Fostering collective intelligence education

Jaime Meza^{1, *}, Josep M. Monguet¹, Francisca Grimón², Alex Trejo³

¹ Universitat Politècnica de Catalunya, Barcelona, Spain

² Universidad de Carabobo, Valencia, Venezuela

³ Onsanity, Barcelona, Spain

Abstract

New educational models are necessary to update learning environments to the digitally shared communication and information. Collective intelligence is an emerging field that already has a significant impact in many areas and will have great implications in education, not only from the side of new methodologies but also as a challenge for education. This paper proposes an approach to a collective intelligence model of teaching using Internet to combine two strategies: idea management and real time assessment in the class. A digital tool named Fabricius has been created supporting these two elements to foster the collaboration and engagement of students in the learning process. As a result of the research we propose a list of KPI trying to measure individual and collective performance. We are conscious that this is just a first approach to define which aspects of a class following a course can be qualified and quantified.

Keywords: Collective intelligence Education, learning, patterns, KPI.

Received on 26 November 2015, accepted on 04 May 2016, published on 15 June 2016

Copyright © 2016 Jaime Meza *et al.*, licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.15-6-2016.151448

1. Introduction

Education is a huge and multidisciplinary field that has been studied from different epistemological perspectives looking for new challenges to improve student's performance. Therefore educational institutions are constantly searching new models to improve the results of their learning processes.

There is a lot of evidence about the fact that multimedia and Internet based educational tools have potential to improve student learning[1] and there is also evidence about the advantages of distance learning [2]. However education and capacitation in a networked society is not just an extension of the usual capacity building. Besides classical technological competences new ones linked to accessing and processing knowledge are necessary, particularly collective intelligence. New capabilities cannot be acquired through the old ways of education: collective capacities building needs new contents and methods[3]

Collective intelligence CI is defined as the capacity of human groups to engage in intellectual cooperation in order to create, innovate and invent [4]. Although CI is not a new

*Corresponding author. jaimemeza1@gmail.com

idea, its combination with ICT tools is setting this paradigm as an exciting and emerging area [5][6]. Several authors have reported about collective intelligence and its impact the ICT tools with in the educational field [7],[8],[9],[10],[11], moreover, some researchers have generated papers for refer to the measure of collective intelligence. Engelbart (1995) propose the Collective IQ, term proposed by refers to the measure of a group's collective capacity[12], Woolley et al. (2010) put forward the Factor C [13], Barlow, J. B., & Dennis, A. R.(2014) conclude that a Factor C defined by Woolley et al. (2010) is not a general factor of collective intelligence inherent to groups under all conditions, but it is a measure of a group's general ability to work well in face-to-face settings [14].

This research describes the teaching model based on Fabricius, an ICT tool developed with the general idea of integrating into one framework the two relevant aspects in learning by doing: management of ideas and real time assessment. The general objective of our research is to contribute in the identification of collective intelligence patterns in the behaviour of the class.

The first part of this article is devoted to the introduction of collective intelligence education concepts and the Internet

available tools to implement it. The second part presents the design of the model Fabricius and third part outlines the results of its implementation. The paper concludes that a collective intelligence strategy based on Internet tools may facilitate and improve teaching through collective activities and that it is possible to define some kind of KPI to qualify and quantify collective as well as individual performance

2. Collective intelligence education.

Collective intelligence in the field of education has been reported by several authors[15][8][16]. A significant amount of research in the last decade refers to collective intelligence connected with information technologies and located in education [7]. This interest in such advanced research contrasts with the fact that the educational systems haven't evolved so much during the lasts decades. The incorporation of collective intelligence in education involves not only a technological change or a transformation in the attitude of teachers, but also a redefinition of education [16]. [13]. If the concept and models of collective intelligence evolve it should leverage a system of global learning, content and networking. We see currently some indicators of this tendency like MOOC or social networks applied to education.

