1993) Graph contraction for physical
optimization methods: a quality-cost tradeoff for
mapping data on parallel computers. In Proceedings
of the 7th international conference on Supercomputing
(ACM): 1–10.

[63] Karypis, G. and Kumar, V. (1998) A fast and
high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing 20(1):
359–392.

[64] Schloegel, K., Karypis, G. and Kumar, V. (2000)
Graph partitioning for high performance scientific
simulations (Citeseer).

[65] Kernighan, B.W. and Lin, S. (1970) An efficient
heuristic procedure for partitioning graphs. Bell system
technical journal 49(2): 291–307.

[66] Dutt, S. (1993) New faster kernighan-lin-type graph-
partitioning algorithms. In Computer-Aided Design,
1993. ICCAD-93. Digest of Technical Papers., 1993
IEEE/ACM International Conference on (IEEE): 370–
377.

[67] Fiduccia, C.M. and Mattheyses, R.M. (1982) A
linear-time heuristic for improving network partitions. In
Design Automation, 1982. 19th Conference on (IEEE):
175–181.

[68] Karypis, G., Schloegel, K. and Kumar, V. (1997)
Parmetis: Parallel graph partitioning and sparse matrix
ordering library. Version 1.0, Dept. of Computer
Science, University of Minnesota .

[69] Karypis, G. and Kumar, V. (2000) Multilevel k-way
hypergraph partitioning. VLSI design 11(3): 285–300.

[70] Wang, L., Xiao, Y., Shao, B. and Wang, H.

(2014) How to partition a billion-node graph. In Data
Engineering (ICDE), 2014 IEEE 30th International
Conference on (IEEE): 568–579.

[71] Boman, E.G., Devine, K.D. and Rajamanickam, S.

(2013) Scalable matrix computations on large scale-
free graphs using 2d graph partitioning. In Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis (ACM):
50.

[72] Stanton, I. and Kliot, G. (2012) Streaming graph
partitioning for large distributed graphs. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining (ACM): 1222–
1230.

[73] Nishimura, J. and Ugander, J. (2013) Restreaming
graph partitioning: simple versatile algorithms for
advanced balancing. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining (ACM): 1106–1114.

[74] Gonzalez, J.E., Low, Y., Gu, H., Bickson, D. and
Guestrin, C. (2012) Powergraph: Distributed graph-
parallel computation on natural graphs. In OSDI, 12:
2.

[75] Kyrola, A.,Blelloch, G.E. andGuestrin, C. (2012)
Graphchi: Large-scale graph computation on just a pc.
In OSDI, 12: 31–46.

[76] Zaharia, M., Chowdhury, M., Franklin, M.J.,
Shenker, S. and Stoica, I. (2010) Spark: cluster
computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing :
10–10.

[77] Shao, B., Wang, H. and Li, Y. (2013) Trinity:
A distributed graph engine on a memory cloud. In
Proceedings of the 2013 international conference on
Management of data (ACM): 505–516.

[78] Kalnis, P., Khayyat, Z., Awara, K. and Jamjoom,

H. (2012) Mizan: Optimizing graph mining in large
parallel systems (King Abdullah University of Science
and Technology).

[79] Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng,

X., Wu, M., Yang, F. et al. (2012) Kineograph: taking
the pulse of a fast-changing and connected world. In
Proceedings of the 7th ACM european conference on
Computer Systems (ACM): 85–98.

[80] Han, M., Daudjee, K., Ammar, K., Ozsu, M.T.,
Wang, X. and Jin, T. (2014) An experimental
comparison of pregel-like graph processing systems.
Proceedings of the VLDB Endowment 7(12): 1047–1058.

[81] Shun, J. and Blelloch, G.E. (2013) Ligra: a
lightweight graph processing framework for shared
memory. In ACM SIGPLAN Notices (ACM), 48: 135–
146.

[82] Yan, D., Cheng, J., Lu, Y. and Ng, W. (2014)
Blogel: A block-centric framework for distributed
computation on real-world graphs. Proceedings of the
VLDB Endowment 7(14).

[83] Martella, C., Logothetis, D. and Siganos, G.

(2014) Spinner: Scalable graph partitioning for the
cloud. arXiv preprint arXiv:1404.3861 .

[84] Guo, Y., Biczak, M., Varbanescu, A.L., Iosup, A.,
Martella, C. and Willke, T.L. (2014) How well
do graph-processing platforms perform? an empirical
performance evaluation and analysis. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th
International (IEEE): 395–404.

[85] White, T. (2009) Hadoop: the definitive guide: the
definitive guide (“ O’Reilly Media, Inc.”).

[86] Yarn. URL http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.
[87] Neo4j. URL http://www.neo4j.org/.
[88] Battré, D., Ewen, S., Hueske, F., Kao, O.,

Markl, V. and Warneke, D. (2010) Nephele/pacts: a
programming model and execution framework for web-
scale analytical processing. In Proceedings of the 1st
ACM symposium on Cloud computing (ACM): 119–130.

19
EAI Endorsed Transactions on

Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://www.neo4j.org/

A. Abdolrashidi, L. Ramaswamy

[89] Stratosphere. URL http://stratosphere.eu/.
[90] Isard, M., Budiu, M., Yu, Y., Birrell, A. and

Fetterly, D. (2007) Dryad: distributed data-parallel
programs from sequential building blocks. In ACM
SIGOPS Operating Systems Review (ACM), 41: 59–72.

[91] Warneke, D. and Kao, O. (2009) Nephele: efficient
parallel data processing in the cloud. In Proceedings of

the 2nd workshop on many-task computing on grids and
supercomputers (ACM): 8.

[92] Fard, A., Nisar, M.U., Ramaswamy, L., Miller,

J.A. and Saltz, M. (2013) A distributed vertex-centric
approach for pattern matching in massive graphs. In Big
Data, 2013 IEEE International Conference on (IEEE):
403–411.

20

EAI Endorsed Transactions on
Collaborative Computing

11 - 12 2015 | Volume 1 | Issue 5 | e5
EAI

European Alliance
for Innovation

http://stratosphere.eu/

	1 Introduction
	2 Vertex-Centric Graph Processing
	3 Performance Model for Vertex-Centric Graph Processing
	3.1 Performance Cost Model
	Computation
	Communication
	Synchronization

	3.2 Tradeoffs between Computation and Communication
	3.3 Graph Algorithms
	3.4 Illustration of Tradeoffs

	4 Experimental Evaluation
	4.1 Performance Metrics
	4.2 Experimental Setup
	4.3 Results
	Load Balancing
	Communication
	Time

	5 Related Work
	5.1 Graph Partitioning Applications and Methods
	Static Graph Partitioning Methods
	Dynamic Graph Partitioning Methods

	5.2 Big Graphs Processing Systems and Computational Models

	6 Conclusion
	7 Acknowledgement

