
Optimizing the Modified Lam Annealing Schedule
Vincent A. Cicirello∗

Computer Science, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205

Abstract

Simulated annealing is a metaheuristic commonly used for combinatorial optimization in many industrial
applications. Its runtime behavior is controlled by an algorithmic component known as the annealing
schedule. The classic annealing schedules have control parameters that must be set or tuned ahead of time.
Adaptive annealing schedules, such as the Modified Lam, are parameter-free and self-adapt during runtime.
However, they are also more complex than the classic alternatives, leading to more time per iteration. In
this paper, we present an optimized variant of Modified Lam annealing, and experimentally demonstrate the
potential significant impact on runtime performance of carefully optimizing the annealing schedule.

Received on 07 October 2020; accepted on 03 December 2020; published on 16 December 2020

Keywords: simulated annealing, modified Lam, self-adaptive, parameter-free, combinatorial optimization

Copyright © 2020 Vincent A. Cicirello, licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.16-12-2020.167653

1. Introduction
Simulated Annealing (SA), introduced by Kirkpatrick
et al. (1983), is a metaheuristic commonly used
for combinatorial optimization in many industrial
applications (Delahaye et al., 2019). The behavior of SA
is inspired by the annealing process commonly used
in metallurgy as well as in the manufacture of glass.
The physical annealing process involves first heating
the metal or glass to a high temperature, forming it as
desired, and then allowing it to cool slowly. A slow rate
of cooling is important in order to reduce internal stress
and to increase stability of the final result.

SA begins with a random solution to a combinatorial
optimization problem, and is initialized with a
high value of a control parameter referred to as
“temperature.” This temperature is then adjusted
during the run by a component of the SA called
the annealing schedule. Each iteration of SA involves
generating a random neighbor of the current solution. A
random decision is then made to determine whether to
accept that neighbor or to reject it. If it is accepted, the
neighbor replaces the current solution. The acceptance
decision depends upon the quality of the neighbor, as
well as the temperature parameter. At very high values
of temperature, neighbors are likely to be accepted even

∗Corresponding author. Email: vincent.cicirello@stockton.edu. Web-
site: https://www.cicirello.org/

if their value on the optimization objective is not good.
This is similar to the physical annealing process where
at high temperatures one can change the shape of the
metal or glass easily. Later in the run of SA, when
the temperature is lower, SA is less likely to accept a
neighbor if the current solution is better, settling in
upon a locally optimal solution. This is similar to the
physical process where internal stresses are minimized
in the final product resulting in a stable form.

An “annealing schedule” controls how SA’s tempera-
ture parameter changes during the search. In the classic
annealing schedules, the temperature is monotonically
decreasing, and those schedules in turn are controlled
by one or more parameters, which must be set or
tuned ahead of time. This is the most critical part of
an SA. If the temperature cools too slowly, the search
spends too much time in a random walk, requiring
much longer to settle in upon a local optima. If the
temperature cools too quickly, the search may produce
a less desirable local optima. There are a variety of
adaptive annealing schedules that have been proposed
in the literature to deal with this issue (Boyan, 1998;
Hubin, 2019; Štefankovič et al., 2009). Rather than
strictly monotonically decreasing, the adaptive anneal-
ing schedules adjust temperature both up and down
based on feedback from the search. We discuss both
classical and adaptive annealing schedules in Section 2,
as well as other related work.

1

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<vincent.cicirello@stockton.edu>
https://www.cicirello.org/

Vincent A. Cicirello

In this paper, in Section 3, we propose an optimized
variant of Modified Lam, an adaptive annealing
schedule. We have integrated this optimized Modified
Lam into the open-source Java library, Chips-n-
Salsa (Cicirello, 2020), which is a library of stochastic
local search algorithms. The source code of the Chips-
n-Salsa library is maintained on GitHub (https:
//github.com/cicirello/Chips-n-Salsa), and
releases can be downloaded and installed from Maven
Central (https://search.maven.org/artifact/
org.cicirello/chips-n-salsa). The Chips-n-Salsa
website (https://chips-n-salsa.cicirello.org/)
contains API documentation and other details.

We conduct experiments on the impact that these
optimizations have on SA runtime. The results of
those experiments are discussed in Section 4. In the
first part of the experiments, we isolate the annealing
schedule and compare the runtime of the original and
optimized versions of the Modified Lam annealing
schedule independent of SA. Then, in the second
part of the experiments, we investigate the impact on
SA runtime for several optimization problems with
a variety of solution representation. Additionally, to
enable reproducibility, we provide the source code of
our experiments, the source code used in analyzing the
experimental data, as well as the raw data itself, in a
GitHub repository (https://github.com/cicirello/
modified-lam-experiments). We offer conclusions in
Section 5.

2. Background and Related Work
2.1. Basics of Simulated Annealing
Algorithm 1 shows pseudocode for SA. It is expressed
assuming that we are minimizing the cost function
C(S). SA begins by generating a random initial solution
S to the problem (line 6). It also must initialize the
temperature T to some initial temperature T0 (line7),
which should be high at the start of the search. Just how
high depends upon the scale of the cost function that
we are minimizing. It is usually set by the implementer
to a constant, but one may also randomly sample the
solution space as a basis for choosing T0.

Each iteration of the main loop (lines 8–14) begins
by generating a random neighbor S ′ of the current
solution S (line 9). In the pseudocode η(S) is the
neighborhood function. The neighborhood function
generates random neighbors, where a neighbor is a
similar solution to the current one. For example, if the
solution S is represented by a permutation (e.g., for
an ordering problem like the Traveling Salesperson),
then a neighbor might have a pair of random elements
swapped. SA must then decide whether or not to
“accept” the neighbor S ′ . This decision depends upon
the relative cost of S ′ and S, as well as the temperature
T . If the cost C(S ′) is lower than the cost C(S), then

Algorithm 1 Simulated Annealing

1: ## Notation:
2: ## N is the run length in number of evaluations.
3: ## C(S) is the real-valued cost of solution S.
4: ## η(S) is the set of neighbors of solution S.
5: ## U () generates a uniform random value in [0, 1).
6: S ← GenerateRandomInitialState
7: T ← T0
8: for i = 1 to N do
9: S ′ ← random selection from η(S)

10: if C(S ′) ≤ C(S) or U () < e(C(S)−C(S ′))/T then
11: S ← S ′

12: end if
13: T ← f (T)
14: end for
15: return Best solution found during run

the neighbor is definitely accepted. Otherwise, if the
neighbor S ′ is more costly, a stochastic decision is
made, and with probability e(C(S)−C(S ′))/T it is accepted,
which is known as the Boltzmann distribution. This
acceptance probability decreases as T decreases, and
also decreases as C(S ′) increases. If the neighbor is
accepted, SA replaces S with S ′ , and otherwise discards
S ′ .