The collective intelligence in teaching-learning processes affects both teachers and students: evaluations, educational materials or ideas management can use the web as a learning platform strengthening sharing, contribution and collaboration. In addition to the content provided by the teacher, collective intelligence strategies allow students conducting semi-independent research in class[8].

Collective intelligence allows permanent, cooperative and collective learning, guiding students in acquiring knowledge within virtual communities, reflecting a new relationship with knowledge. There is a shift in focus from the pedagogical design of learning content to collectively create and share content, which opens new fields of research for collective intelligence[9]. In their research Thompson et al., (2014) indicate that there is evidence that students can be autonomous in their learning and also participate collaboratively [10].

With the growing of cyberspace, a lot of Internet tools have been designed for catching the knowledge from small and big groups (wikipedia, digg, google, facebook and so on), in this context, we looked for tools that integrate ideas management, decision making process and also pattern recognition for forecasting behaviour of the groups. In the Table 1 we summarize a sampling of Collective Intelligence Internet tools with focus on the educational field.

Table 1.	Sumary of	Collective	Intelligence	Internet
	-	tools	-	

Tool	Description
Software	A ranking software with
catalog:Capterra[17]	contributions from the internet
	users that whit the term "Idea
	Management" showed 52
	products. Most of the products
	implement processes for
	declaring challenge and
	propose and vote ideas.
Project: Catalyst[18]	An example of an open source
	project aiming to improve
	collective sense making and
	creative ideation for the
	common good in large-scale
	online debates about social
	innovation
Software tool: OI IM[19]	It is an interactive
	questionnaire management
	tool which use the real time
	Dolphi modol in ite
	implementation
Health Canaanaua[20]	Implementation.
Health Consensus[20]	It's a tool initially designed to
	support participative
	processes of experts in the
	disitely edepted Delphi words
	digitally adapted Delphi model.
	It has been used to manage e-
	learning clinical cases.

3 Fabricius. Approaching collective intelligence learning.

Considering the theoretical trends and tools identified in collective intelligence in education, a prototype of a teaching model and its ICT tool has been designed, developed, tested and is formally introduced in this section. Fabricius is synthetically drawn in Fig. 1, this combines the individual and collective work from students and experts.

Fabricius may be defined as a digital tool for a teaching method that enables each student individually and collectively in synchronous or asynchronous mode:

Work with the production and filtering of ideas

• Actively participate in the assessment of the work done by all the students

Moreover the tool collects data of the teaching process that once analyzed through a pattern recognition model allows understanding the behaviour and level of learning of students

As a result of the pattern recognition obtained during the use of the platform the design of the practice may be improved for next application.

EAI European Alliance for Innovation

The central hypothesis of the research is that collective intelligence Internet tools like Fabricius, facilitate open management of ideas, real time collaborative assessment and forecasting of work done in the class, consequently they fostering the interaction, collaboration, may help empowerment and engagement of students in the learning process. The idea came from the Kaizen methodology (change for better), where each practice contributes to improve the next. Outcomes of the process try to improve the students and experts' skills working together in a collective environment. Fabricius is formed by three main elements listed and defined in table 2 and drawn in figure 2.

The elements defined in table 2 are the core of Fabricius, which could be used alone or together, this feature allow setting different kind of parameters according to the nature of the field of knowledge. The typical setting in Fabricius suggest using Besidea, Guesscore and Miningant, where the first stage in the practice resolve is idea's filtering through multiple rounds of valuation, after that, you can use Guessscore to evaluate collectively the winner idea from Besidea. Miningant will allow monitoring the individual and group behaviours, and let us getting real time information.

