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Abstract 
INTRODUCTION: Sorting a huge stream of waste accurately within a short period can be done with the support of 
digitalization, particularly Artificial Intelligence, instead of traditional methods. The overlap of Artificial Intelligence and 
Circular Economy can flourish many services in the environmental technology domain, in particular smart e-waste recycling, 
resulting in enabling circular smart cities. 
OBJECTIVES: We analyse the growing need for automated e-waste recycling as an essential requirement to cope with the 
fast-growing e-waste stream and we shed the light on the impact of Artificial Intelligence in supporting the recycling process 
through smart classification of devices, where the smartphone is our case study. 
METHODS: Our study applies transfer learning as a special technique of Artificial Intelligence by fine-tuning the output 
layers of AlexNet as a pre-trained model and perform the implementation on a small-size dataset that contains 12 classes 
from 6 smartphone brands. 
RESULTS: We evaluate the performance of our model by tuning the learning rate, choosing the best optimizer, and 
augmenting the original dataset to avoid overfitting. We found that the optimizer of Stochastic Gradient Descent with 
Momentum and 3 𝑒𝑒−4 as a learning rate brings almost 98% model accuracy with generalization. 
CONCLUSION: Our study supports automated e-waste recycling in decreasing the error-rate of e-waste sorting and 
investigates the advantages of applying transfer learning as the best scenario to overcome the rising challenges. 
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1. Introduction

The enormous use of digitalization has a profound impact on 
every domain. Many concerns are raised with the growth of 
urbanization, like pollution, traffic congestion, rising welfare 
costs, and last but not least growing waste streams. The 
concept of Circular Economy (CE) was primarily aimed to 
enhance the recovery of end-of-life of products lifecycle by 
optimal recycling them, reusing them as raw materials, 
reducing the need to extract new resources, and closing the 
product loop. Smart Cities have been suggested as a solution 
to tackle the aforementioned problems, driven by 
digitalization, and to promote a sustainable environment 
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through CE. In line with this, we discuss the role of 
digitalization, particularly Artificial Intelligence (AI), in the 
environmental technology domain and investigate how 
automated electrical and electronic waste (or the so-called e-
waste) recycling can support shifting towards a sustainable 
environment, thus achieving CE goals. To achieve them 
efficiently, the classification of waste can maximize the 
performance of the whole process. Waste classification is a 
significant step for efficiently sorting and separating into 
different models and types. Therefore, the need for smart 
sorting is growing to support smart recycling. 

The remainder of the paper is divided into the following 
sections: Section 1 introduces our research motivation, the 
importance of automated e-waste recycling driven by 
digitalization, and to achieve sustainable smart cities. Section 
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2 reviews related work in automated waste classification. 
Section 3 discusses the background on Convolutional Neural 
Network (CNN) architecture. Section 4 presents our method. 
Section 5 is devoted to results and discussion and finally 
concludes our work. 

1.1. Research motivation 

In this article, we focus on adopting AI as a key technology 
for enabling automated e-waste recycling. One of the model 
services provided by the smart cities’ concepts is 
digitalization, and due to the fact of the proliferation of 
digitalization, we considered e-waste as a model example. AI 
can be involved in many areas in the e-waste management 
system like collection, classification, sorting, etc. The 
motivation behind this study is gaining benefits of more 
proper e-waste recycling by automation, tackling the growing 
rate of e-waste in smart cities, and highlighting the advances 
of AI for this purpose. AI and CE can fuel the initiatives on 
smart cities to offer sustainable opportunities. As per [1], the 
biggest motivations for CE are technology development, new 
socio-economic opportunities, awareness, and change of 
consumer mentalities to adopt more sustainable products. On 
the contrary, some constraints face this movement, like poor 
legislation, lack of data collection standard process, and poor 
public participation. These obstacles inhibit smart cities from 
moving towards CE as well. 

Our argumentation is to emphasize the importance of AI 
to encourage the automated recycling of e-waste in the smart 
cities’ context by investigating the following aspects: 

• The need to reduce human intervention by adopting
automation and reducing the need for labor.

