
Research Article

1

A Multi-connection Encryption Algorithm Applied in

Secure Channel Service System

Fanhao Meng1,2, Rongheng Lin1,2,*, Zhuoran Wang1,2, Hua Zou1, Shiqi Zhou1,2

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications
2 Science and Technology on Information Transmission and Dissemination Networks Laboratory

Abstract

Encryption is the most important method to enhance security of network transmitting. SDN (Software Defined Networking)
Security Transmission Service can provide multi-connection transmitting service, which scatters data to multiple network
connections for transmission so that data on different connections is isolated from each other. Based on the service,
encrypting the isolated data prevents overall data from intercepted and deciphered. In the above scenario, we propose an
encryption algorithm that uses the data themselves as encryption keys, and use the data isolation effect of multi-connection
transmission to distribute the encrypted ciphertext to different network transmission paths, which is equivalent to using a
rather random sequence as an encryption key for each data fragment without sharp increase in transmitting data, so that data
transmitted on every connection are ensured to be safe. After compared with other encryption algorithms such as DES, AES
and RSA, it is proved that in the multi-connection transmitting scenario this algorithm has better encryption effect and
operating efficiency, which provides an effective guarantee for network security.

Keywords: encryption, multi-connection transmission, sequence cipher.

Received on 28 April 2018, accepted on 13 May 2018, published on 09 October 2018

Copyright © 2018 Fanhao Meng et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.15-5-2018.155167

1. Introduction

To ensure data security in the network transmission, we
usually use data encryption to prevent information disclosure.
Cryptography is divided into symmetric encryption
algorithms and asymmetric algorithms, and symmetric
algorithms have two categories: block cipher and sequence
cipher. DES, AES and RSA are commonly used encryption
algorithms [1]. Aiming at risks of data transmitting on
networks, this paper proposes a data encryption strategy
collaborating with multi-connection transmission. Multi-
connection transmission is to slice data into multiple data
flows to transmit on multiple TCP connections. The sender
sends data through a number of ports according to a defined
strategy, and the receiver will receive packets from the same
number of ports and recombine data fragments into the
original data according to the slicing strategy. Multi-

connection transmission is one of the security strategies of
SDN Security Transmission Service, which uses distribution
on network transport layer to separate data, cooperating with
time-slot transmission strategy, which is another strategy of
SDN Security Transmission Service to ensure data security
by switching switch paths of forwarding packets in every
different time slot. It can change the order of transmitted data
and scatter packets to multiple physical paths. So even if
some of network equipment has been hacked or data
transmitted on some links has been intercepted, the possibility
of information leakage will be the least.

Based on the multi-connection transmission, the
encryption strategy proposed in this paper has the
characteristics of simple and efficient, and can guarantee the
security of each data fragment without increasing the amount
of transmission data. In the scenario of multi-connection
combined with time-slot transmission, using this encryption
algorithm can almost absolutely guarantee the security of the

EAI Endorsed Transactions
on Security and Safety

∗Corresponding author. Email: rhlin@bupt.edu.cn

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

http://creativecommons.org/licenses/by/3.0/

 Fanhao Meng, Rongheng Lin, Zhuoran Wang, Hua Zou, Shiqi Zhou

2

Data
Fragmentation

x（b-bit）

x0x1..xb

y0y1..yb

Data
Fragmentation
x+1（b-bit） s0s1..sb

Data Fragmentation
x（b-bit）y0y0..yb

x0x1..xb

Data Fragmentation
x+1（b-bit）s0s1..sb

Unreliable Transmission
Channel

Logical Security
Channel

Figure 1. Multi-connection Encryption Transmission Diagram

data transmitted on the network. This algorithm is a
symmetric encryption algorithm, based on the idea of
sequence cipher, using the key sequence to encrypt each
plaintext by bit. The security performance of the sequence
cipher depends on the selection of the key sequence [2]. The
key sequence needs to be as random as possible to prevent
attackers from cracking the key sequence and decrypting the
ciphertext. Studies of sequence cryptography are usually
focused on the construction of the key sequence, but this
algorithm does not design how to generate the key sequence,
instead, by means of mutual encryption of data fragments and
multi-connection transmission to achieve the effect of
encryption. The use of multi-connection and time slot
transmission strategy achieves isolation among data
fragments transmitted on different connections. For a data
fragment, the key sequence used to encrypt it is transmitted
through another “logical security channel”, and it is encrypted
as ciphertext and transmitted in the current channel. The
transmission diagram is shown in Figure 1. As attackers
cannot obtain continuous data in the correct order, data on
each connection will have a satisfying encryption effect.