Table 2. Main elements of Fabricius

Element	Description
Bestidea	Individual-collective production of ideas Management of the process of proposing, voting and ranking ideas. It can be used
	in asynchronous or in synchronous mode.
Guesscore	Collective real time assessment Individual as well as collective work of students can be assessed during the classes through a synchronous real time collective voting [21],[22],[23].
Miningant	Pattern recognition and forecasting of individual-collective behaviour The track created by students using Bestidea and Guesscore incorporate individual and collective data that conveniently treated through data mining techniques may reflect the behaviour of students and learning process
D	. 1 0 11

Practices are organized following a workflow described in figure 1 and summarized in table 3 (Bestidea: Take off, Idea, Concept. Guesscore: Delivery, Knowledge). Let's note that this is a particular distribution of activities that are pertinent for a learning by doing strategy based on practices but might be not appropriated for other courses. The instructive process consists of solving a list of to do's, (normally 4) where the last one is the key activity, while the previous to do's are just for learning and preparing the ground for this.

Just to clarify, we consider individual students, groups of students (4 to 7 members) and the class with all the students enrolled.

Figure 2. Context diagram (use cases level 0).

The groups of students defend their

	Table 3. Stages of model	,	final concept classmates a (teachers) as	t for the practice and their and the experts ssess real time the
Charle	Description		concept pres	bonds to the last to do of
Stage	Description		the practice.	As a result of this
Stage 1, 2 &	3 Working with Bestidea.		assessment	each group has a score
	in used to greate the ideas that will be		but each stu	dent that has voted has
	discussed and evaluated to property		also an indiv	idual score depending on
	the practice		the accuracy	of their judgments.
1 -Take Off	The practice begins with a Takeoff	X Knowledge	Each practic	e consists of the
1Take Off	session (synchronous or		application o	of some particular content
	asynchronous) that is composed of		(theories and	d or techniques) that has
	Statement of practice and Lecture		been introdu	ced with a lecture and
	Work with to do's (1, 2, until n) using		the activities	during the Take-off.
	Bestidea.		Each studen	t (or group) is asked to
	To do's are consecutive and each to		contribute wi	ith some original
	do (except the first) is based in the		knowledge to	o the content of the
	results obtained in the previous one.		practice. On	form of: Interesting
	To do's follow the same cycle: 1st		come in the	norm of mileresting
	Students propose ideas individually,		object of the	practice or products and
	2nd Group votes ideas in order to		services or a	ny kind of organization
	prioritize and 3th Winning ideas, one		that highlight	ts the content
	or more, are inspirations for the next		The student	(or group) gets extra
o	to do		point when t	heir proposal has been
2Idea	Considering what has been learnt		approved by	the expert and is voted
	with the work done during Take-oil,		by classmate	es in this assessment
	ideas for the key to de The		stage.	
	narticipants in the class will vote all	The stages of n	nodel showed	in Table. 3, generates data
	ideas proposed by their classmates	that are used to an	halyze and evaluate	aluate the behaviour of the
	Students of the class will be randomly	students and the	class. Table 4	presents the elements that
	assigned to vote ideas of any of the	are measured duri	ng the execut	ion of the practice
	groups participating (Llullian			F
	method[25]), except their own group.			
	At the end of stage 2 there exists a	Table 4 Analyt	ics of the Fa	bricius Teaching Model
	list of individual ideas ordered			isticiae i caoining meder
	according to the relative value voted			
	by the participants	Element		Description
3Concept.	The list of prioritized ideas from stage	Individual perform	mance	Measuring individual
	2 is the departing point for the		hanoo	contributions during take-
	collective generation of a "concept" to			off, idea and concept.
	solve the last to do.	Individual knowle	edae	Measuring individual
	(NCT[26] as a strategy to eleberate a	catching	0	accuracy of Guesscore
	concept with a certain degree of			judgments.
	detail) to enhance and extend	Group dynamics		Measuring evolution of
	previous ideas working ahead			level of consensus
	proposing and prioritizing new items			among the group
	(ideas). Proposing as many items as			members during
	the group decides a consistent			collective activities.
	concept is gradually elaborated.	Collective work p	performance	Score partially corrected
	At the end of the stage 3 the group of			with score from
	students has collectively created the			classifiates.
	ideas and items that will allow		1 (*	.1 . 1
	proposing and defending a final	At the end of	each practice	the students can access to
	Concept. Let's note that the	all the measures	and assessme	nts available. Appendix A
	contributions of students are not	show some interfa	aces of Fabric	ius.
Oto	symmetric.			
Stages 4 & X	vvorking with Guesscore		a hadaa a 🗁 🗆	
	The Guesscore component of	4 Results ap	piying ⊦al	Dricius.
	and the content proposed by the	Fabricius is initi	ally intended	I for the management of
	aroups or by students	learning by doing	in degree co	urses and has been used in