• Gain the benefits from applying AI techniques,
particularly transfer learning, like using a small-size
dataset rather than creating a big dataset, which is one of
the painful tasks when designing a Neural Network
(NN), decreasing the burden of long computational time,
getting a high accuracy in sorting compared to the
human-based process. Overall, our method supports
reducing the error rate of e-waste sorting, and it is easier
than building the NN from scratch.

To illustrate how we prove our investigation, we introduce 
the flow of the proposed method by insisting on the need for 
automated e-waste recycling and the impact of digitalization, 
transfer learning particularly on this process, to achieve 
circular smart cities as shown in Figure 1. 

Figure 1. The flow of using transfer learning for 
automated e-waste recycling in smart cities 

1.2. The need for automated e-waste 
recycling 

In the take-make-dispose paradigm or the so-called linear 
economy, the generation of waste has dramatically increased 
in the last few decades. To overcome this problem, CE has 
been mainly proposed to confirm the social and 
environmental aspects of sustainability. Due to the great 
adoption of digitalization globally, e-waste is the fastest 
growing waste stream. This problem is one of the biggest 
challenges in reducing pollution, preserving valuable 
materials, and alleviating the toxicity and contamination of 
entering the eco-system. The Organization for Economic 
Cooperation and Development defined e-waste as “any 
appliance using electric power that is obsolete or has reached 
its end-of-life” [2].  

The growing concern about informal e-waste recycling is 
alarming, especially on the improper way of processing in 
their final fate, like burning or melting them in acid baths and 
recovering only a few portions of valuable materials. General 
e-waste contains 60 different elements, like copper,
aluminium, gold, platinum, and other metals represent 60%
in e-waste, but 2.7% like cadmium, mercury, chromium are
hazardous, and they will have poisonous and negative
consequences on human health and the environment if they
are not treated properly [3]. Moreover, when these recyclable
elements are not recovered, new raw materials have to be
extracted, and it will end in a lack of resources and higher
energy consumption. As per [3], many Rare Earth Elements
(REEs) are in e-waste, like 30% for silver in switches, 12%
for gold in integrated circuits, 30% for copper in cables and
19% for cobalt in rechargeable batteries, and 79% for indium
in Liquid-Crystal Display (LCDs), compared to mine global
production. The previous figures aligned with growing sales
of electronic devices and short lifespans, emphasize the
initiatives to find a smart solution and adapting CE strategies
like recycling e-waste.

Many directives tried to create legislations to process e-
waste management; for example, the EU’s Waste Electrical 
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and Electronic Equipment (WEEE) stipulated the design of 
electronic devices should respect the eco-design, is easy to 
dismantle and recovered, and the producers are entitled to the 
take-back programs. Whereas in the US, the American e-
waste recycling systems divided e-waste into ten categories 
based on the toxic substances, complexity, and profit from 
recycling [3]. 

The benefits of automated e-waste recycling, including a 
reduction in cost collection and complexity of e-waste 
processing, importing of raw materials, carbon dioxide (CO2) 
emission, and negative impacts on environment and labour 
health, besides boosting continuity of resources are the 
reasons behind choosing the need for automation of recycling 
to enable CE [4]. 

1.3. Influence of digitalization on 
automated e-waste recycling 

Digitalization, including the Internet of Things (IoT), Big 
data, and AI, has a major influence on many sectors and can 
also be applied within the waste management system, 
resulting in improving the recycling process in two folds: for 
producers by enabling them to use recyclable materials and 
better purchasing and sorting decisions, as well as for 
recyclers for better waste sourcing options [5]. Consequently, 
these digital technologies act as catalysts to CE, but how can 
AI, in particular, mimic humans to create intelligent machines 
to solve such intricate problems? 

