
1

Exploring Deep Recurrent Q-Learning for Navigation in

a 3D Environment

Rasmus Kongsmar Brejl1,2*, Hendrik Purwins1,2, and Henrik Schoenau-Fog1

1The Center for Applied Game Research, Department of Architecture, Design, and Media Technology, Technical Faculty of

IT and Design, Aalborg University Copenhagen, Denmark
2Audio Analysis Lab, Department of Architecture, Design, and Media Technology, Technical Faculty of IT and Design,

Aalborg University Copenhagen, Denmark

Abstract

Learning to navigate in 3D environments from raw sensory input is an important step towards bridging the gap between

human players and artificial intelligence in digital games. Recent advances in deep reinforcement learning have seen

success in teaching agents to play Atari 2600 games from raw pixel information where the environment is always fully

observable by the agent. This is not true for first-person 3D navigation tasks. Instead, the agent is limited by its field of

view which limits its ability to make optimal decisions in the environment. This paper explores using a Deep Recurrent Q-

Network implementation with a long short-term memory layer for dealing with such tasks by allowing an agent to process

recent frames and gain a memory of the environment. An agent was trained in a 3D first-person labyrinth-like environment

for 2 million frames. Informal observations indicate that the trained agent navigated in the right direction but was unable to

find the target of the environment.

Keywords: Reinforcement Learning ∙ Deep Learning ∙ Q-Learning ∙ Deep Recurrent Q-Learning ∙ Artificial Intelligence ∙ Navigation ∙

Game Intelligence

Received on 13 November 2017, accepted on 18 December 2017, published on DD 16 January 2018

Copyright © 2018 R.K. Brejl et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.16-1-2018.153641

*Corresponding author. Email: rasmuskbrejl@gmail.com

1. Introduction

Teaching an agent to navigate in a 3D digital game

environment using only raw sensory input rather than search

algorithms is a stepping stone towards bridging the gap

between human players and artificial intelligence in digital

games. Artificial intelligence in commercial games is often

programmed using state machines, search algorithms, and

hand-crafted features, whereas recent research in artificial

game intelligence is more focused on machine learning

techniques like evolutionary strategies and reinforcement

learning [1]. Using these machine learning techniques can

lead to more advanced and diverse behaviour for game

agents, making them more believable. Learning behaviour

through raw sensory input makes it easier for development

teams to implement a general AI while players might find

playing against less predictable agents more engaging.

Reinforcement Learning has initially made it possible to

solve a large variety of tasks through hand-crafted features

and state representations, often limited by small state or

action spaces [2, 3], with Q-learning being the dominating

Reinforcement Learning technique [4, 5]. Recent advances

in deep learning have led to Deep Q-Networks (DQN)

which have been successful in playing Atari 2600 games [6,

7] and playing simple 3D first-person shooter (FPS)

scenarios [8] from raw sensory input. This is known as end-

to-end Reinforcement Learning.

A limitation of DQN, however, is that it assumes that the

environment is fully observable, meaning that the agent has

full knowledge about the state of the game at any moment.

Research Article
EAI Endorsed Transactions
on Creative Technologies

EAI Endorsed Transactions on
Creative Technologies

11 2017 - 01 2018 | Volume 5 | Issue 14 | e3

http://creativecommons.org/licenses/by/3.0/

R. K. Brejl et al.

2

This assumption is not true for most first-person games, in

which both players and agents observe the environment

from a limited first-person perspective.

To overcome the problem of partial observability, the

agent needs to gain a memory and remember previous

states. One approach is to stack the last k frames and feed

them into the network at the same time [7]. A technique that

has been used to handle longer temporal context in time

series is to introduce recurrent connections in the network.

This was done by [9], who used a Deep Recurrent Q-

Network (DRQN) with a Long Short-Term Memory

(LSTM) layer to estimate the Q-function and play Atari

2600 games with partial observability. A DQN for

navigating and a DRQN for action selection was used by

[10] to achieve human-level play in a 3D FPS deathmatch

scenario. The Asynchronous Advantage Actor-Critic (A3C)

algorithm together with an LSTM was used by [11] to train

an agent to navigate in randomly generated 3D maze

environments only from raw visual input. A stacked LSTM

network with an adaptation of the A3C algorithm was used

by [12] to teach an agent to navigate in complex 3D maze

environments with dynamic elements.

In the present effort, we explore using a DRQN with an

LSTM layer for navigating in 3D environments where single

observations can be very similar at different points of the

environment if not supported by a memory of previous

observations. The agent was implemented and tested in a 3D

FPS navigation task with partial observability. The model

was tested in the ViZDoom scenario My Way Home, using

the API developed by [8].