At the very end of each iteration T is updated (line
13) with T ← f (T). The most common form of f (T) is
“exponential cooling”:

f (T) = α · T , (1)

where α ∈ [0, 1] is a constant cooling rate that is
typically set close to 1 (e.g., 0.9, 0.95, 0.99, etc). In this
way, if the search runs long enough, T will eventually
become 0. The next most common annealing schedule
is “linear cooling”:

f (T) = T − λ, (2)

where λ is a constant. Care must be taken to choose λ
relative to T0 and the run length N such that T never
becomes negative.

SA finally returns the best solution encountered
during the run (line 15).

2.2. Applications of Simulated Annealing
SA has been used for a very large variety of
problems. Although most commonly used in discrete
optimization problems, it can also be used for real-
valued function optimization (e.g., using Gaussian
mutation (Hinterding, 1995) as the neighborhood
function). It is most commonly used for NP-Hard
combinatorial optimization problems.

There are many industrial applications of SA. For
example, Dinh et al. (2019) use SA for an assembly

2 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

https://github.com/cicirello/Chips-n-Salsa
https://github.com/cicirello/Chips-n-Salsa
https://search.maven.org/artifact/org.cicirello/chips-n-salsa
https://search.maven.org/artifact/org.cicirello/chips-n-salsa
https://chips-n-salsa.cicirello.org/
https://github.com/cicirello/modified-lam-experiments
https://github.com/cicirello/modified-lam-experiments

Optimizing the Modified Lam Annealing Schedule

line balancing problem. Zhichao et al. (2018) use SA
to detect foreign fibers in images of cotton to enable
removal of those foreign fibers. Liang et al. (2018)
optimize the placement of bus stops in an urban bus
transportation system using SA. Hu et al. (2019) use
SA for an FPGA placement problem. Ma et al. (2019)
apply SA to path planning in optical fiber transmission
networks. Cismaru (2018) optimizes energy efficiency
of a train for a predetermined route using SA.

SA has been applied to a variety of problems related
to wireless sensor networks. Daryanavard and Harifi
(2019) use SA for UAV path planning, where the UAVs
must navigate to collect information from a network
of wireless sensors. Sun and Zhang (2018) use SA for
a wireless sensor network placement problem. Li et al.
(2019) use a combination of SA and particle swarm
optimization for underwater acoustic positioning.

SA has even been used in software testing. For
example, Yan et al. (2019) consider a software product
line testing problem, and use a hybrid of SA and
a genetic algorithm to generate a test suite while
optimizing test coverage. Zamli et al. (2018) investigate
the large increase in size of test cases that can happen
over time in a software project, and use SA to search for
and eliminate redundancy among test cases.

2.3. Advanced Simulated Annealing Concepts
Adaptive Annealing Schedules: Earlier in
Section 2.1, we saw the basic form of SA in Algorithm 1,
and in particular we considered the two most common
annealing schedules, exponential cooling and linear
cooling. The challenge with using one of these
annealing schedules is in effectively choosing the
parameter values. If you cool the temperature too
quickly, the search will reach a local optima too soon
and stagnate. If you cool the temperature too slowly, SA
will spend too much time in a random walk.

An alternative to trying to tune the control
parameters a priori is to instead use an annealing
schedule that is self-adaptive. The earliest example of
this is the work of Lam and Delosme (1988) where
they studied the rate that neighbors are accepted
during optimal runs of SA. In particular, they observed
that during the first 15% of an optimal run of
SA that the rate of neighbor acceptance decreases
exponentially from 100% at the start of the run to
44%. The acceptance rate then remains approximately
constant for 50% of the run, and then finally decays
exponentially during the last 35% of the run. Following
their observations, Lam and Delosme (1988) devised
an approach to exploit their observations where they
track the acceptance rate during the run, and modify
the neighborhood function in an attempt to match
the theoretical rate of acceptance. For example, if SA
is accepting too many neighbors, they decrease the

size of the local neighborhood; and if SA is accepting
too few neighbors, they increase the size of the local
neighborhood.

Modifying the neighborhood function in SA is not
always practical. Swartz (1993) developed, and Boyan
(1998) refined, what is now known as the Modified
Lam annealing schedule, named after the work of
Lam and Delosme (1988). In the Modified Lam, the
neighborhood function is not changed during the
search. Instead, the temperature T is adjusted up
or down in order to track the Lam acceptance rate,
whereas the original work of Lam and Delosme (1988)
used a monotonically decreasing T . It is actually
much more straightforward to adjust T to influence
the acceptance rate than it is to adjust neighborhood
size. Increasing T increases acceptance rate, and
decreasing T decreases acceptance rate. Complete
details of the Modified Lam annealing schedule,
including pseudocode, can be found in Section 3.

The Modified Lam is not the only adaptive anneal-
ing schedule. There are other examples in the litera-
ture (e.g. Hubin, 2019; Štefankovič et al., 2009). But
we leave the reader to consult the references for other
examples, since our focus in this paper is specifically on
the Modified Lam.

Restart Schedules: In other forms of local search,
such as hill climbers, it is common to use a restart
approach where you run the local hill climber several
times and return the best solution found across the
restarts. Although restarting is sometimes used with
SA, it is not as common. The reason is that many have
shown that it is more effective to use a single long run
of SA than it is to use an approach involving a best
of several restarts, provided the annealing schedule is
tuned appropriately for the longer run. However, it is
not always feasible to determine how much time is
available for the run, so you will encounter applications
of SA using simple fixed length restarts.

In our own prior work (Cicirello, 2017), we
investigated how we might deal with the uncertainty
of available time for problem solving, and developed
an approach that uses restarts to adapt the run length.
Rather than choosing a run length ahead of time, we
developed a schedule of run lengths called Variable
Annealing Length (VAL) that begins with a very short
run of SA. With VAL, each restart is a run of a
length that is double that of the previous run. This
effectively balances the risk associated with tuning the
annealing schedule for a longer run than you actually
have time for. The early very short runs find adequate
solutions, and the quickly increasing run lengths lead to
progressively better solutions as the SA is restarted. In
that work, we showed that VAL’s restart schedule of run
lengths is significantly more effective than using fixed
length restarts.