AI plays a vital role in enhancing existing recycling 
infrastructure, including improving data collection and data 
mining processes to obtain a higher quality level than the 
typical analysing approaches besides automated sorting 
(where our study focus) leads to higher accuracy and better 
waste segregation quality. E-waste collection can also be 
improved by advances of AI, particularly in optimizing the e-
waste collection routes to maximize the mass and the number 
of collected waste, besides navigation and tracking 
capabilities, especially the e-waste by storing, processing, 
analysing, and optimizing the necessary information, which 
ultimately will increase the whole waste management 
efficiency [6]. The next step is sorting e-waste, which is a 
prerequisite for high-rate recycling. The partnership between 
AI and robotics is gradually being adopted by many waste 
management applications, like analysing the streams of 
images and predicting the patterns to support the sorting 
process, and extending the lifespan of electronics through 
predictive maintenance [7].  

1.4. Circular Smart Cities 

We presented the term of circular smart cities in previous 
work [8], where the smart city paradigm could be linked to 
CE driven by the support of AI. The CE principles aligned 
with AI are expected to support the circular cities concept, 
and smart cities are consequently benefitting from 
implementing these developments [8]. 

Creating sustainable and eco-friendly cities with the help 
of digital technologies to provide smarter, liveable, and 
durable services is proposed under the label Smart City. The 
authors of [9], defined six characteristics of smart cities, 
which are: smart governance, smart mobility, smart living, 
smart people, smart economy, and smart environment. Our 
argumentation incorporates the last two components by 
increasing sustainable chances when adopting contemporary 
technologies. 

On the other hand, the smart city concept may encounter 
some obstacles about the security and privacy issues, which 
drives much research to work on like, recognizing people’ 
faces [10, 11] to access restricted areas [8–10], improving 
traffic flows by partly autonomous drones and vehicles [12] 
[13], traffic management and smart tracking, assistance 
systems [14, 15], predictive maintenance [16, 17], and last but 
not least, smart waste management [18]. 

The switch to digitalization can broadly improve the whole 
process of the waste management system by including digital 
identity tags for the waste container (IoT), digital order 
processing (Ecommerce), digital payments, digital 
communication with customers (chatbots), and storing and 
connecting with governmental databases (cloud services), 
which leads to better insights of waste patters (AI). 

AI plays a fundamental role in supporting complicated 
services in many domains in the smart cities’ context, due to 
the rising focus on digitalization-oriented technologies. The 
authors of [19] pointed out that new business models could 
be implemented by coherently applying AI as a successful 
potential for smart cities. This technology is essential due to 
the massive datasets gathered by sensors since this data needs 
to feed the decision support applications that leverage AI 
[20]. While the huge amount of data is created by different 
means in smart cities context, it needs to be turned into 
insights. AI is the key solution to play this role, in a various 
range of applications like healthcare, education, security, 
transportation, and the environment. AI has proved its ability 
to intelligently process large amounts of collected data 
created by sensors and produce significant information from 
it, based on recognizing patterns and features [21]. 

CNN is the basic building block of AI, and it has a special 
feature of self-programming with minimum human 
intervention, which gives AI to primarily act as a unique 
factor to enable circular smart cities. Further details about 
CNN architecture will be presented in section 3. 

2. Related work

Automated recycling becomes an indispensable process due 
to the huge amount of the produced waste and its increasing 
detrimental effects on the environment and human health. It 
provides many advantages also to the economy. 

One of the general classification models was introduced 
based on shapes, and dimensionality matching has been 
applied by [22]. It calculates the similarities and 
concurrencies of several shapes and uses the result to 
recognize the object. 
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Another classification method based on the reflectance 
properties of surfaces has been proposed by [23]. This method 
suggests an algorithm for estimation that learns correlations 
between surface reflectance and data enumerated from an 
observed image. 

A study conducted by [24], who used the Bayesian 
framework with the help of the augmented Latent Dirichlet 
Allocation (aLDA) model to classify images based on their 
materialistic properties like glass, metal, fabric, etc. this 
classifier reaches 44.6% accuracy by processing the surface 
of each image. 

Also, the waste domain classification using AI has been 
conducted in previous research. Using AI can be a very 
productive way to automate this process based on the 
collected images. A study by [25] used sensors in 
collaboration with machine learning algorithms to 
automatically sort waste based on textures and colours. 

[26] used CNN to identify waste in images. The study
presented a smartphone application to enable the user to 
report a pile of waste and identify its location, with an 
accuracy rate of 87%. 