In this paper, the background for DRQN will first be

presented. Then the model and implementation of the

present approach will be presented. We will conclude with

some observations of the agent’s behaviour in the ViZDoom

scenario.

2. Background

Reinforcement Learning [5] is a Machine Learning

technique in which an agent deals with learning a policy for

behaving in an environment through trial-and-error

interaction with the environment. At each interaction, the

agent observes a state s from the environment, performs an

action a according to its policy π, and receives a reward r

from the environment and observes a new state s’. The goal

of the agent is to find a policy that maximizes its expected

return. Q(s,a)

Q-Learning [4] is a model-free off-policy algorithm that

estimates the action-value function, the value of action a

given state s, by iteratively updating the Q-values towards

the observed reward r plus the maximum Q-value of the

resulting state s’. The tabular Q-Learning update is then:

)),()','(max(),(:),(
'

asQasQrasQasQ
a

 (1)

where 𝛼 is the learning rate of the update and γ the discount

factor weighting future rewards.

Storing an estimate for each state-action pair is not

efficient for domains with large or continuous state spaces,

such as FPS games. DQN [6] deals with this problem by

using a neural network as a non-linear function

approximator parameterized by weights and biases θ. Now

the parameters θ are updated instead of the individual

Q(s,a)-values. The goal is to minimize the average of the

loss:

2));a,s(Qy()(L tt (2)

where t is the current time-step and y is the update target

)θ;a',Q(s'maxγry t
a'

 .

The network parameters are updated by following the

gradient of the loss function:

)θa;Q(s,))θa;Q(s,α(yθθ tθtt1t t
 (3)

Using a neural network as a function approximator for the

Q-values has shown unstable behaviour and might lead to

divergence [13]. One step for overcoming this problem is to

use experience replay [14] in which the agent stores

transitions in a replay memory and then samples them

uniformly during training. This breaks correlation between

successive samples. Another step is to use a target network,

identical in structure to the main network, to estimate the Q-

values. The parameters of the target network can either be

updated gradually towards the parameters of the main

network, or frozen in time and updated only every ith

iteration. The update target then becomes

)θ';a',Q(s'maxγry t
a'

 where θ’t are the biases and

weights of the frozen network at timestep t. A final step for

stabilization is to use an adaptive learning rate method such

as RMSProp [15]. These steps were all used by [7] and

proved to stabilize training of a DQN.

Reinforcement Learning is often considered as a Markov

Decision Process (MDP) in which the agent acts in the

environment based on states that hold the Markov property

[5]. This assumption does not hold in many tasks. This is

especially true in a limited first-person view in a 3D world.

In this case, the agent partially observes the environment

and the problem is then considered a Partially Observable

Markov Decision Process (POMDP). A Deep Recurrent Q-

Network (DRQN) was introduced by [9] to deal with the

problem of partial observability. They showed that

introducing recurrence to the network was better at

approximating the actual Q-values based on an observation

o. It was shown by [10] that a DRQN could be used to play

3D FPS games at a high level by using an LSTM layer. The

LSTM is a recurrent neural network that is built on memory

cells that are able to process time series with the help of an

input, output, and forget gate [16]. LSTMs are especially

effective at modeling long term dependencies. This applies

in games specifically when information was present in

previous frames but not in the current frame.

EAI Endorsed Transactions on
Creative Technologies

11 2017 - 01 2018 | Volume 5 | Issue 14 | e3

Exploring Deep Recurrent Q-Learning for Navigation in 3D Environments

3

Figure 1. The architecture of the neural network. The network takes a down-sampled RGB image as input and
propagates it forward through three convolutional layers and an LSTM layer with 768 hidden units to output 32

action values. Layer 3’ is the neurons from layer 3 flattened into one vector of length 768.

3. Experiment

3.1 Model

The model presented in this paper is a DRQN and is based

on the DQN model by [7]. The main difference is that the

first fully connected layer following the convolutional layers

[17] of the DQN model is replaced by an LSTM layer, and

the network is only fed one input image at a time, rather

than four.

The complete network architecture is shown in Figure 1.

From the game, a frame with the original 400x225x3

resolution is downsampled to a 45x80x3 RGB image that

serves as the input to the neural network. The input is

propagated forward through three hidden convolutional

layers, and the third convolutional layer is then flattened and

propagated through one LSTM layer before being passed to

the output layer in which each unit assigns a Q-value to a

different action.