2. Related Work

According to the view of modern cryptography, the
cryptosystem can be divided into two categories: symmetric
cryptosystem and asymmetric cryptosystem. The symmetric
cipher includes block cipher and sequence cipher [3]. Block
cipher divides plaintext into groups with a specified length,
and then encrypts each group with the same key and
encryption algorithm into a certain length of ciphertext. The
core of block cipher is that by the principle that a simple
function iterating several times can turn into a complex
function, using simple functions and pairs of operations with
non-linear operations realizes encryption [4]. Taking the DES
algorithm as an example, its working key is 56-bit, and the
encrypted data are 64-bit. The ciphertext output is realized by
iterative permutation and inverse permutation of plaintext [5].
There are three main ways to attack the DES system: poor
search attack, differential attack and linear attack.

In 1949, Shannon, the founder of information theory [6],
proposed that for sequence cipher only "one-time pad" is
theoretically unbreakable and absolutely safe. However,
except in the case of high confidentiality requirements, the
application of "one-time pad" is very limited, because the

generation, distribution and transmission of its keys will
consume a lot of resources. Nonetheless, due to flexible
length, fast operation and low error rate as characteristics of
sequence cipher, sequence cipher whose researches focus on
pseudo-random sequence as encryption key is still one of the
mainstream of current encryption research [7]. The general
principle of sequence cipher design [8] is to use multiple keys,
multiple calculations and multiple security measures to
achieve the similar effect of "one-time pad". The security of
sequence cipher depends mainly on the randomness of the
encryption key sequence.

With the development of the Internet, secure data
transmission become more and more important. There are
different works that guarantee information security and
increase performance efficiency. Fausto Meneses [9]
optimized the RSA encryption algorithm to improve the
security, integrity and availability of information. Amit
Verma [10] improved the security of the AES by making
enhancement in the key matrix of the applied key expansion.
Souvik Singha [11] proposed a bit level encryption and
decryption algorithm based on the number of keys. The
encryption algorithm can encrypt the 8 bit binary number to
its corresponding 8 bit cipher text and the decryption
algorithm can convert that 8 bit cipher text to its
corresponding 8 bit original number. Xin Pu [12] presented a
new algorithm which combined the true random sequences
and the Tree Parity Machine (TPM). The true random
sequences generated by artificial circuits are also proposed as
dynamic inputs of TPM compared to the pseudo-random
sequences. Though security can be increased to some extent
by increasing the length of the key, the efficiency can be
reduced only by increasing the key length [13].

Chaotic encryption algorithm represents a new encryption
way with less memory consumption and operation time.
Feng-Hsiag Hsiao [14] showed a design methodology for
neural-network(NN)-based secure communications in
multiple time-delay chaotic (MTDC) systems to obtain
double encryption via RSA algorithm and chaotic
synchronization. Accordingly, it takes much more time to
process RSA algorithm if the length of the key is much longer.
So a shorter key is used to decrease the processing time of
RSA algorithm in this system. However, the method of
chaotic cryptography is not yet fully mature [15]. There is
some problems remaining to be dealt with for one-
dimensional chaotic encryption algorithm, such as small key
space, low security and other issues.

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 A Multi-connection Encryption Algorithm Applied in Secure Channel Service System

3

User side of the sending

Topology
acquisition

module

 Time slot forwarding
operation module

Multi-connection operation
module

Management
 layer

interaction
module

Forw
arding Layer

Path automatic selection
module

Agent of the sending

Port selection moduleParameter setting
module

Send module

Send negotiation module

File processing module

Strategy reporting
module Forwarding module

L
O
G
I
N

User side of the receiving

Receive moduleDecryption module

Reorganization
module

Receive settings
module

Agent of the receiving

Port mapping moduleReceive negotiation
module

Controller interaction

User management

Time slot setting

Connection setting

Authority management

Management Layer Control Layer

Terminal transmission system

Network management system

Figure 2. Architecture of the Secure Channel Service System

In order not to increase the amount of data transferred or
other reasons, the key sequence will not be too large. As a
result, the key sequence is difficult to achieve true
randomization. Combined with the advantages of the secure
channel service system, this Multi-connection Encryption
Algorithm can make the key sequence quite random without
sharp increase in transmitting data.