3 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

Vincent A. Cicirello

Parallel SA: There are a variety of approaches to
parallel SA. Some parallel SA compute neighbor
evaluations in parallel (e.g. Ludwin and Betz, 2011;
Rudolph, 1993), such as the speculative moves of
Ludwin and Betz (2011) in FPGA placement that
optimizes the critical path length. Others use parallel
computing to implement parallel multistart SA, such
as approaches where the parallel instances of SA
periodically share solutions (e.g. Jha and Menon,
2014; Ram et al., 1996). In our own prior work
on variable length restarts (Cicirello, 2017), we also
introduced a parallel restart schedule called Parallel
Variable Annealing Length (PVAL) that spreads the
VAL restart schedule across multiple parallel instances
of SA. Another approach to parallel SA is to decompose
a problem into subproblems, and to then optimize
the subproblems in parallel, such as the approach of
Rahimian et al. (2015) for partitioning large social
network graphs.

3. Optimizing Modified Lam Annealing
Original Modified Lam: Pseudocode for the original
Modified Lam annealing schedule is shown in Algo-
rithm 2, and is based on the description of the Modified
Lam given by Boyan (1998).

The temperature T is initialized to 0.5 (see line 7).
It mostly doesn’t matter what T is initialized to in the
Modified Lam, as it will be adjusted during the first
several iterations until the acceptance rate matches the
target acceptance rate, and then continue to be adjusted
to track that target acceptance rate. The adjustment
to T based on actual acceptance rate and the target
acceptance rate is shown in lines 24–28. The actual
acceptance rate is approximated using a reinforcement
learning (RL) inspired technique (lines 13 and 15).
For example, you can consider the 0.998 to be like
a RL discount factor, and a reward of 0.002 when a
neighbor is accepted (and 0 if it is not accepted). The
target acceptance rate, referred to in the pseudocode
as LamRate, follows the exponential decay for the first
15% and last 35% of the run in lines 18 and 20,
respectively.

Optimized Modified Lam: The original Modified
Lam annealing schedule computes a large number of
exponentiations. Specifically, consider lines 18 and 20
of Algorithm 2. Those lines are inside the main loop.
The exponentiation in line 18 is executed once for each
of the iterations in the first 15% of the run; and the
exponentiation in line 20 is executed once for each
iteration in the final 35% of the run of SA. If the
SA run is N iterations in length, then SA with the
original Modified Lam annealing schedule computes
0.5N exponentiations. Exponentiation is a relatively
expensive operation compared with the rest of the

Algorithm 2 Original Modified Lam Annealing

1: ## Notation:
2: ## N is the run length in number of evaluations.
3: ## C(S) is the real-valued cost of solution S.
4: ## η(S) is the set of neighbors of solution S.
5: ## U () generates a uniform random value in [0, 1).
6: S ← GenerateRandomInitialState
7: T ← 0.5
8: AcceptRate← 0.5
9: for i = 1 to N do

10: S ′ ← random selection from η(S)
11: if C(S ′) ≤ C(S) or U () < e(C(S)−C(S ′))/T then
12: S ← S ′

13: AcceptRate← 0.998 · AcceptRate + 0.002
14: else
15: AcceptRate← 0.998 · AcceptRate
16: end if
17: if i ≤ 0.15N then
18: LamRate← 0.44 + 0.56 · 560−i/(0.15N)

19: else if i > 0.65N then
20: LamRate← 0.44 · 440−(i/N−0.65)/0.35

21: else
22: LamRate← 0.44
23: end if
24: if AcceptRate > LamRate then
25: T ← 0.999T
26: else
27: T ← T /0.999
28: end if
29: end for
30: return Best solution found during run

Modified Lam. Our aim with the Optimized Modified
Lam is to minimize the number of exponentiations
computed.

Our optimized version of the Modified Lam anneal-
ing schedule is shown in pseudocode form in Algo-
rithm 3. We compute two exponentiations total (see
lines 10 and 11) prior to entering the main loop. The
exponentiations that had been inside the loop are each
replaced with a multiplication (lines 21 and 24). There-
fore, the 0.5N exponentiations of the original Modified
Lam are replaced with two exponentiations and 0.5N
multiplications.

Additionally, we can even cache the results of those
two exponentiations, achieving an even larger time
advantage over the original Modified Lam if we use
restarts. The m1 and m2 (lines 10 and 11) only need to
be recomputed during a restart if the run length N has
changed. If all restarted runs are equal length, we can
store these for reuse. For example, if we use a multistart
approach where we run the SA some number of times
R and return the best of the R solutions, then the
original Modified Lam needs 0.5RN exponentiations,

4 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

Optimizing the Modified Lam Annealing Schedule

Algorithm 3 Optimized Modified Lam Annealing

1: ## Notation:
2: ## N is the run length in number of evaluations.
3: ## C(S) is the real-valued cost of solution S.
4: ## η(S) is the set of neighbors of solution S.
5: ## U () generates a uniform random value in [0, 1).
6: S ← GenerateRandomInitialState
7: T ← 0.5
8: AcceptRate← 0.5
9: m0 = 0.56

10: m1 = 560−1/(0.15N)

11: m2 = 440−1/(0.35N)

12: for i = 1 to N do
13: S ′ ← random selection from η(S)
14: if C(S ′) ≤ C(S) or U () < e(C(S)−C(S ′))/T then
15: S ← S ′

16: AcceptRate← 0.998 · AcceptRate + 0.002
17: else
18: AcceptRate← 0.998 · AcceptRate
19: end if
20: if i ≤ 0.15N then
21: m0 = m0 ·m1
22: LamRate← 0.44 +m0
23: else if i > 0.65N then
24: LamRate← LamRate ·m2
25: else
26: LamRate← 0.44
27: end if
28: if AcceptRate > LamRate then
29: T ← 0.999T
30: else
31: T ← T /0.999
32: end if
33: end for
34: return Best solution found during run

whereas our optimized version still only requires 2
exponentiations (total across all R restarts) and 0.5RN
multiplications.