The first convolutional layer has a kernel of size 8x8, a

stride of size 4x4, no padding, and 32 feature maps and

applies a ReLU [18] activation function. The second

convolutional layer has a kernel of size 4x4, a stride of size

2x2, no padding, and 64 feature maps and applies a ReLU

activation function. The third convolutional layer has a

kernel of size 3x3, a stride of size 1x1, no padding, and 64

feature maps and applies a ReLU activation function. The

third convolutional layer is then flattened and fed into an

LSTM layer with 768 hidden units. The output of the LSTM

layer is finally fed into the output layer, which maps one

value to each possible action.

3.2 Training

The agent was interacting with the environment following

an ε-greedy policy. With ε probability, pick a random

action, otherwise, pick the action with the highest associated

Q-value. The ε-greedy policy is popular policy for dealing

with the exploration-exploitation trade-off in reinforcement

learning [7, 10]. The ε value used in this study was linearly

decayed from 1 to 0.1 over 200k actions and then frozen at

0.1.

The agent used a frame-skip technique in which a chosen

action was repeated for k frames and, as a result,

observations were received and rewards computed every

k+1 frames from the environment. The present study used a

frame skip of 4 as in [7, 8, 10].

The hidden state of the LSTM was initialized by zero at

the beginning of every episode and updated after each

selected action by the agent. Transitions by the agent

(s,a,r,s’) were stored in a replay memory. The replay

memory stored the last 1 million transitions by the agent.

The parameters of the main network were updated once

for every four selected actions. The parameters were

updated using the RMSProp [15] optimization algorithm

with a learning rate of 0.0025. The update followed the

Bootstrapped Random Updates method [9], where a

minibatch of size 32 of experiences, each experience

consisting of 8 timesteps, were selected uniformly from the

experience replay. The target values were computed by the

target network. The parameters of the target network were

gradually updated towards the parameters of the main

network by a factor 0010. after each network update:

ttt ')(' 1 (4)

3.3 Scenario

The model was trained and tested in the ViZDoom

environment My Way Home [8]. The goal of the agent was

to learn to navigate a labyrinth-like environment and find a

green vest in one of the rooms. The map was a series of

interconnected rooms and one corridor with a dead end.

Each room had a different colour. The agent was spawned in

a random room facing a random direction and the vest was

always in the same room. The agent had five available

binary buttons: turn left, turn right, move forward, move left,

move right. The agent thus had 32 different actions – one for

each possible combination of buttons. The agent received a

reward of 1 for reaching the vest, and otherwise a reward of

-0.0001 for every timestep. Each episode ended after 2100

environment steps or when the agent reached the vest.

OpenAI Gym [19] has a wrapper for the My Way Home

EAI Endorsed Transactions on
Creative Technologies

11 2017 - 01 2018 | Volume 5 | Issue 14 | e3

R. K. Brejl et al.

4

environment2 and they define the scenario as solved if the

agent reaches an average reward of 0.5 or more over 100

consecutive episodes.

The agent of the present study was trained and evaluated

for 200 epochs. Each epoch consisted of 10k training steps.

A training step was defined as a step where the agent picked

an action. The agent was evaluated for 10 episodes after

each ended epoch. The agent followed a greedy policy for

testing in which the perceived best action was always

chosen. The training and testing was completed in 15 hours

on three NVIDIA Titan X Pascal GPUs.

4. Results and discussion

Informal observations in the video of the gameplay3.

indicate that the agent learned how to find doors and

navigate through the corridors. It also indicates that the

agent had an implicit goal of finding a corner in the corridor

next to the life vest, rather than the explicit goal of finding

the life vest. This indicates that the agent had a general idea

of where to go to get a good reward, but did not know the

exact location of the reward.

A reason for why the agent did not find the vest is likely

that the environment is rather complex, and that the agent

did not get to explore it enough. Indeed, the exploration rate

ε of the present study was decayed very fast compared to

[7], leading to the agent not discovering the reward of the

life vest enough to learn to go there. The exploration rate

was set low to account for the few training steps to promote

the agent exploiting its knowledge of the environment for

most of training.

A big limitation of the present study was that the agent

was trained for very few steps compared to [7, 10, 12]. The

video of the agent suggesting that the agent learned to

navigate the environment indicates that the agent did

improve and may have found a better policy given more

training time and possibly complete the goal. It would

therefore be interesting to train the agent for longer to see if

this assumption is indeed correct.

Another future direction of research would be to evaluate

the DRQN model against a standard DQN model used by

[10], as well as an A3C model used by [12].

5. Conclusion

In this work, we proposed a Deep Reinforcement Learning

model based on a Deep Recurrent Q-Network for teaching

an autonomous agent to navigate in a 3D environment from

a first-person perspective with partial observability of the

environment. Our experiment indicates that the agent might

not have been trained long enough to solve the complex

challenge, but that it was able to learn how to find doors and

pass through corridors. Our work supports literature [7, 12]

2 https://gym.openai.com/envs/DoomMyWayHome-v0
3 https://youtu.be/GUsnVaL4Y54

in end-to-end reinforcement learning, indicating that agents

can learn to act in an environment from raw sensory input.