4.-Delivery

the areas of design-engineering and pre-primary education teaching (Universitat Politécnica de Catalunya UPC-Spain, Universidad de las Fuerzas Armadas ESPE -Ecuador), in this section has been summarized its application according to conceptual model.

Table 5. Courses of the empirical experience

Course	Ν	Fem	Experts	Practices
Design-	63	29	1	7
engineering 1				
Design-	26	5	1	7
engineering 2				
Pre-primary	24	24	2	1
education				
teaching				

The rubrics for real time assessment were Content(The content refers to the absolute value and appropriateness of the proposal in relation to its objectives) & Performance (The performing refers to the correctness attractive and clarity of how the proposal is presented and justified), with values in the scale from 1 to 6. The courses of design and engineering used the same practices focused in the principles of design, and , the pre-primary education teaching used a practice focused in the project management according to PMbook, it's summarized in table 6.

Table 6.	Practices	applied	for em	pirical	experience

Course	Practice	Objective
Design and	Business	Proposing a problem for
engineering	Opportunity	the practices that should
		be used as a referent for
		the rest of the practices.
	Creative	Understand the creativity
	team	from the points of view
		of the individual person,
		the team and the
		organization
	Idea creation	Understand the concepts
		behind the processes of
		creating and
		managing ideas
	Participative	Understand the model of
	innovation	"Participative Innovation
	space	Space" (PIS) and the
		concepts behind it
	Design	Understand different
	frontiers	approaches to work, and
		how the things are done
		considering its creation
	T I: :	and/or design.
	I NINK	Understand the concept of
	building	Design Thinking (DT), and
	Decign	line way it works.
	Design	design presses and its
	process	connection with business
		management
		management.

Pre-primary education teaching	Business opportunities	Understand the importance of bussines opportunities identification in the project management through the PMBook guide lines.

It has been possible to extract some patterns from the data and consequently propose a set of Teaching Key Performance Indicators that could help to measure aspects related to collective intelligence. In table 7 we propose the 4 KPI.

Table 7. Indicators that could estimate collective intelligence in education

KPI	Туре	Description
Value from ideas	Individual	Score obtained by the ideas that each individual student proposed.
Accuracy in assessment	Individual	Deviation between score assigned by experts and score assigned by each student in all the assessments done during the practice.
Value from Collective work	Collective	Score obtained by the group during the defense of all the group proposals.
Self- assessment accuracy	Collective	Deviation between score assigned by experts and score assigned by each student in all the assessments done during the practice

The list of KPI defined in the table 7, has been created with the information gotten from table 4 (Analytics of the Fabricius Teaching Model) and showed in figures 3 to 6.

Figure 3 is related with the contributions, a contribution is considered completeness when it has proposed and voted , hence , it's shown the number of votes by ideas proposed.

Figure 4. Individual knowledge catching

We consider that when deviation is inversely proportional to Individual knowledge catching, it means that while the student is nearer to zero (0) the knowledge increases, in this sense ,was defined a qualitative valuation of deviation (Very Good: 0-0, Good greater than 0-1, Regular greater than 1-2, Bad greater than 2-3, Very Bad greater than 3-5) table 8, according this criteria 82% of students has gotten a good valuation.