3. System Design

3.1. System Structure

The Multi-Connection Encryption Algorithm is applied in the
Secure Channel Service System. The overall architecture of
the secure channel service system is shown in Figure 2.

It is divided into two parts: network management system
and terminal transmission system. The network management
system includes management layer, control layer and
forwarding layer. The forwarding layer is an internal network
composed of OpenFlow switches. The time-slot forwarding
strategy generated by the management layer delivers the flow
table to the switch through the control layer. In this way, the
switch in the forwarding layer will forward data according to
the specified path. The control layer includes a management
layer interaction module, a path automatic selection module,
a time slot forwarding operation module, a multi-connection
operation module, and a topology acquisition module. The
management layer includes a connection setting module, a
user management module, an encryption setting module, a
time slot setting module, an authority management module, a
slice setting module, and a controller interaction module. This

part provides the service of time slot forwarding strategy for
the security channel service, which is transparent to the user.

The terminal transmission system can be divided into four
major components according to the deployment position of
the security channel service: the user side of the sending, the
agent of the sending, the user side of the receiving, and the
agent of the receiving. Both the user side of sending and
receiving are deployed on the user's terminal hosts. The
sender agent and receiver agent can be deployed on the user
host, and can also be deployed on a separate proxy server to
provide services. These four components are responsible for
sending and receiving service processing in different
deployment locations.

3.2. Working Mechanism

The process of system normal operation involves user login,
negotiation between user side of sending and agent of sending,
negotiation between agent of sending and agent of receiving,
negotiation between agent of receiving and user side of
receiving, sending file processing and receiving file
processing, etc. .

The main user behaviours using this system are sending
files and receiving files. After both the sender and the receiver
have successfully logged in, they can start sending files. After
the user of sending selects related parameters in the sender's
terminal transmission system and agrees to send, the sender
system starts sending related file information (file name, file
size, type, etc.), file processing information (file
fragmentation size, encryption method) and number of ports
for establishing multiple connections to the receiver system.

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 Fanhao Meng, Rongheng Lin, Zhuoran Wang, Hua Zou, Shiqi Zhou

4

Send user
Transmitter

terminal

Network

management

system

Receiver

terminal
Receive users

Enter the
 relevant

parameters
and click Send

File information,
File processing
 information,

Number of ports Receive signal

Set receive parameters

Port mapping, Port open
Proxy port list

Port information

Service Open Success
/Failure Signal

File fragmentation
, encryption

Transferred files

Encrypted file

Original file

File decryption, restore

Establish a strategy and
 deliver the flow table

Transmission
 completion signal

Transmission
 completion signal

Transmission
 completion signal

Receiving parameters

Figure 3. Sequence Diagram of the Sending Process

After receiving the negotiation request, the receiver sends a
receive signal to the receiving user. After the receiving user
receives the signal, it queries whether the user modifies the
received parameters and starts the receiving port, and then
returns the receiving port to the receiving system. After
receiving the port list returned by the user, the receiving
system maps the proxy port to the receiving port through SSH
for file forwarding, and then send the port list back to the
sender system. The sender system reports the port list
returned by the receiver to the network management system.
The network management system establishes the relevant
time slot forwarding strategy and sends the strategy to the
OpenFlow switch at the forwarding layer through the
controller. The network management system returns service
opening information to the sender system after starting the
service. Then, the sender system performs fragmentation and
encryption processing on the file to be sent by the user, and
sends it to the receiver through the previously established port.
After receiving the file, the receiver system decrypts and
reassembles the file, stores the reassembled original file in the
path set by the user, and sends a transmission completion
signal to the network management system and the sender
system. Finally, sender, sending agent, receiving agent, and
receiver stops asynchronously. The overall sequence diagram
of the security channel service system during the sending
process is shown in Figure 3.

4. Algorithm Design

Initial key E0

Data
Fragment F1

Data
Fragment F2

Data
Fragment F3

Data
Fragment F4

...

Data
Fragment Fn

Encrypted
Fragment E1

Encrypted
Fragment E2

Encrypted
Fragment E3

Encrypted
Fragment E4

... Encrypted
Fragment En

encrypt

encrypt

encrypt

encrypt

encrypt

encrypt

Figure 4. Encryption Process of Data Fragment

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 A Multi-connection Encryption Algorithm Applied in Secure Channel Service System

5

Initial Key
E0

Encrypted
Fragment

E1

Encrypted
Fragment

Ek-1

Encrypted
Fragment

Ek

Encrypted
Fragment

Ek+1

Encrypted
Fragment

E2k-1

Encrypted
Fragment

En

Port 0 Port 1 Port k-1

...

