
VaultIME: Regaining User Control for Password
Managers through Auto-correctionH

Le Guan1,∗, Sadegh Farhang1, Yu Pu1, Pinyao Guo1, Jens Grossklags2, Peng Liu1

1Pennsylvania State University, State College, PA, USA
2Technical University of Munich, Munich, Germany

Abstract

Users are often educated to follow advices from security experts. For example, using a password manager
is considered an effective way to maintain a unique and strong password for every website. However, user
surveys reveal that most users are not willing to adopt this tool. They feel uncomfortable when they grant
password managers the privilege to automate access to their digital accounts. We propose VaultIME to nudge
more users towards the adoption of password managers by offering them a tangible benefit, while only slightly
interfering with their current usage practices. Instead of “auto-filling” password fields, we propose to “auto-
correct” passwords in case of minor typos. VaultIME integrates the functionality of a password manager into
the input method editor. Running as an app on mobile phones, VaultIME remembers user passwords on a
per-app basis, and corrects mistyped passwords within a typo-tolerant set. We show that VaultIME achieves
high levels of usability and security.

Received on 29 March 2018; accepted on 11 April 2018; published on 15 May 2018
Keywords: Password manager, Auto-correction, IME, Usable security

Copyright © 2018 Le Guan et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.15-5-2018.154772

1. Introduction

To keep their digital accounts safe, Internet users
are advised to adopt strong passwords that are
hard to crack and guess [1]. However, long and
random passwords are also difficult for users to
remember [2]. Further, the sizable number of online
accounts users need to manage has introduced an
additional burden [3]. Using a password manager
(e.g., 1password, lastpass and keepassdroid), which
saves user credentials into a database, is a highly
recommended approach by security experts. Contents
in the credential database are encrypted for data
protection, where the encryption/decryption key is
generated from a master password only known to the
user [3].

HThis manuscript is an extension of the conference version appearing
in the 13th EAI International Conference on Security and Privacy in
Communication Networks (SecureComm ’17). This manuscript

presents a more detailed description of the system design and
discloses more experimental results.
∗Corresponding author. Email: lug14@ist.psu.edu

Unfortunately, adoption of password managers is
behind expectations despite the benefits apparent to
security experts: 1) enhancing convenience by “auto-
filling” password fields on behalf of the user [1], and 2)
improving security by allowing for long and complex
passwords. In addition, a password manager would
reduce the perceived need for insecure practices such
as storing passwords in clear-text as a memory help etc.
Nevertheless, surveys indicate adoption figures as low
as 6% [4] and at most as high as 21% [5], which leave
a lot to be desired. Further, since password manager
adopters are generally more security-savvy [5], this
leaves behind those users who would most benefit from
the technology.

Prior survey research has shown a split between
the perceptions of adopters of password managers and
those that hesitate [5]. While adopters echo the security
benefits lauded by experts, 78% of non-adopters
perceive “some” or “a lot” of individual risk from using
a password manager [5]. Some factors for hesitation
are quite reasonable, and hard to address. For example,
some people simply do not trust providers of password

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

http://creativecommons.org/licenses/by/3.0/
mailto:<lug14@ist.psu.edu>

Le Guanet al.

managers [6], and software vulnerabilities may lead to
exposure of all user passwords to hackers [7].

Other impeding factors are more amendable to
solution approaches. Specifically, the threat of a lost
phone or merely unmonitored access to the phone may
be perceived quite disconcerting if high value data and
important services such as social networking and online
banking are left more vulnerable due to the stored
credentials in a password manager. In fact, otherwise
trusted individuals such as family members are often
the cause of such invasions [8]. According to a Javelin
Research study, in 2014, there were 550,000 reports of
identity theft caused by someone the victim knew [9].
Taking advantage of the bond of trust, individuals
are able to more easily access family members’ digital
accounts and use the stolen identities to gain financial
benefits [8–10]. Further, trust is especially impeded
when the provider stores the password file on the
cloud [6], rather than on the user’s machine. In addition,
empirical work shows that people prefer a high degree
of control when completing form-fields with personal
information over having the same done by auto-fill [11];
we anticipate that a similar finding could be made in the
highly related context of passwords.

With our work, we want to provide a stepping
stone to nudge people towards adopting a password
manager by providing an easy-to-understand benefit,
while limiting interference with their habituated usage
practices. Further, we target adoption hesitation due to
the aforementioned reasons by allowing for a higher
degree of control by the user.