Let us now confirm that the optimized version results
in an equivalent sequence of target acceptance rates
as that of the original version. In the pseudocode, the
target acceptance rate is referred to as LamRate. Define
LamRate(i) as the value of LamRate after update i, and
consider the value of LamRate(i) during the first 15% of
the run (i.e., when i ≤ 0.15N). Begin by defining m0(i)
as the value ofm0 after update i. Them0 is initialized to
0.56 (see line 9), so m0(0) = 0.56. During each update,
m0 is multiplied by m1 (line 21). Therefore, m0(i) (for
i ≤ 0.15N) is as follows:

m0(i) = m0(0) ·mi1
= 0.56 · (560−1/(0.15N))i

= 0.56 · 560−i/(0.15N).

(3)

We can thus compute LamRate(i) in terms of m0(i)
based on line 22 of the algorithm as follows:

LamRate(i) = 0.44 +m0(i)

= 0.44 + 0.56 · 560−i/(0.15N),
(4)

which is precisely how LamRate is defined for the first
15% of the run in the original Modified Lam annealing
schedule.

For the next 50% of the run, the target acceptance rate
remains constant at 0.44 just like in the original version.

Next consider the last 35% of the run. The value of
LamRate is adjusted (line 24) with a multiplication by
m2 (initialized in line 11) in this case. At the time of
the first such adjustment in this phase of the algorithm,
LamRate = 0.44. As before, define LamRate(i) as the
value of LamRate after update i, but this time consider
the last 35% of the run. We are specifically concerning
ourselves with updates i, such that 0.65N < i <= N . We
can compute the value of LamRate(i) as follows:

LamRate(i) = 0.44 ·mi−0.65N
2

0.44 · (440−1/(0.35N))i−0.65N

0.44 · 440−i/(0.35N)+0.65/0.35

0.44 · 440(−i/N+0.65)/0.35

0.44 · 440−(i/N−0.65)/0.35,

(5)

which is precisely how LamRate is defined for the last
35% of the run in the original Modified Lam annealing
schedule.

4. Experiments
4.1. Open Source Implementation
We implemented both the original Modified Lam and
our optimized version within an open-source Java
library, Chips-n-Salsa (release 2.2.0), of stochastic local
search algorithms (Cicirello, 2020). The source code of
Chips-n-Salsa is maintained on GitHub1, and prebuilt
releases are regularly deployed to Maven Central2 as
well as GitHub Packages3 where from either of which
the library can easily be imported into projects using
common build tools such as Maven or Gradle (among
others).

The Java class ModifiedLam is our implementation of
our optimized version of the Modified Lam annealing
schedule, and the class ModifiedLamOriginal is the
original version. Both of these classes are found in
the package org.cicirello.search.sa, which is where

1https://github.com/cicirello/Chips-n-Salsa
2https://search.maven.org/artifact/org.cicirello/
chips-n-salsa
3https://github.com/cicirello?tab=packages

5 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

https://github.com/cicirello/Chips-n-Salsa
https://search.maven.org/artifact/org.cicirello/chips-n-salsa
https://search.maven.org/artifact/org.cicirello/chips-n-salsa
https://github.com/cicirello?tab=packages

Vincent A. Cicirello

you will also find the class SimulatedAnnealing.
The SimulatedAnnealing class is implemented to
enable using the annealing schedule and neighborhood
operator (referred to as mutation in the library) of
your choice, and supports optimization of any type
of structure. See the API documentation for complete
details of functionality of Chips-n-Salsa4.

The source code that implements all of our
experiments for this paper is also available
on GitHub (https://github.com/cicirello/
modified-lam-experiments). This repository includes
the source code of the Java programs implementing the
experiments themselves, as well as a Python program
used for the statistical analysis. The raw experimental
data is found there as well. If you would like to
reproduce the experiments on your own machine, see
this GitHub repository for details.

We used Chips-n-Salsa 2.2.0 in the experiments,
compiled on Ubuntu using OpenJDK 11, 64-bit, for
a Java 8 target (the library currently supports Java
8 and up). Although we are the maintainers of this
library, we used the released version rather than a
development version to ensure reproducibility of our
experimental results. The Java programs implemented
to run the experiments were compiled on Windows 10
using OpenJDK 11 for a Java 11 target. The experiments
were then run using the OpenJDK 64-bit Server VM
(build 11.0.8+10) on a Windows 10 machine, with a
AMD A10-5700 3.4 GHz CPU, and 8GB RAM.

4.2. Original vs Optimized Modified Lam
In this first experiment, we compare the original and
optimized versions of the Modified Lam annealing
schedule independent from SA. That is, we don’t
actually generate random neighbors. Instead, we
generate a deterministic sequence of fake cost values.
In this way, nearly all of the runtime comes from the
behavior of the annealing schedule itself.

We consider run lengths (in number of SA eval-
uations) N = {2000, 16000, 128000, 1024000}. To addi-
tionally show the extra time benefit gained by multi-
start SA, for each of the run lengths N , we vary the
number of restarts. Beginning with the single run case,
we also consider a number of restarts R = {1, 2, 4, . . .}.
The maximum number of restarts that we consider
varies based on N , and is such that R ·N = 16384000.
For example, for the longest run length N = 1024000,
we consider R only up to 16; while for the shortest run
length N = 2000, we consider number of restarts R up
to 8192.

For each combination of N and R, we execute each of
the two versions of the annealing schedule 100 times,

4https://chips-n-salsa.cicirello.org/api/

and compute the average CPU time. We statistically test
the difference in the average CPU times using a t-test.

The experimental results are shown in Figure 1.
For the longer run lengths (N = 128000 and N =
1024000 in Figure 1 parts (c) and (d)), all comparisons
are extremely statistically significant based on t-tests,
even without restarts. The P-values from t-tests for
the runs of length N = 1024000 range from P < 10−38

without restarts (i.e., when R = 1) to P = 10−177 for
R = 16 restarts. The P-values from t-tests for the runs
of length N = 128000 range from P < 0.005 without
restarts (i.e., when R = 1) to P < 10−223 for R = 128
restarts. For the runs of length N = 16000, the CPU
time differences are statistically significant beginning
at 8 restarts (P = 0.011), and the CPU time differences
become increasingly statistically significant as number
of restarts increases. For the extremely short run length
(N = 2000 SA iterations), the benefit to using the
optimized version doesn’t appear until you restart 128
or more times (e.g., P < 10−7 for 128 restarts of a 2000
iteration run). With fewer than 128 restarts, the CPU
time differences are not statistically significant for the
N = 2000 iteration runs.