...

...

Encrypted
Fragment

En+1

...
Encrypted
Fragment

En+k-1

Figure 5. Send Encrypted Fragments through
Corresponding Ports

4.1. File Processing, Encryption, Decryption
and Multi-connection Transmission

We suppose that the number of TCP connections for
transmission is set to be k, data to be transmitted are sliced
into n fragments, Fi∈{ F1,F2,…,Fn}, initial key sequence is E0
which has the same length of data fragments, and Fi turns into
encrypted fragment Ei after encrypted. When i=0, initial key
sequence E0 is used as encryption key to encrypt fragment F1
into encrypted fragment E1, and then E0 and E1 will be sent
respectively through port i%k. When 1≤i<n, data fragment
Fi is used as encryption key to encrypt fragment Fi+1 into
encrypted fragment Ei+1, and then Ei+1 will be sent through
port i%k. The file processing algorithm is shown in Algorithm
1. The process of file processing will have some differences
based on the selected encryption algorithm, mainly the key
generation and transmission process. After the data fragment
is processed, it is sent directly and then the next file fragment
is continued processing. The encrypting process is showed in
Figure 4. The process of sending encrypted fragments
through corresponding ports is showed in Figure 5.

Encrypting the data to be transmitted requires that the data
be divided into equal-length fragments, and then each
fragment is processed in turn as plaintext and the key to
encrypt the next fragment. The flow chart is shown in Figure
6. After the length of the data fragment named length and the
number of connections named connection for transmission is
determined, the specific process of data encryption and
transmission can start.

Begin

Read Fragment Fi
into Buffer

Encrypt data in Buffer with Key
generating encrypted fragment Ei

Send out Ei through
Port i%k

i<=n

End

NO

YES
i++

Generate initial key
E0，and store it in

Key

Copy Buffer to Key

Figure 6. Flow Diagram of Data Encrypted and Sent

Algorithm 1: File Processing Algorithm
Input： file,

length, // the length of fragment
encryption, //the method of encryption
Socket[], //the list of sender port
connection //the number of connection

Output：none
Method：

/**Step1：Generate key and send it**/
If encryption == 1

Use AES to generate key[connection];
Send key[i] through port
Socket[(i+1)%connection];

If encryption == 2
Use IDEA to generate key[connection];
Send key[i] through port
Socket[(i+1)%connection];

If encryption == 3
Use RC5 to generate key[connection];
Send key[i] through port
Socket[(i+1)%connection];

If encryption == 4
Use Multi-Connection to generate key;
Send key[i] through port Socket[connection-1];

/**Step2：Encrypt data and send**/
While FileInputStream != null

Read data of length length from FileInputStream
into Buffer;
Counter i=0;
If encryption == 1

Use key[i%connection] as the key;
Encrypt Buffer with corresponding encryption
algorithm;

else

Use key;
Encrypt Buffer with multi-connection
encryption algorithm;

i++
Send Buffer through port Socket[i%connection]

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 Fanhao Meng, Rongheng Lin, Zhuoran Wang, Hua Zou, Shiqi Zhou

6

Firstly, use the generator to generate a key sequence of
length length, and store it in the byte array Key, and send the
Key through the port numbered connection-1 in the port list
(the port list contains connection port numbers, numbered
from 0 to connection-1). Secondly, read file data of length
bytes from the file input stream to the byte array Buffer. At
the same time, initialize a counter i with the value of 0 that is
used to judge which port the current fragment should be sent
through. Thirdly, use Key as the key to encrypt Buffer using
modulo-2 addition as encryption function, and cache the
encrypted data to byte array Cipher. Finally, send Cipher

through the port whose number is i%connection. Use Buffer
as the new Key and set i with the value of i+1. If the file still
remains some bytes to read, then repeat the above steps;
otherwise, the process ends.