Table 8. Qualitative valuation range deviation

Qualitative Valuation	Deviation Rat	Deviation Range	
	From	То	
Very Good	0	0	
Good	greater than 0	1	
Regular	greater than 1	2	
Bad	greater than 2	3	
Very Bad	greater than 3	5	

Figure 5. Group dynamics

The consensus evaluation level shown in the figure 5, was voted between the 4 and 5 value of the scale, where 73% of student have voted in this range.

The figure 6 shown the score of experts student , and also the score partially corrected with score with the students .The score corrected applied the 80% of weight for experts and 20% for students, with this adjustment we try reducing the experts subjectivity.

5 Discussion.

The educational models used by several years in higher education, has generated some barriers that make it difficult for students, teachers and curricula in general, a highly collaborative model that encourages synergy of equipment, where responsibilities should be given no by the smartest member or by the score obtained on a test, but by the degree to which the group works and shares their results. In this type of scenario, the roles of both teachers and students change, where the teacher becomes an adviser and guide the development of the practice, and the students in the generator of new knowledge. The findings evidenced in practices and the evolution of knowledge, leads to think that it is also necessary to consider increase the skills of collective intelligence for educators [27] in order to achieve a complete learning process. Moreover, the growth generated by the emergence of Web 2.0, MOOCs among others information resource, would be an improvement in the way of teaching, however it is not used the maximal potential, because the teaching models used are centred in the individual. Toward future, these tools should be become not only how a support to education, but also how a element of the educational core, that foster a new style for teaching and learning centred in the collective performance.

This article has shown partial results in the process of educating the collective intelligence with the use of ICT, however the experimental field should be expanded to various thematic areas and cultures, to be able to generalize the results. Indicators of collective intelligence shown in Table 7, will be detailed in future trials.

6 Conclusions.

The outcomes about the group dynamics and collective work performance, show some evidence about student engagement & empowerment, as well as the increase of attention during the class.

The analysis of application of collective intelligence education through the ICT internet tools, allows the reader to know some evidence about of this emergent field, offering help and guidance to researchers in their work.

Fabricius makes it feasible to apply a level of transparency and participation in the teaching-learning process that facilitates collective intelligence. Fabricius allow the real time calculation of collective intelligence elements that encourage the commitment of students in the learning process. More in detail, we concluded that the this kind of tools effectively facilitate open management of ideas and real time collaborative assessment of work done in the class

The experience presented shown the great potential that exists for research in the field of Collective Intelligence in Education, which requires various groups and longer periods of time, to allow get new conclusions and hypotheses that support the process of teaching and learning in higher education.

With future vision, will be interesting to continue analyzing in deep the collective intelligence influence in group performance and the correlation with the individuals profiles, trying to find patterns for the most efficient group formation and performance based on paradigms of collective intelligent.

Appendix A. Fabricius Interfaces

To follow we presented the main interfaces used by Fabricius and some characteristics summarized in table 9.

Table	q	Main	Fabricius	characteristics
Iable	Ξ.	IVIAIII	Fabilitius	Characteristics

Name	Kind	Description
Highly	Technical	Lets adjust the
parameterized		parameters for different
		countries, institutions,
		experts, practices,
		surveys, rubrics and
		collaborative
		application contained in
		the Fabricius suite.
Integration		Its architecture lets the
with mobile		publication of new web
technologies.		services and configure
		easily the users
		interfaces from different
		technologies.

Transaction		Lets increasing the
database		number of users and
		transaction.
		incrementing the
		physical server or
		database clusters
Supervision	Educational	Full control about the
Super vision	Lucational	aroup work during all
		the stores of the
		ine slages of the
		the work done by
		students in the projects
		is converted in case-
		examples of the
		content
Real time		Systematic real time
assessment		assessment of the
		content
Serious		Online serious game
games		using competition-
		motivation strategies
Collaboration		Engagement and
		participation during the
		class
		Empowerment and
		participation during all
		the process
Patterns &		Pattern recognition and
forecasting		forecasting for the next
		practices
Alerts		Continuously alerts to
7 401 10		experts & students
		about scheduling
		moreover about some
		rare behaviour
		identified in real time
		from the pattern
		recognition machine.