Just how much faster is the optimized version?
Well, for runs of length N = 1024000, the optimized
version of the Modified Lam is approximately 14%
to 15% faster than the original, depending upon
number of restarts. For runs of length N = 128000
iterations, the optimized version is approximately 27%
to 35% faster than the original, depending upon
number of restarts. For the shorter runs of N = 16000
iterations, specifically for the numbers of restarts where
a statistically significant difference in run times was
observed (when R ≥ 8), the optimized version was
approximately 25% to 32% faster than the original.
Likewise, if the number of restarts of the very short
runs of length N = 2000 was high enough to lead to
a statistically significant difference in run times, the
optimized version was 25% to 30% faster.

Thus, for longer run lengths, even without restarts,
the optimized version exhibits an extremely statistically
significant performance advantage over the original.
For short run lengths, the optimized version is faster
without restarts (but not at statistically significant
levels). However, it is unusual to use such short run
lengths without restarting. When considering restarts
with the short run lengths, the performance advantage
of the optimized version is again very statistically
significant.

The reason the optimized version has an added
benefit when restarts are used is related to the ability to
cache the results of the exponentiations. The optimized
version only computes two exponentiations across
the restarts, whereas the original version computes a
number of exponentiations that is linear in the product
of the run length N and number of restarts R.

6 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

https://github.com/cicirello/modified-lam-experiments
https://github.com/cicirello/modified-lam-experiments
https://chips-n-salsa.cicirello.org/api/

Optimizing the Modified Lam Annealing Schedule

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000 10000

C
P

U
 t

im
e

(s
ec

o
n

d
s)

number of restarts

Run length N=2000

Original Modified Lam Optimized Modified Lam

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

C
P

U
 t

im
e

(s
ec

o
n

d
s)

number of restarts

Run length N=16000

Original Modified Lam Optimized Modified Lam

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
ec

o
n

d
s)

number of restarts

Run length N=128000

Original Modified Lam Optimized Modified Lam

0

0.5

1

1.5

2

0 5 10 15 20

C
P

U
 t

im
e

(s
ec

o
n

d
s)

number of restarts

Run length N=1024000

Original Modified Lam Optimized Modified Lam

(c) (d)

Figure 1. Runtime comparison of the original and optimized versions of the Modified Lam annealing schedule for runs of length:
(a) 2000 iterations, (b) 16000 iterations, (c) 128000 iterations, and (d) 1024000 iterations. Each graph shows average CPU time in
seconds as a function of number of restarts.

4.3. Effects on Simulated Annealing
In the previous section, which considered the runtime
of the annealing schedule independent of an actual
run of SA, we saw that the optimized version speeds
up the annealing schedule computation by 15% to
30% depending upon run length. However, how much
faster the SA actually becomes depends upon the
cost of random neighbor generation and cost function
computation relative to the cost of the annealing
schedule. In this section, we explore this further by
considering four different benchmarking problems,
each using a different solution representation.

OneMax: The OneMax (Syswerda, 1989) problem
is a well-known problem that has been used for
benchmarking genetic algorithms for decades. It is an
optimization problem over the space of vectors of bits.
The problem is to find the vector of bits (of some
specified length) that maximizes the number of one-
bits. The optimal solution is trivially the vector of all
ones.

In our experiments, we use bit vectors of length
L = 20480. This length was chosen as it is a multiple

of 32 bits (although our implementation does not
require that), and is just long enough that even
our long runs of SA did not optimally solve the
instances. The latter is important for the experiments
because our SA is designed to terminate in cases
where a known optimal cost value is found and
we want to ensure that time differences are strictly
due to the annealing schedule and not due to early
termination. The BitVector class in the Chips-n-Salsa
library efficiently implements bit vectors, including
methods for accessing individual bits, or groups of
bits, as needed, as well as all common bit-wise
operators. We consider run lengths N = {104, 105, 106}
in number of simulated annealing iterations. Our
SA implementations are designed to minimize a cost
function, so we map the problem of maximizing the
number of one bits to minimizing the cost function:
L −OneBitCount. Our neighborhood function is “bit
flip mutation,” commonly used as a mutation operator
in genetic algorithms. Our implementation generates a
neighbor by picking a random bit position, and flipping
its value.

At each run length, we execute the SA 100 times, and
report both the average cost of solutions and the average

7 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

Vincent A. Cicirello

Table 1. OneMax: (a) optimization cost function, and (b) CPU
time. Results are averages of 100 runs, and the P column shows
t-test P-values.

Cost Function Value
N Original Optimized P

104 6422.56 6417.28 0.58
105 883.70 888.75 0.25
106 12.94 12.56 0.42

(a)

CPU Time (seconds)
N Original Optimized P

104 0.012 0.012 0.74
105 0.106 0.104 0.025
106 1.005 0.984 3.4 · 10−38

(b)

CPU time of the SA. We include the average cost values
to demonstrate that the optimizations do not affect the
general behavior of SA, and only affects the runtime. We
test statistical significance with t-tests.

Table 1 summarizes the results. In Table 1(a) we can
confirm that the difference between the two versions
for the average value of the cost function we are
minimizing is not statistically significant. This should
be the case since we desire our optimized version to
be logically equivalent to the original as far as the
annealing schedule is concerned. More importantly,
however, is that in Table 1(b) we see that the optimized
version is faster at very statistically significant levels
(P = 0.025 for N = 105 iterations, and P very near 0
for N = 106 iterations), other than for very short runs
where no difference is seen. The optimized version lead
to an approximately 2% faster SA than the original
version.

BoundMax: We define the BoundMax problem as a
generalization of OneMax to searching the space of
vectors of integers. Although we are unaware of any
prior usages of BoundMax, we do not claim novelty as
it is the obvious generalization of OneMax. Specifically,
given length L and integer bound B > 0, the search
space is defined as the set of all vectors V of length
L such that the elements Vi are contained within the
integer bounds 0 ≤ Vi ≤ B. The BoundMax problem is
then to maximize the number of elements of V that are
equal to B. If the bound B = 1 this is just the OneMax
problem. We include the BoundMax problem in our
experiments to have a simple benchmarking problem
with an integer vector representation.

In our experiments, we set the bound B = 127 and bit
vector length L = 650. As in the case of the OneMax
experiments, we chose these as they are just right to
ensure that even the long SA runs don’t quite optimally

Table 2. BoundMax: (a) optimization cost function, and (b) CPU
time. Results are averages of 100 runs, and the P column shows
t-test P-values.