According to the idea of sequence cipher, every bit of
plaintext is operated by key sequence, and the operation
function uses XOR. xi is the i bit of plaintext, yi is the i bit of
ciphertext, si is the i bit of key sequence (xi, yi, si∈{0,1}) The
formula of encryption is in (1) and the one of decryption is in
(2):

y𝑖 = e𝑠𝑖(x𝑖) ≡ (x𝑖 + s𝑖)mod2 (1)

xi = dsi(yi) ≡ (yi + si)mod2 (2)

The pseudo-code of encryption and transmission is as
described in Algorithm 2.

The data receiver reads data streams from multiple ports,
obtains the length length and port number connection of the
data fragment before receiving, reads and decrypts data
fragments sequentially in the order of the port list. The
specific process of data receiving and decryption is shown in
Figure 7.

Firstly, read length bytes of data from the port number list
of connection-1 and buffer it to byte array Key, which is the
initial key and initialize the counter i with the value of 0. Then,

Begin

Recieve Fragment Fi
form Port i%k into

Buffer1

Decrypt data in Buffer1 with Buffer0
generating decrypted fragment Fi and

store it in Buffer0

Send Fi to reunion
stream

i<=n

End

NO

YES
i++

Recieve initial key
E0 from Port0，and
store it in Buffer0

Figure 7. Flow Diagram of Data Received and
Decrypted

from the port of number i%connection in the port list read
length bytes of data, and buffer it to the byte array Buffer.
Finally, use Key as the decryption key to decrypt the
Buffer,and store it in the buffer byte array PlainText. After
that, use PlainText as the new Key and output PlainText to the
file output stream. If there is data flow still reading in through
the port whose number is i%connection, then set counter i
with value of i+1 and repeat the steps which is described
above; otherwise, the process ends.

4.2. Parameter Setting

 Initial key sequence
The initial key sequence E0 is only used once during
encrypting and decrypting the first data fragment F1. Its
length equals to every data fragment (except for the last one,
which may be shorter than others). Since the key sequence
does not require large data size, it can be a random number
generated by the true random generator (TRNG).
 Size of data fragments
The size of data fragments has direct influence on encryption
effect. Because every adjacent data fragment is transmitted
on different TCP connection, considering transmission
efficiency, to maximum the use of TCP transmission, the size
of data fragments should be an integer multiple of TCP MSS
(Maximum Segment Size). Sometimes total data size is
smaller than MSS. Under this circumstance the first priority
is to disperse data to multiple connections, so data fragment
size should not beyond the result that total size divides

Algorithm 2: Encryption and Transmission
Input: FILE, // file to be transmitted

k_connections, // number of connections
SIZE // length of data fragments

Output: none
Method:

begin

allocate Key //to store data fragments Fi-1
allocate Buffer //to store data fragments Fi
FileInputStream file=new FileInputStream(FILE)
generate E0 and store it into Key //initial key with
length of SIZE
for (int i = 1;i < FILE.length/SIZE+1; i++){
 Key = file //read-in next data fragment
 Send (encryption(Key, Buffer)) //send out
 Key.copy(Buffer)
}
end

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 A Multi-connection Encryption Algorithm Applied in Secure Channel Service System

7

number of connections. Assuming that different connections
are completely isolated (attackers can only intercept data on
one connection), data on each connection is not what
encrypted continuously. If the fragment size is too large, the
encryption rule may be exposed [16] [17]: because the
encryption key is data itself, different from random sequence
it has a certain rule, such as English text encoded with ASCII
which has a small key space will be easily cracked when data
size is large enough. Therefore, fragment size should be
relatively small to ensure the randomness of key sequences,
thereby increasing the difficulty of deciphering and thus to
guarantee data security.

In conclusion, the total size of transmitting data is SIZE,
the number of connections is k, and the size of fragment is
decided to be LENGTH=min{MSS,SIZE/k}. When the total
size is greater than k*MSS, the fragment size is
corresponding to the size TCP maximum message because it
will be advantageous for efficient stream processing of
splitting, encrypting and transmitting. When data size is less
than k*MSS, it should be split according to the number of
connections to ensure isolation of adjacent encrypted data.
The size of fragment is decided, but the last fragment of data
may be less than the size. Instead of filling up to align, it will
keep its data size and be encrypted by the previous data
fragment with its size, then transmitted.