Fabricius was developed using a incremental-design, where each user interaction lets improve the software components.

	Password Optimised for Macta Pretox		
I I ILUI IIU-IU-U	mber me Eorgel password ?		
Fabricius* is a research project that intersects three	Come on, register in Fabricius! What are you ? Chose One		
Network and Collective Intelligence Education. The	First Name Last Name		
combination of this three areas generates the kind of	Masculine		
development of new products and services Read More	email@domain		
	I want a nev		
Research team: Josep Mª Monguet, Jaime Meza, Alex	Trejo Password		
*Latin name meaning working with hands	Confirm :		
ă.	210 Infraduces al latels Corpus		

The home page presented below shows a list of stages to develop, according to the proposal teaching model, however the software lets be used all the framework or some application, according its needs. By each stage is shown the corresponding application according to the software parameters for the institution and practice.

Flores Evelin		Ingenieria del Software I		~	ES Logour	
Practice: Empre	ndedor	Documentation	Analytics			
Workflow		Start (00:00h)	Fir	sish (23:59h)	State	
Takeoff		22-Oct-2015	. 22	-Oct-2015	Closed	
Concept		23-Oct-2015	15	-Nov-2015	Closed	
Knowledge		27-Oct-2015	05	-Nov-2015	Closed	
Delivery		06-Nov-2015	17	-Nov-2015	Open	
Next table press	ents the structure follo	wed in the practice				
Workflow	Takeoff	Concept	Interesting	Delivery		
Tasks	Propose ideas Vote ideas	Propose idea Vote ideas Winning idea Propose items	Propose content Review content Assess content	Load pres Assess pr	Load presentation Assess presentation	

For finish, let's show the main interface of Miningant, it's allowed us obtain some analytics for improve in each iteration the practices..

Acknowledgements.

We want to thank students from Universitat Politécnica de Catalunya UPC- Spain & Universidad de las Fuerzas Armadas ESPE - Ecuador, that used Fabricius for the support to this research.

References

- Y. M. Gilliver, R. S., Randall, B., & Pok, "Learning in cyberspace: Shaping the future," J. Comput. Assist. Learn., vol. 14, pp. 212–222, 1998.
- [2] H. Li and Z. Li, "Emergence of collective intelligence in distance education system," in 2010 2nd International Conference on Education Technology and Computer, 2010, vol. 1, pp. V1–333–V1–337.
- B. Cornu, "Collective intelligence and capacity building," in Education and the Knowledge Society SE - 3, vol. 161, T. van Weert, Ed. Springer US, 2005, pp. 27–34.
- [4] P. Lévy, "From social computing to reflexive collective intelligence: the IEML research program," Inf. Sci. (Ny)., vol. 180, no. 1, pp. 71–94, Jan. 2010.
- [5] P. Lévy, "Toward a Self-referential Collective Intelligence Some Philosophical Background of the IEML Research Program," in First International Conference, ICCCI 2009, 2009, vol. 5796, pp. 22–35.
- [6] E. Bonabeau, "Decisions 2 . 0: The Power of Collective Intelligence," MIT Sloan Management Review, vol. 50 N. 02, no. 50211, Massachusetts, 2009.
- [7] F. Gónzalez, V., Silvana, "PROCESOS DE INTELIGENCIA COLECTIVA Y COLABORATIVA EN EL MARCO DE TECNOLOGÍAS WEB 2 . 0:, PROBLEMAS Y APLICACIONES," Fac. Psicol. - UBA / Secr. Investig. / Anu. Investig., vol. XIX, pp. 253–270, 2012.