Cost Function Value
N Original Optimized P

104 553.38 552.11 0.33
105 190.90 189.47 0.33
106 11.57 11.60 0.95

(a)

CPU Time (seconds)
N Original Optimized P

104 0.010 0.009 0.38
105 0.109 0.106 0.0023
106 1.077 1.055 1.7 · 10−39

(b)

solve the instances. For the neighborhood function, we
use a random value change operator that iterates over
the integer vector, and with probability P , changes
the element to a different random value within the
bounds. We set P = 1/L so that the expected number of
integers changed is 1 (it is also implemented to ensure
that at least one integer is changed). We convert this
maximization problem to a minimization problem in
the same way that we did for the OneMax problem. We
consider the same run lengths as we did in the OneMax
experiments: N = {104, 105, 106}. And we again report
averages of 100 runs for both average solution cost and
average CPU time.

Table 2 summarizes the results on the BoundMax
problem. Just like in the case of the OneMax problem,
we see no difference (statistically) in the cost function
values of the solutions to the BoundMax problem
produced by SA (Table 2(a)). This is because both
the original and optimized versions produce the
same sequence of target acceptance rates. However,
the optimized version is between 2% and 3% faster
(Table 2(b)) at statistically significant levels (P = 0.0023
for runs of length N = 105 SA iterations, and P very
near zero for N = 106 iterations). The time difference
for short runs of N = 104 iterations was not statistically
significant.

Permutation in a Haystack: In our prior work,
we introduced the Permutation in a Haystack prob-
lem (Cicirello, 2016), Haystack(δ, L), as an optimization
problem over the space of permutations of the set of
integers {0, 1, . . . , (L − 1)}. The Haystack(δ, L) is to find
the permutation p that minimizes the distance δ(p, pL)
to a target permutation pL = [0, 1, . . . , (L − 1)]. The opti-
mal solution to the problem is trivially pL. The choice
of distance metric δ(p, pL) affects the topology of the

8 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

Optimizing the Modified Lam Annealing Schedule

Table 3. Permutation in a Haystack: (a) optimization cost
function, and (b) CPU time. Results are averages of 100 runs,
and the P column shows t-test P-values.

Cost Function Value
N Original Optimized P

104 775.28 774.73 0.41
105 585.71 587.15 0.37
106 179.38 179.29 0.96

(a)

CPU Time (seconds)
N Original Optimized P

104 0.006 0.006 0.67
105 0.099 0.098 0.37
106 0.939 0.911 2.3 · 10−6

(b)

search space, enabling isolating the problem character-
istics of interest in your study. There are a large variety
of distance metrics on permutations that you can choose
from (Cicirello, 2019). One can view the Permutation
in a Haystack as an analog of the OneMax problem,
but for permutations rather than vectors of bits since
maximizing the number of one bits in a vector of bits is
equivalent to minimizing the Hamming distance to the
vector of all one bits.

In our experiments, we use permutations of length
L = 800. We use a permutation distance metric known
as Exact Match distance for δ. Exact Match distance
is essentially Hamming distance, but on permutations,
and simply counts the number of positions with
different elements. The combination of L and δ were
chosen so that even the longest runs of SA don’t
quite optimally solve the problem. For representing
permutations and for computing distance metrics on
permutations, we use the Java Permutation Tools (JPT)
library (Cicirello, 2018). We use Swap Mutation for the
neighborhood function, which picks a pair of random
elements and swaps them within the permutation. The
run lengths are as defined for the previous problems,
N = {104, 105, 106}, and we average over 100 runs,
reporting both average cost values and average CPU
times.

The results for the Permutation in a Haystack
problem are shown in Table 3. Our results confirm
that, as expected, the differences in the optimization
cost function values of solutions are not statistically
significant (Table 3(a)). Regarding CPU time, as
shown in Table 3(b), we only see a statistically
significant difference for the longer runs of 106 SA
iterations (P very near zero) where we find that SA
using the optimized version of the Modified Lam
is approximately 3% faster than using the original
version. The reason that we don’t see a statistically

significant runtime difference until the longer runs of
SA for this problem compared to the others is likely due
to the increased time to generate random neighbors of a
permutation and to evaluate the optimization cost value
for this problem, relative to that of the OneMax and
BoundMax problems. That is, although the optimized
annealing schedule is 15% to 30% faster as seen in the
results of Section 4.2, the time to compute the annealing
schedule is a smaller fraction of overall runtime in the
case of this permutation optimization problem. So it
will likely take much longer runs before we fully realize
the performance benefit.

Polynomial Root Finding: Although SA is more
commonly used for discrete optimization problems,
we wanted to include a case of real-valued function
optimization. For this purpose, we use a one-
dimensional polynomial root finding problem. The
specific instance we used is to find the roots
of the polynomial: 12500 − 2500X − 5X2 + X3. This
polynomial has three roots: 50, -50, and 5. Therefore,
there are three optimal solutions to the problem. We
define it as an optimization problem as minimize:
|12500 − 2500X − 5X2 + X3|.

For this problem, we use longer run lengths than
we did for the previously because an iteration of
SA is much faster for this problem than it was for
the previous problems. This is because with this
problem, an iteration of SA is operating on a single
floating-point value X, representing a solution to
the problem; whereas with the OneMax, BoundMax,
and Permutation in a Haystack problems, neighbor
generation involved operating on a long sequence.
Likewise, computing the cost function takes much less
time for the Polynomial Root Finding problem since it
is just a small number of arithmetic operations; whereas
with the other problems cost evaluation involved
iterating over a much longer sequence. The run lengths
that we use for the Polynomial Root Finding problem
are: N = {105, 106, 107, 108}. At each run length, we
solve 100 times and report the average cost value and
average CPU time.

The results for the Polynomial Root Finding problem
are found in Table 4. As in all of the prior problems,
there is no difference statistically in the cost of solutions
found by the two versions (Table 4(a)), as we should
expect since the annealing schedule consists in the same
sequence of target acceptance rates regardless of the
approach to computing it. The savings in CPU time,
however, is much more substantial for the Polynomial
Root Finding problem than it was for any of the other
problems (Table 4(b)). All run lengths, even the shortest
run length, exhibited statistically significant differences
in CPU time (P values were very near zero). For the
shortest run length (105 SA iterations), the optimized
version was 50% faster, which might be due to a

9 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

Vincent A. Cicirello

Table 4. Polynomial Root Finding: (a) optimization cost function,
and (b) CPU time. Results are averages of 100 runs, and the P
column shows t-test P-values.