5. Security and Performance Evaluation

5.1. Comparison of AES and RSA

AES is a symmetric encryption algorithm based on
replacement and permutation. The key length can be 128 bits,
192 bits or 256 bits, the block length is 128 bits, and the
plaintext block matrix is computed with the key generated by
multiple rounds of repeated permutations to achieve
encryption [18]. Operation speed of AES encryption is quite
fast. The encrypting time and the size of the encrypted data is
linearly increased. Encrypted ciphertext size is twice the
original data, and thus the decrypting time is twice the
encrypting time. The encryption algorithm proposed in this
paper does not increase the amount of data except for the
initial key that can almost be ignored. For large amount of
transmitting data, in comparison with ASE, this algorithm can
achieve the effect of encryption with the minimum
transmission capacity.

RSA public key encryption algorithm is an asymmetric
encryption algorithm [19], based on a special reversible
modular exponentiation, of which security is provided by the
difficulty of factorial decomposition of the difficulty of large
numbers. Take two large numbers with one open to public and
another confidential, calculate the encryption key and
decryption key, digitize the plaintext and select a certain
length of the number as a plaintext block, and use the key to
encrypt/decrypt the text/ciphertext [20]. RSA's greatest flaw is
that its operation speed is slow. Because RSA requires big
numbers computing, the operation speed is 1000 times slower
than symmetric cipher algorithms with the corresponding
security level. In general, RSA is only used for small amounts
of data encryption or encrypting encryption keys. When users’

transmission data are large, RSA’s slow operation speed
makes it not applicable for encrypting all the information.
Under the circumstance of SDN Security Transmission
Service, all data must be encrypted, so the algorithm in this
paper can not only guarantee the speed of encryption and
decryption operations, but also use multi-connection to
provide better security.

5.2. The Impact of Multi-connections,
Network Size and Fragment Size on Security
Performance

The time-slot transmission service provided by SDN Security
Transmission Service is transparent to users who use
encryption and decryption policies, achieving an effect of
isolating data that are transmitted on different connections. In
general, when the encryption policy is not used, assuming that
the number of switches in the entire network is m, the number
of the alternate path is s, the number of switches on each
alternate path is n, and the number of key switches is l (l ≤
sn) and assuming that the events for obtaining the switches
are independent, the probability of intercepting all data in the
case of obtaining one switch is expressed as (3):

𝑃1 =
𝑙

𝑚
≤

𝑠𝑛

𝑚
(3)

The probability of intercepting all data in the case of
obtaining k switches is expressed as (4) and (5):

Pk = 1 − (1 −
l

m
)

k

 k < s (4)

𝑃𝑘 ≥ 1 − 𝑠 ∙ (
(𝑠 − 1) ∙ 𝑛

𝑚
)

𝑘

 𝑘 ≥ 𝑠 (5)

In the above situation, in order to ensure that we get all
the data, the number of switches we need to obtain on
alternate path satisfies the expression as (6):

𝑘 ≥ (𝑠 − 1)𝑛 + 1 (6)

The multi-connection service transmits the encrypted data
fragments through multiple TCP connections established by
multiple ports, and decrypts them at the receiving end. Each
connection adopts time-slot forwarding policy to transmit the
data independently so they are isolated from each other.
Regardless of the encryption policy, if the number of multiple
connections is h and the network size of every connection is
the same as we described above, then the probability of
intercepting all the data in the case of obtaining one switch in
each connection is expressed as (7):

P1 = (
l

m
)

h

(7)

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 Fanhao Meng, Rongheng Lin, Zhuoran Wang, Hua Zou, Shiqi Zhou

8

The probability of intercepting all data in the case of
obtaining k switches in each connection is expressed as (8)
and (9):

𝑃𝑘 = (1 − (1 −
𝑙

𝑚
)

𝑘

)

ℎ

 𝑘 < 𝑠 (8)

𝑃𝑘 ≥ (1 − 𝑠 ∙ (
(𝑠 − 1) ∙ 𝑛

𝑚
)

𝑘

)

ℎ

 𝑘 ≥ 𝑠 (9)

In this multi-connection situation, we can guarantee that
we get all the data if and only if the number of switches we
obtained on alternate path satisfies the expression as (10):

𝑘 ≥ (𝑠ℎ − 1) ∙ 𝑛 + 1 (10)