- [8] W. Tsai, W. Li, and J. Elston, "Collaborative Learning Using Wiki Web Sites for Computer Science Undergraduate Education: A Case Study," IEEE Trans. Educ., vol. 54, no. 1, pp. 114–124, 2011.
- [9] Z. Petreski, H., Tsekeridou, S., Giannaka, E., Rashmi Prasad, N., Prasad, R., & Tan, "Technology enabled social learning: A review," Int. J. Knowl. Learn., pp. 7(3/4), 253– 270, 2011.
- [10] C. Thompson, K. Gray, and H. Kim, "How social are social media technologies (SMTs)? A linguistic analysis of university students' experiences of using SMTs for learning," Internet High. Educ., vol. 21, pp. 31–40, 2014.
- [11] I. Paus-Hasebrink, C. W. Wijnen, and T. Jadin, "Opportunities of Web 2.0: Potentials of learning," Int. J. Media Cult. Polit., vol. 6, no. 1, pp. 45–62, 2010.
- [12] D. C. Engelbart, "Toward augmenting the human intellect and boosting our collective IQ," Commun. ACM, vol. 38(8), pp. 30–32, 1995.
- [13] A. W. Woolley, C. F. Chabris, A. Pentland, N. Hashmi, and T. W. Malone, "Evidence for a collective intelligence factor in the performance of human groups.," Science, vol. 330, no. 6004, pp. 686–8, Oct. 2010.
- [14] J. B. Barlow and A. R. Dennis, "Not as Smart as We Think: A Study of Collective Intelligence in Virtual Groups," Collect. Intell. 2014, pp. 1–5, 2014.
- [15] P. Gallardo, A. Hernandez G, and Robles G Cortes, "Collective intelligence as mechanism of medical diagnosis," Expert Syst. with Appl. 40, vol. 2726–2737, 2013.
- [16] L. Ilon, How collective intelligence redefines education, vol. 113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
- [17] Capterra, "Best Ideas Management Software." [Online]. Available: www.capterra.com/idea-management-software/.
- [18] "CATALYST." [Online]. Available: http://catalystfp7.eu/open-tools/.
- [19] L. Veilleroy, Y.; Hoogstoel, F.; Lancieri, "QLIM -- A Tool to Support Collective Intelligence," Privacy, Secur. Risk Trust (PASSAT), 2012 Int. Conf. 2012 Int. Conference Soc. Comput., p. 322,327, 2010.
- [20] C. C. I. MARTÍ, T., MONGUET, J. M., TREJO, A., ESCARRABILL, J., & BEITIA, "Collective health policy making in the Catalan Health System: applying Health Consensus to priority setting and policy monitoring," Collect. Intell. 2014, pp. 1–5, 2014.
- [21] I.-A. Chounta and N. Avouris, "It's All about Time: Towards the Real-Time Evaluation of Collaborative Activities," 2014 IEEE 14th Int. Conf. Adv. Learn. Technol., pp. 283–285, 2014.
- [22] G. Mathioudakis and A. Leonidis, "Real-Time Teacher Assistance in Technologically-Augmented Smart Classrooms," Int. J. Adv. Life Sci., vol. 6, no. 1, pp. 62–73, 2014.
- [23] Monguet, Josep M., and Jaime Meza. "Guess the Score, Fostering Collective Intelligence in the Class." E-Learning, E-Education, and Online Training. Springer International Publishing, 2014. 116-122.
- [24] M. Jordan and J. Kleinberg, Information Science and Statistics, vol. 4. 2006.
- [25] E. Fahlbusch, L. Vischer, J. M. Lochman, J. S. Mbiti, and J. Pelikan, "Llullian Method," in The Encyclopedia of Christianity, 2003, pp. 331–332.
- [26] N. Harvey and C. a. Holmes, "Nominal group technique: An effective method for obtaining group consensus," Int. J. Nurs. Pract., vol. 18, no. 2, pp. 188–194, 2012.

[27] Levy, Pierre. "Collective Intelligence for Educators." Educational Philosophy and Theory 47.8 (2015): 749-754.