3. Background on CNN architecture

AI is a type of machine learning that allows the machine to 
develop using pattern recognition. There are three categories 
of learning: supervised, unsupervised, and reinforcement 
learning [27]. Our approach uses supervised learning to 
implement the classification using CNN, which is a NN that 
consists of layers as building blocks and uses the convolution 
operation in at least one of the layers, where the number of 
layers represents the depth of the network. If the number is 
large, the network will be called a deep neural network with 
many hidden layers. It can learn features directly from image 
data. 

CNN is used to train a dataset divided into a training set, 
which is a set of images that corresponds to predefined classes 
(or labels), and a validation set to estimate the performance 
of the model. CNN uses the training set as labelled input-
output pairs and performs training based on learning given 
examples, then it predicts the appropriate output for a given 
input. In order to obtain a good prediction performance, the 
training methods need to optimize the weights of each 
neuron-connection and to calculate the results to become as 
close as the expected class. 

Most of CNN contains the convolution, pooling, fully 
connected, and softmax layers as building blocks, and they 
are defined as follows: 

• CNN: The advantage of the convolutional layer,
especially in classification, is that the kernel acts as a
filter, sweeps the image in all directions, and catches the
features by making the process shift-invariant. These
filters are applied to each image to activate unique
features (like edges, blobs, colours, brightness, etc.),
then the output of each layer is used as an input to the
consequent layer.

• Pooling layer: it is added usually between the
consecutive convolutional layers. It simplifies the output
by reducing the size of the matrices and gives a general
look to the image, so the resulting matrix is smaller than
the image matrix, but it contains the most prominent
features. Usually, maximum or average functions are
used for pooling in popular CNN architectures [28].

• Fully Connected (FC) layer: it is the last layer in CNN,
which is used to flatten the 2D spatial features into a 1D
vector and perform the learning.

• Softmax layer calculates the probability for each label in
the dataset as an output of the model.

4. Method

To put the previous concepts, namely AI, CE, and circular 
smart cities together in practice, we used the following 
technical aspects.  

Deep learning usually requires being trained on a huge 
amount of data on neural networks. To design a CNN from 
scratch, the network architecture should be well-designed, 
including the number of layers, the number and specification 
of filters, besides tuning the training parameters like learning 
rate, optimizers, and activation functions. Next, this network 
should be trained for a relatively long time on a huge dataset. 
A promising alternative to designing from scratch is using the 
transfer learning technique [29]. Transfer learning uses 
previously learned knowledge from a source task and 
transfers them to the target task. It is a special AI technique 
that helps a system adapt to new circumstances that allow 
processing data, extracting features, and making predictions. 
Pre-trained models are rich with feature representations 
because they were trained on a large number of images. 

Our study uses transfer learning by freezing the transferred 
parameters from a pre-trained model, particularly AlexNet 
that was introduced by [30], which classifies one million 
high-resolution images (ImageNet) into one thousand labels. 
It is a deep convolutional neural network that consists of 
650,000 neurons, 60 million parameters, and 630 million 
connections. Its architecture consists of eight layers, 
including five convolutional layers, and three fully connected 
layers, besides three pooling operations, as shown in Figure 3 
for the original model. In standard AlexNet architecture, the 
first two convolutional layers are followed by an overlapping 
max-pooling layer, the other three convolutional layers are 
connected directly, and the final convolutional layer is 
followed by a max-pooling layer. AlexNet has been used 
extensively in the research due to its simple, and not-so-deep 
architecture. One of the main characteristics of AlexNet is 
using Rectified Linear Unit (ReLU) activation function that 
leads to faster training than other activation functions like 
sigmoid or tanh. It is an effective activation function that 
maps the negative values with zeros and maintains positive 
values. Another advantage of using AlexNet that it has a 
dropout layer. CNN has a huge number of parameters that can 
cause overfitting, which can be prevented by regulating the 
network to memorize them too much. Practically, it can be 
implemented by randomly stopping the neuron’s contribution 
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in forward or backward propagation, leading to dropping the 
units with their connection during training [31]. 