Therefore, assuming that the network size is constant, the
larger the number of connections is, the less the amount of
information being leaked will be when the number of
switches acquired is the same. For encrypted data, the less
information leaked, the more difficult to decipher its contents
by intercepting the information it will be, even if the
encryption mode exposes. Without considering the network
transmission performance, selecting more switches as
alternative paths decrease the possibility of information
leakage. This is because the increase in the number of time
slots and connections also increases the number of switches
used in the network, and the data is more evenly distributed
over the network, so the probability of obtaining all the data
by obtaining a part of the switches will be much lower. Thus,
the number of connections and network size does not directly
affect its encryption effect for each encrypted fragment,
because each fragment is formed by encryption of the
plaintext and the key, and the most important influence factor
of encryption effect is the randomness of the key. However,
considering the transmission of the entire data, if logically
continuous encrypted fragment is captured by attackers, they
only need to decipher one part of content, then remaining
fragments of the information will be all leaked, so multi-
connection and time-slot forwarding provide isolation
between adjacent fragments, and the isolation effect is
influenced by the number of connections and network size.

5.3. Experiment Method

Implement RSA, DES, AES and the multi-connection
encryption algorithm proposed in this paper using JAVA
program. Record the execution time of using these four
algorithms to encrypt and decrypt text-based data and compare
their performance.

In the experiment, a string of 400 bytes is encrypted and
decrypted (regardless of the transmission delay, etc.). Each
algorithm performs 50 times respectively. The average of the
operation time is as follows:

Table 1. Time Consuming of Encrypting and
Decrypting a String by Different Algorithms

Algorithms DES AES RSA

Multi-

connection

Encryption

Algorithm

Encrypting
time (ms)

11.51 43.58 176.09 0.16

Decrypting
time (ms)

0.44 0.13 9.67 0.01

The result of time consuming showed in the table above
demonstrates that this algorithm has better performance than
other encryption algorithms in terms of speed.

The security of the cryptosystem depends on the strength
of the security of the algorithm itself, and on the other hand,
it is influenced by environmental factors such as the network.
The encryption algorithm based on multi-connection
transmission belongs to serial cipher encryption. The
randomness of the key sequence directly affects the
confidentiality of the algorithm. But for an attacker, brute
force to crack the cryptosystem is very costly, because the
sequence password itself corresponds to the same size of the
key sequence. And from the underlying binary sequence, the
key does not have regularity. However, according to the
coding characteristics of the transmission file itself, the key
will also exhibit certain rules. For example, using an ASCII-
encoded text file may also show certain rules after being
encrypted. In this case we can make the key semantically
more random by reducing the size of the data slice, as it is
assumed to be in the unit of a TCP message, which includes
multiple encrypted data fragments, whose key characteristics
are weakened as the fragmentation becomes dense, thus
making the attacker harder to infer the rules of the key.

Encrypt an ASCII-encoded text file with 2866 English
words using a multi-connection transport-based encryption
algorithm. The frequency of appearance of the English letter
a(A)-z(Z) in plaintext before encryption is shown in Figure 8.
The fragment size is set to 128 bytes (ciphertext 1), 1024
bytes (ciphertext2) and 512 bytes (ciphertext3). After the
encryption, the letter frequency analysis is performed. The
letter frequency analysis of the three ciphertexts is shown in
Figure 9. From this result it can be seen that the frequency
characteristics of the text can be completely hidden after
encryption. The letter frequency characteristics are roughly
similar, but there are also certain differences according to the
fragment size; the larger the fragmentation, the greater the
difference in frequency between letters, indicating that the
fragment size needs may be small. Therefore, the
cryptosystem hides the data characteristics of the text file well.
The cost of deciphering the cryptosystem under unknown
data fragment size and other parameters is relatively high.
Combined with the strategy of the security channel service in
the network side, we can basically think that the algorithm
can meet the high security requirements of users in the
security channel service.

EAI Endorsed Transactions on
Security and Safety

Online First
EAI Endorsed Transactions on

Security and Safety
Online First

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 A Multi-connection Encryption Algorithm Applied in Secure Channel Service System

9

Figure 8. Plaintext Letter Frequency Histogram

Figure 9. Ciphertext Letter Frequency Comparison Line

6. Conclusion

This paper presents a data encryption strategy in SDN
Security Transmission Service. Using the multi-connection
and time-slot transmission service provided by SDN
Security Transmission Service can isolate the adjacent data
fragments. With this feature, the encryption strategy
proposed in this paper can guarantee the security of the data
transmitted on each connection. Compared with existing
encryption algorithms, this algorithm has the advantage of
not only preventing the amount of transmission data from
largely increasing, but also ensuring the speed of encryption
and decryption. Under the condition of multi-connection
transmission, the effect of encryption, efficiency and
resource utilization achieve the optimal effect and it
provides an effective guarantee for network transmission
security. Meanwhile, this encryption algorithm is easier to
implement and more suitable for such multi-connection
scenarios.