Concretely, we propose a mechanism to auto-correct
passwords in the presence of minor typo errors by
utilizing a client-side password vault. While the user
is still required to input a “near correct” password
to activate the auto-correction feature, the approach
allows users to apply longer and less trivial passwords.
At the same time, user frustration can be substantially
reduced by a tangible reduction of failed attempts. In
this sense, our solution provides a potentially sensible
middle-ground for the adoption of password managers
by leaving full control over authentication in the hands
of the user, and reducing the threat of stolen data when
a mobile device is lost or individuals with access to the
device betray the trust of the user.

While the first systematic work of password auto-
correction appears in [12], it is implemented on the
server-side with the purpose of increasing the password
acceptance rate. The authors found that almost 10%
of failed login attempts are caused by simple, easily
correctable typos that should otherwise be accepted.
Following this observation, the authors proposed an
auto-correction framework that can be integrated into
existing password-based authentication systems on the

server-side. In particular, a set of correctors1 are first
defined, and a received password is adjusted by each of
the correctors to generate a set of candidate passwords.
The login attempt is granted provided that at least one
of the candidate passwords results in a password hash
value that matches the one stored on the authentication
server. When it comes to the security of the typo-
tolerant authentication scheme, the authors show that
it does not downgrade the security of user passwords
by offering a formal proof of a free correction theorem.

Different from previous server-side auto-correction,
we aim to provide added convenience of password
typing on the client-side to further enhance user con-
trol. We propose VaultIME, a mobile-centric password
manager granting users control of password input.
VaultIME integrates the functionality of a password
manager into an Input Method Editor (IME), which is
an app that displays a software keyboard and enables
users to enter text. In particular, VaultIME remembers
a user password on a per-app basis. If a password input
interface is detected, the auto-correction feature is acti-
vated, which replaces a mistyped password (within an
acceptable set) with the correct one.

The design goals of the new password manager are as
follows. First, to meaningfully reduce user frustration,
the auto-correction mechanism should cover a wide
range of mistypes. Second, our mechanism should not
downgrade password security even if an attacker has
access to the phone and could perform a brute-force
attack to stored passwords. To achieve the first goal, we
conducted a mobile-centric password typing analysis.
Based on it, we developed a new set of password
correctors, which differ from the previous work [12]
and cover 26.3% more typos. To achieve the second
goal, we designed VaultIME to be compatible with the
free auto-correction theory of [12], which states that
with a certain filter policy, auto-correction introduces
zero security loss. To measure the security loss, we ran
simulation attacks to our auto-correction scheme. In the
worst case, we show that the security loss is 0.43%,
assuming that a brute-force attacker has 10 tries. When
configured with the filter complying with the free auto-
correction theory, VaultIME introduces zero security
loss as expected. We have developed a proof-of-concept
prototype of VaultIME. With reasonable optimization,
the prototype results in no user-perceivable delay when
auto-correcting passwords. However, interface features
could be added to increase awareness of the benefits of
auto-correction.

Contributions. Our work provides the following key
contributions:

1For example, switching caps status, removing the last character, etc.

2
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

VaultIME:RegainingUser ControlforPasswordManagersthroughAuto-correction

• We propose a design for password managers
addressing user concerns substantiated in related
work. Without losing control to the login process,
our design ameliorates users’ concerns for using
password manager in a “too open” way and
maintains users’ habituated login process.

• To cover a maximum range of typos, while
maintaining tight control over security, we
analyze the nature of typos on a mobile platform
in a systematic way. Based on the analysis results,
we develop a new set of correctors, and run
simulation attacks to measure the security loss
introduced by VaultIME.

• We implement a prototype of VaultIME as a
normal Android IME app. Therefore, VaultIME
can be instantly deployed on existing mobile
platforms.

2. Background
This section explains the concept and design of the
input method framework in the Android mobile OS as
well as password managers. We also present difficulties
users face when entering passwords on a smartphone,
and summarize related efforts the community has made
to reduce typos.

Input Method Editor. Since API level 3.0, Android,
the most popular mobile operating system, provides
an extensible input-method framework. By extending
the InputMethodService class, developers are able
to implement a customized soft keyboard for better
experience and capabilities. Besides, extending the
KeyboardView class allows for the rendering of
a personalized keyboard layout. These classes are
packaged together to compose an Input Method Editor
(IME) which provides user control to enable users to
enter text.