Cost Function Value
N Original Optimized P

105 0.00635 0.00589 0.60
106 0.00057 0.00061 0.60
107 0.00006 0.00005 0.08
108 0.00001 0.00001 0.70

(a)

CPU Time (seconds)
N Original Optimized P

105 0.010 0.005 3.6 · 10−6

106 0.080 0.062 3.5 · 10−66

107 0.803 0.614 5.8 · 10−208

108 8.038 6.144 3.1 · 10−260

(b)

measurement anomaly related to measuring very short
runtimes, since our earlier results when the annealing
schedule was isolated from SA (see Section 4.2) found at
most a 30% speedup of the annealing schedule. For the
other three run lengths (106, 107, and 108 SA iterations),
the SA using the optimized version of the annealing
schedule is approximately 22% to 24% faster than the
original version. This shows that there is potential
extreme time savings in cases where the cost function
and neighbor generation are simpler.

5. Conclusions
In this paper, we presented an optimized version
of an existing adaptive annealing schedule for SA,
known as the Modified Lam. The original version of
the Modified Lam annealing schedule computes O(N)
exponentiations where N is the run length in number
of SA iterations. Our optimized version, computes
only two exponentiations at the start, and then O(N)
multiplications during the run. Furthermore, in the case
of multistart SA, where you run SA multiple times
and return the best solution from the restarts, our
optimized version has the added advantage that the two
exponentiations can be cached so that you only need to
compute two exponentiations total across all restarts.

In our experiments, we first showed that the
optimized version of the annealing schedule is between
15% and 32% faster than the original depending upon
run length and number of restarts. The effects on
the overall run time of the SA as a whole is not
as extreme since the SA is also computing random
neighbors as well as computing the optimization cost
function during each iteration. In some cases, the SA as
a whole is 2% to 3% faster, such as for representations

like integer vectors and bit vectors where random
neighbor generation and cost function computation
likely dominate the runtime of an iteration relative to
updating the annealing schedule. This was even more
the case with the permutation optimization problem,
where the optimized version was 3% faster but only
for the long run lengths. We should expect the time
savings in these cases to grow if restarts are used
due to the effects of caching the exponentiations. We
also saw that there are problems where the optimized
version exhibits very substantial time savings of 22% to
24% for problems where generating a random neighbor
and evaluating its cost are simpler operations (e.g., the
polynomial root finding problem). So although the time
savings is sometimes modest for some problems, the
optimizations never lead to a slower runtime, and have
the potential to provide very large overall time savings.

References
Boyan, J.A. (1998) Learning Evaluation Functions for Global

Optimization. Ph.D. thesis, Carnegie Mellon University,
USA.

Cicirello, V.A. (2016) The permutation in a haystack
problem and the calculus of search landscapes. IEEE
Transactions on Evolutionary Computation 20(3): 434–446.
doi:10.1109/TEVC.2015.2477284.

Cicirello, V.A. (2017) Variable annealing length and paral-
lelism in simulated annealing. In Proceedings of the Tenth
International Symposium on Combinatorial Search (SoCS
2017) (AAAI Press): 2–10. URL https://www.cicirello.

org/publications/SoCS2017-Cicirello.pdf.
Cicirello, V.A. (2018) JavaPermutationTools: A java library

of permutation distance metrics. Journal of Open Source
Software 3(31). doi:10.21105/joss.00950.

Cicirello, V.A. (2019) Classification of permutation distance
metrics for fitness landscape analysis. In Proceedings of
the 11th International Conference on Bio-inspired Information
and Communication Technologies (Springer Nature): 81–97.
doi:10.1007/978-3-030-24202-2_7.

Cicirello, V.A. (2020) Chips-n-salsa: A java library of
customizable, hybridizable, iterative, parallel, stochastic,
and self-adaptive local search algorithms. Journal of Open
Source Software 5(52). doi:10.21105/joss.02448.

Cismaru, D.C. (2018) Energy efficient train operation using
simulated annealing algorithm and simulink model. In
2018 International Conference on Applied and Theoretical
Electricity (ICATE): 1–4. doi:10.1109/ICATE.2018.8551415.

Daryanavard, H. and Harifi, A. (2019) Uav path planning
for data gathering of iot nodes: Ant colony or simulated
annealing optimization. In 2019 3rd International Con-
ference on Internet of Things and Applications (IoT): 1–4.
doi:10.1109/IICITA.2019.8808834.

Delahaye, D., Chaimatanan, S. and Mongeau, M. (2019)
Simulated annealing: From basics to applications. In
Gendreau, M. and Potvin, J.Y. [eds.] Handbook of
Metaheuristics (Springer), 1–35. doi:10.1007/978-3-319-
91086-4_1.

Dinh, M.H., Nguyen, V.D., Truong, V.L., Do, P.T., Phan,

T.T. and Nguyen, D.N. (2019) Simulated annealing

10 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

https://doi.org/10.1109/TEVC.2015.2477284
https://www.cicirello.org/publications/SoCS2017-Cicirello.pdf
https://www.cicirello.org/publications/SoCS2017-Cicirello.pdf
https://doi.org/10.21105/joss.00950
https://doi.org/10.1007/978-3-030-24202-2_7
https://doi.org/10.21105/joss.02448
https://doi.org/10.1109/ICATE.2018.8551415
https://doi.org/10.1109/IICITA.2019.8808834
https://doi.org/10.1007/978-3-319-91086-4_1
https://doi.org/10.1007/978-3-319-91086-4_1

Optimizing the Modified Lam Annealing Schedule

for the assembly line balancing problem in the gar-
ment industry. In Proceedings of the Tenth Interna-
tional Symposium on Information and Communication Tech-
nology (Association for Computing Machinery): 36–42.
doi:10.1145/3368926.3369698.

Hinterding, R. (1995) Gaussian mutation and self-adaption
for numeric genetic algorithms. In Proceedings of 1995 IEEE
International Conference on Evolutionary Computation, 1:
384–389. doi:10.1109/ICEC.1995.489178.