Acknowledgements.
This work is supported by the Science and Technology

on Communication Networks Laboratory (XX17641X011-

06) and Beijing Natural Science Foundation (L171010,
4174099).

References

[1] Stinson D R. “Cryptography: Theory and Practice,” CRC
Press, 1995.

[2] Casola V. “Asymmetric Cryptography. Computer Science
& Communications Dictionary,” 2007, pp.68-68.

[3] C E Shannon. “A Mathematical Theory of Communication,”
Bell System Technical Journal, 1948,27(4), pp.379-
423,623-656.

[4] Aoki K, Ichikawa T, Kanda M, et al. “A 128Bit Block
Cipher Suitable for Multiple — Platforms Design and
Analysis// Selected Areas in Cryptography,” Springer
Berlin Heidelberg, 2000, pp.39-56.

[5] Aoki K, Ichikawa T, Kanda M, et al. “A 128-Bit Block
Cipher Suitable for Multiple Platforms — Design and
Analysis// International Workshop on Selected Areas in
Cryptography,” Springer Berlin Heidelberg, 2000, pp.39-56.

[6] C E Shannon. “Communication theory of secrecy systems,”
Bell System Technical Journal,1949,28(4) pp.656-715.

[7] Kashmar, Ali H., Ismail, E. S., Hamzah, F. M., and Amir, H.
F. A.. "Design a Secure Hybrid Stream Cipher," Journal of
Applied Mathematics & Physics, Jun. 2015.

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

 Fanhao Meng, Rongheng Lin, Zhuoran Wang, Hua Zou, Shiqi Zhou

10

[8] Rueppel R A. “Analysis and Design of Stream Ciphers,”
Communications & Control Engineering, 1986.

[9] Meneses F, Fuertes W, Sancho J, et al. RSA Encryption
Algorithm Optimization to Improve Performance and
Security Level of Network Messages[J]. IJCSNS, 2016,
16(8): 55.

[10] Verma A, Kaur S, Chhabra B. Improvement in the
Performance and Security of Advanced Encryption
Standard Using AES Algorithm and Comparison with
Blowfish[J]. 2016.

[11] Singha S, Sen M. Encoding algorithm using bit level
encryption and decryption technique[C]//Computer,
Electrical & Communication Engineering (ICCECE), 2016
International Conference on. IEEE, 2016: 1-4.

[12] Pu X, Tian X, Zhang J, et al. Chaotic multimedia stream
cipher scheme based on true random sequence combined
with tree parity machine[J]. Multimedia Tools and
Applications, 2017, 76(19): 19881-19895.

[13] Jia N, Liu S, Ding Q, et al. A New Method of Encryption
Algorithm Based on Chaos and ECC[J]. Journal of
Information Hiding and Multimedia Signal Processing,
2016, 7(3).

[14] Hsiao F H. Chaotic synchronization cryptosystems
combined with RSA encryption algorithm[J]. Fuzzy Sets
and Systems, 2017.

[15] Liu S. Research on the design and implementation of two
dimensional hyper chaotic sequence cipher
algorithm[C]//Future Generation Communication
Technologies (FGCT), 2017 Sixth International Conference
on. IEEE, 2017: 1-4.

[16] Meier W, Staffelbach O. “Fast correlation attacks on stream
ciphers,” The Workshop on Advances in Cryptology-
Eurocrypt. Springer-Verlag New York, Inc. 1988, pp.301-
314.

[17] Fidus, Felsa Mary, K. S. Lalmohan, and A. Sekhar., "Design
and Implementation of a Secure Stream Cipher for
Cryptographic Applications." International Journal of
Engineering & Technical Research V4.7, 2015.

[18] Daemen J, Rijmen V. “The design of Rijndael: AES, the
advanced Encryption Standard,” 2002.

[19] Rivest R, Shamir A, Aldeman L. “A method for obtaining
digital signatures and public-key cryptosystems,”
Communications of the ACM, 1978, 21(2), pp.120-126.

[20] Lin, Xi Jun, L. Sun, and H. Qu, “An efficient RSA-based
certificateless public key encryption scheme,” Discrete
Applied Mathematics, Mar. 2017, doi:10.101.

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e1