For implementation, we created the dataset manually from 
the Internet. It contains 650 RGB images. The computing 
environment was Matlab R2020b with a deep learning 
toolbox was used for implementation installed on a laptop 
used Windows 10 (64 bits) equipped with i5 processor, and 
requires Matlab parallel computing toolbox with CUDA 
(which is a parallel computing platform and programming 
model developed by NVIDIA for general computing on a 
Graphics Processing Unit (GPU)) of ASUS Nvidia GeForce 
RTX 2070S 8GB for the acceleration of training process. 

The dataset consists of 12 smartphone models, a relatively 
small dataset, from 6 brands, namely Acer, HTC, Huawei, 
Apple, LG, and Samsung. Since most of the frontside of 
smartphones look similar recently, we collected images that 
focus on the backside where unique features like the logo, 
camera lenses are distinguished. The dataset is split into 80% 
for the training set and 20% for the validation set. Figure 2 
shows an example of a subset of the dataset. 

Figure 2. Example of a subset of the dataset 

We started by loading AlexNet, replacing the last three 
layers to classify 12 labels, then training the network on our 
smartphone dataset, finally assessing the network on the 
validation set, and checking the performance. 

Regarding the training options, we set the mini-batch size 
to 64, which represents the number of the subsets of the 
training set that are processed on GPU simultaneously. After 
the whole batch is sent to the network and the error of the 
batch is propagated backward into the weights, every weight 
in the network is being updated. Higher values of batch-size 
lead to better convergence and higher accuracy. However, it 
is limited to the available memory of the GPU [25] 

Full pass of training process over the entire training set 
uses mini-batches called one epoch. To control the early stop, 
we set the max epochs as 30, and the training set was shuffled 
before each epoch. 

In the beginning, the network was initialized with frozen 
pre-trained weights for all layers except the last three layers, 
as described in previous work [8]. The learnable weights of 
AlexNet are frozen in the fully connected layer. To perform 
the fine-tuning, replacing this layer with a new fully 
connected layer has an output value equal to the number of 
classes in the new task.  

The details of the proposed implementation are presented 
in Figure 3. 

5. Results and discussion

After setting the layers configuration and the training options, 
the model is ready for prediction. Evaluating the performance 
of the network is a challenging task and depends on the 
computational complexity. We performed three different 
experiments to choose the best parameters for our model with 
a baseline of data augmentation, optimizers, and learning rate. 

5.1. Baseline: data augmentation 

Data augmentation is creating alternative copies of the 
original dataset by adding more images effortlessly, and it is 
mainly used to alleviate small-size datasets and overfitting 
problems. 

A significant factor that should be evaluated is a 
generalization. If there is a large distance between the training 
and validation accuracy, practically happens when the model 
is very complex for the available amount of the training set, 
and the model is not able to generalize, or the so-called 
overfitting. 

The following operations were applied to perform data 
augmentation, random X reflection, random Y reflection, 
random X translation, random Y translation, random X scale, 
random Y scale, random X shear, random Y shear, where the 
scale range is [0.9 1.1] and the translation and shear range is 
[-50 50] pixel. An example of our dataset augmentation can 
be seen in figure 4. As a result, each image is multiplied by 9 
to get 5850 images in the dataset, including the original 
unchanged set. 
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Figure 3. The implementation diagram of the original 
AlexNet architecture and the fine-tuned model 

5.2. Baseline: Optimizers 

Choosing the right optimizer can help to reach the global 
minima, reduce the loss function, and set up the correct 
parameters. The loss function is one of the most important 
metrics for testing the network performance, which 
represents the difference between the predicted output and the 
target class. To minimize the loss function, the gradient 
descent updates the weights and biases of the network by 
taking small steps at each iteration of the opposite direction 
of the gradient. To set the training options, we tested three 
popular optimizers.  