Hu, C., Duan, Q., Hu, L., Lu, P., Li, Z., Yang, M., Wang,

J. et al. (2019) An analytical-based hybrid algorithm
for fpga placement. In Proceedings of the 2019 on Great
Lakes Symposium on VLSI (Association for Computing
Machinery): 351–354. doi:10.1145/3299874.3318035.

Hubin, A. (2019) An adaptive simulated annealing em algo-
rithm for inference on non-homogeneous hidden markov
models. In Proceedings of the International Conference on
Artificial Intelligence, Information Processing and Cloud Com-
puting (ACM Press): 1–9. doi:10.1145/3371425.3371641.

Jha, S. and Menon, V. (2014) Bbmttp: Beat-based parallel
simulated annealing algorithm on gpgpus for the mirrored
traveling tournament problem. In Proceedings of the High
Performance Computing Symposium (Society for Computer
Simulation International): 3:1–3:7.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983)
Optimization by simulated annealing. Science 220(4598):
671–680. doi:10.1126/science.220.4598.671.

Lam, J. and Delosme, J.M. (1988) Performance of a new
annealing schedule. In Proceedings of the 25th ACM/IEEE
Design Automation Conference (IEEE Computer Society
Press): 306–311. doi:10.1109/DAC.1988.14775.

Li, J., Li, L., Yu, F., Ju, Y. and Ren, J. (2019) Application
of simulated annealing particle swarm optimization in
underwater acoustic positioning optimization. In OCEANS
2019: 1–4. doi:10.1109/OCEANSE.2019.8867063.

Liang, Y., Gao, S., Wu, T., Wang, S. and Wu, Y. (2018)
Optimizing bus stop spacing using the simulated anneal-
ing algorithm with spatial interaction coverage model.
In Proceedings of the 11th ACM SIGSPATIAL Inter-
national Workshop on Computational Transportation Sci-
ence (Association for Computing Machinery): 53–59.
doi:10.1145/3283207.3283212.

Ludwin, A. and Betz, V. (2011) Efficient and determin-
istic parallel placement for fpgas. ACM Transactions on
Design Automation of Electronic Systems 16(3): 22:1–22:23.
doi:10.1145/1970353.1970355.

Ma, B., He, Y., Du, J. and Han, M. (2019) Research
on path planning problem of optical fiber transmission
network based on simulated annealing algorithm. In

2019 IEEE 8th Joint International Information Technology
and Artificial Intelligence Conference (ITAIC): 1298–1301.
doi:10.1109/ITAIC.2019.8785544.

Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity,

M. and Haridi, S. (2015) A distributed algorithm
for large-scale graph partitioning. ACM Transactions
on Autonomous and Adaptive Systems 10(2): 12:1–12:24.
doi:10.1145/2714568.

Ram, D.J., Sreenivas, T.H. and Subramaniam, K.G. (1996)
Parallel simulated annealing algorithms. Journal of
Parallel and Distributed Computing 37: 207—-212.
doi:10.1006/jpdc.1996.0121.

Rudolph, G. (1993) Massively parallel simulated annealing
and its relation to evolutionary algorithms. Evolutionary
Computation 1(4): 361–383. doi:10.1162/evco.1993.1.4.361.

Sun, W. and Zhang, L. (2018) Wsn location
algorithm based on simulated annealing co-
linearity dv-hop. In 2018 2nd IEEE Advanced
Information Management,Communicates,Electronic and
Automation Control Conference (IMCEC): 1518–1522.
doi:10.1109/IMCEC.2018.8469558.

Swartz, W.P. (1993) Automatic Layout of Analog and Digital
Mixed Macro/Standard Cell Integrated Circuits. Ph.D. thesis,
Yale University.

Syswerda, G. (1989) Uniform crossover in genetic algorithms.
In Proceedings of the 3rd International Conference on Genetic
Algorithms (Morgan Kaufmann Publishers Inc.): 2–9.

Štefankovič, D., Vempala, S. and Vigoda, E. (2009) Adaptive
simulated annealing: A near-optimal connection between
sampling and counting. Journal of the ACM 56(3): 18:1–
18:36. doi:10.1145/1516512.1516520.

Yan, L., Hu, W. and Han, L. (2019) Optimize spl
test cases with adaptive simulated annealing genetic
algorithm. In Proceedings of the ACM Turing Celebration
Conference (Association for Computing Machinery): 1–7.
doi:10.1145/3321408.3326676.

Zamli, K.Z., Safieny, N. and Din, F. (2018) Hybrid test redun-
dancy reduction strategy based on global neighborhood
algorithm and simulated annealing. In Proceedings of the
2018 7th International Conference on Software and Com-
puter Applications (Association for Computing Machinery):
87–91. doi:10.1145/3185089.3185146.

Zhichao, Z., Yuhong, D., Yuqin, D., Jintian, Y. and Renjie,

L. (2018) A simulated annealing white balance algorithm
for foreign fiber detection. In Proceedings of the 2nd
International Conference on Biomedical Engineering and
Bioinformatics (Association for Computing Machinery):
160–164. doi:10.1145/3278198.3278214.

11 EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

10 2020 - 01 2021 | Volume 7 | Issue 25 | e1

https://doi.org/10.1145/3368926.3369698
https://doi.org/10.1109/ICEC.1995.489178
https://doi.org/10.1145/3299874.3318035
https://doi.org/10.1145/3371425.3371641
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/DAC.1988.14775
https://doi.org/10.1109/OCEANSE.2019.8867063
https://doi.org/10.1145/3283207.3283212
https://doi.org/10.1145/1970353.1970355
https://doi.org/10.1109/ITAIC.2019.8785544
https://doi.org/10.1145/2714568
https://doi.org/10.1006/jpdc.1996.0121
https://doi.org/10.1162/evco.1993.1.4.361
https://doi.org/10.1109/IMCEC.2018.8469558
https://doi.org/10.1145/1516512.1516520
https://doi.org/10.1145/3321408.3326676
https://doi.org/10.1145/3185089.3185146
https://doi.org/10.1145/3278198.3278214

	1 Introduction
	2 Background and Related Work
	2.1 Basics of Simulated Annealing
	2.2 Applications of Simulated Annealing
	2.3 Advanced Simulated Annealing Concepts

	3 Optimizing Modified Lam Annealing
	4 Experiments
	4.1 Open Source Implementation
	4.2 Original vs Optimized Modified Lam
	4.3 Effects on Simulated Annealing

	5 Conclusions