We see a promising future for using reinforcement learning

to model agent behaviour in commercial games but also

acknowledge with our results that there is still some more

research to be done within the field.

Acknowledgements
We would like to thank NVIDIA for donating a Titan X

Pascal GPU card which was used in the training.

References

[1] G. N. Yannakakis and J. Togelius, “A Panorama of

Artificial and Computational Intelligence in Games,”

IEEE Transactions on Computational Intelligence and AI

in Games, pp. 317-355, 4 December 2015.

[2] B. Auslander, S. Lee-Urban, C. Hogg and H. Munõz-

Avila, “Recognizing the Enemy: Combining

Reinforcement Learning with Strategy Selection Using

Case-Based Reasoning,” European Conference on Case-

Based Reasoning, pp. 59-73, 2008.

[3] M. Smith, S. Lee-Urban and H. Muñoz-Avila,

“RETALIATE: Learning Winning Policies in First-Person

Shooter Games,” Proceedings of the Twenty-Second AAAI

Conference on Artificial Intelligence, pp. 1801-1806, July

2007.

[4] C. J. C. H. Watkins, “Learning from Delayed Rewards,”

May 1989. [Online]. Available:

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf.

[Accessed 20 May 2017].

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, Cambridge, MA, USA: MIT Press, 1998.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra and M. A. Riedmiller, “Playing

Atari with Deep Reinforcement Learning,” 19 December

2013. [Online]. Available: http://arxiv.org/abs/1312.5602.

[Accessed 4 April 2017].

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.

Veness, M. G. Bellemar, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S.

Legg and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nature, pp. 529-533, 26

February 2015.

[8] M. Kempka, M. Wydmuch, G. Runc, J. Toczek and W.

Jaśkowski, “ViZDoom: A Doom-based AI Research

Platform for Visual Reinforcement Learning,”

Proceedings of IEEE Conference of Computational

Intelligence in Games 2016, pp. 341-348, September

2016.

[9] M. Hausknecht and P. Stone, “Deep Recurrent Q-

Learning for Partially Observable MDPs,” 23 July 2015.

[Online]. Available: https://arxiv.org/abs/1507.06527.

[Accessed 20 May 2017].

[10] G. Lample and D. S. Chaplot, “Playing FPS Games with

Deep Reinforcement Learning,” 18 September 2016.

[Online]. Available: https://arxiv.org/abs/1609.05521.

[Accessed 20 May 2017].

EAI Endorsed Transactions on
Creative Technologies

11 2017 - 01 2018 | Volume 5 | Issue 14 | e3

Exploring Deep Recurrent Q-Learning for Navigation in 3D Environments

5

[11] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P.

Lillicrap, T. Harley, D. Silver and K. Kavukcuoglu,

“Asynchronous Methods for Deep Reinforcement

Learning,” 4 February 2016. [Online]. Available:

https://arxiv.org/abs/1602.01783. [Accessed 20 May

2017].

[12] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J.

Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K.

Kavukcuoglu, D. Kumaran and R. Hadsell, “Learning to

Navigate in Complex Environments,” 11 November 2016.

[Online]. Available: https://arxiv.org/abs/1611.03673.

[Accessed 4 June 2017].

[13] J. N. Tsitsiklis and B. V. Roy, “An Analysis of Temporal-

Difference Learning with Function Approximation,” IEEE

Transactions On Automatic Control, May 1997.

[14] L.-J. Lin, “Reinforcement Learning for Robots Using

Neural Networks,” Carnegie Mellon University,

Pittsburgh, PA, USA, 1992.

[15] G. Hinton, “Lecture 6e rmsprop: Divide the gradient by a

running average of its recent magnitude,” 2012. [Online].

Available:

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_s

lides_lec6.pdf. [Accessed 4 June 2017].

[16] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory,” Neural Computing, pp. 1735-1780, 15

November 1997.

[17] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, pp. 2278-2324,

November 1998.

[18] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural

Networks,” Advances in Neural Information Processing

Systems 25, 2012.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J.

Schulman, J. Tang and W. Zaremba, “OpenAI Gym,” 5

June 2016. [Online]. Available:

https://arxiv.org/abs/1606.01540. [Accessed 1 June 2017].

EAI Endorsed Transactions on
Creative Technologies

11 2017 - 01 2018 | Volume 5 | Issue 14 | e3