Gradient descent considers the whole data at one time that 
leads to redundant and inefficient computation, but Stochastic 
Gradient Descent (SGD) computes random selection or small 
subset instead. However, SGD may oscillate along the path 
of steepest descent towards the optimum, where the surface 
curves have more steeply on the dimension. The momentum 
alternatively helps to accelerate SGD towards the local 
minima and reduce oscillations. SGD with momentum, or 
SGDM, uses a single learning rate for all parameters, whereas 
RMSProp (which is a gradient-based optimization technique 
used in training neural networks) tries to improve the network 
performance by adapting learning rates by parameter to 
optimize the loss function [32]. In comparison, the adaptive 
learning rate optimization algorithm (Adam) computes 
individual adaptive learning rates and momentum to converge 
faster. It uses an estimation of the first and second moments 
of the gradient to adapt the learning rate for each weight [33]. 
We performed seven learning trials and Table 1 shows the 
accuracy range of each method. 

Table 1. The accuracy mean and standard deviation of 
each method. 

 Implementations 3e-4 Accuracy 
SGDM 98.3505 ± 2.0155 
ADAM 
RMSProp 

95.2577 ± 3.0427 
93.1959 ± 3.8635 

From the table, it is clearly noted that SGDM provides 
better performance compared to ADAM and RMSProp. This 
result also supports the study presented in [34], who 
conducted empirical research and stated that, although Adam 
proves that it converges faster than other optimizers, it does 
not converge to the optimum solution and generalize well in 
classification as SGDM does. 

Figure 4. Example of used data augmentation 
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5.3. Baseline: learning rate 

Learning rate controls the speed of training, for a smaller 
learning rate the model could have higher accuracy, but it 
takes a longer time to train. One of the biggest challenges of 
gradient descent is choosing a proper learning rate. Too small 
learning rates may dwindle around the minimum and get slow 
convergence and too large learning may cause unstable 
training process.  Transfer learning mostly uses a smaller 
learning rate since the learned weights have already 
significant optimization.  

Performance comparison based on a variety of learning 
rates has also been conducted to choose the best option for 
the proposed model. Figure 5 visualizes a box chart that 
represents the distribution of accuracies. The median 
accuracies per each box are drawn in the middle of the box, 
and the upper and lower quartiles are shown at the top and the 
bottom edges of the box, respectively. The whisker endpoints 
illustrate the lowest and highest accuracy. 

We tried to guess the learning rate by reducing the learning 
rate when the loss oscillates widely and keeps getting worse, 
whereas when the loss is slowly and consistently falling we 
increased the learning rate.  

Figure 5. Box chart of Accuracy Scores for different 
learning rates using SGDM optimizer 

From the box chart, it is clearly illustrated that the learning 
rate that corresponds to 3 𝑒𝑒−4 provides better performance 
compared to other learning rates.  

As shown in Figure 6, a combination of setting the 
proposed data augmentation and SGDM optimizer with 3 𝑒𝑒−4 

learning rate has the best model generalization performance 
and reaches almost 98% accuracy. 

Figure 6. Accuracy and loss function performance of 
our model 

6. Conclusion

In a nutshell, our method underlines the important role of AI 
in shifting towards automated e-waste classification, hence 
supporting circular smart cities. By the example of AI-
enhanced automatic smartphone classification, we showed 
that e-waste management could be significantly enhanced by 
using digital technologies that speed up the process. The 
suggested method supports two important decision factors in 
implementation, by reducing the error rate of e-waste sorting 
and it is easier to use transfer learning than building the NN 
from scratch. 

We tested the performance by the tuning learning rate and 
optimizer, besides performing data augmentation to avoid the 
overfitting and small-size dataset problems. 

However, our approach should not only be used as an end-
of-pipe technology, which may result, for example, in so-
called rebound-effects. Hence, it cannot replace the transition 
to a more sustainable economy and society, which requires 
dedicated efforts in the respective fields of action, such as 
new business models or user preferences. Nevertheless, our 
approach and automated e-waste management, in general, 
could alleviate contemporary e-waste problems quickly and 
diminish cost effectively, which builds a basis for a more 
sustainable world in the future. Automated e-waste 
classification is not the end of the story. Therefore, we try to 
develop a (semi) automated e-waste management system in 
our Circular Digital Economy Lab (CDEL) in order to get the 
full benefits from CE and digitalization, where we integrate 
our model with other systems such as robotics, IoT, and data 
mining.
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