When a user inputs text for an app, the default IME
pops up. The framework allows an IME to completely
control user input, including reading current input,
and making arbitrary modifications. These functions
are supported by operating on an InputConnection

class. In particular, method getTextBeforeCursor and
getTextAfterCursor can be invoked to read input
before and after the current cursor, while an app
ultimately receives an input string determined by the
commitText methods.

Password Managers. Memorizing passwords has
become a significant challenge for users. Although
difficult to crack by attackers, strong passwords that
are sufficiently long and random are also hard for users
to remember [2].

Using a password manager is one of the most
recommended approaches that can free users from
the duty of memorizing lots of complex passwords.
Mainly developed as a plug-in for web browsers, or
as stand-alone web/smartphone applications, password
managers save user credentials into a database, and
later automatically auto-complete requests for the
credentials on behalf of users [1]. In order to ensure
security of the credential database, a user controls
access to the password manager database via a master
password. Specifically, contents in a credential database
are typically encrypted for data protection, where the
encryption/decryption key is generated from a master
password [3]. This mechanism makes it secure for
password managers to store the password database
on users’ mobile devices [13, 14], in the cloud [15],
or even on USB sticks [16]. Due to its advantages in
both security and usability, password managers, such as
1Password [13], LastPass [17], and plug-ins in Google
Chrome [18] and Mozilla Firefox [19], have seen their
popularity increase during the last decade.

Mobile Typos. A number of prior studies have
demonstrated the difficulty of correctly entering user-
chosen passwords on laptop or desktop computers [20,
21]. However, this error-prone process is exacerbated on
mobile devices.

As opposed to a physical keyboard which is standard
for traditional computers, most mobile devices have
moved towards a virtual keyboard, implemented by the
aforementioned IME. Due to the lack of tactile feedback
and the small size of soft keys, virtual keyboards have
been shown to negatively influence typing abilities [22,
23]. For example, Lee and Zhai [23] report that the error
rate is 8% higher for typing on virtual keyboards than
on physical ones.

In addition, typing numbers or special characters on
most mobile devices requires navigation to a second
or third keyboard page [24], which may raise typo
possibilities; and frustration if the typing of a password
has to be repeated due to a typo.

Furthermore, typing while walking is a common
use case in a mobile environment. However, previous
research indicates that users have more difficulties
typing passwords on their mobile devices while
walking, and hence experience a higher error rate [25].

Reducing Typos. There has been multiple lines of
research towards designing a better experience for
virtual keyboards. To name a few, in [26], the authors
present an approach to better process the obtained
shadow information from the finger-tip, and thus to
add robustness to the virtual key input. In [27],
researchers show that optimizing virtual keyboard
layouts can significantly improve typing efficiency

3
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

Le Guanet al.

and reduce errors, while the standard QWERTY
keyboard could also be specifically improved for
large touchscreens [28]. By dynamically adjusting the
key size based on letters’ frequencies, the authors
designed a promising “real-time” keyboard to improve
typing accuracy and speed for future virtual keyboard
designs [29]. In addition, providing feedback for
each typing action (e.g., a vibration) is commonly
implemented in commercial Android IMEs. While
these efforts are indispensable for improving typing
accuracy, our work focuses on increasing the password
acceptance rate even when typos occur.

3. Server Side Typo-tolerant Checking Scheme
To allow for a direct comparison, our work follows
the formalization of a password authentication system
proposed in [12], and also applies the same model for
evaluating security loss in the presence of a brute-
force attacker. To begin with, we review some of the
important concepts and notations.

3.1. SystemModel
Checking Passwords. Two phases are involved in a
password authentication process. In the registration
phase, a user registers his password, e.g., w, with the
server, and the server stores another string, s, derived
from a hash function mixing a random salt value and
w. In the checking phase, a user submits a password,
w̃, to the authentication server, and the server verifies
the request by calculating on w̃ and the stored value
s. The request is granted only if it returns true. In an
exact checker (ExChk), the checker returns true only if
the typed password w̃ is exactly equal to w, i.e., w̃ = w.

Typo-tolerant Scheme. Contrary to an exact checker
ExChk, a typo-tolerant scheme runs a relaxed checker,
which may return a true value for multiple strings other
than w. When a user submits w̃, the authentication
algorithm, instead of only examining w̃, examines a set
of strings neighboring w̃. This set is represented by a
ball of w̃ denoted by B(w̃). If any element in the ball
passes the exact checker ExChk, w̃ is accepted. Formally,
the ball is derived by applying a set of correctors (or
transformation functions) C = {f0, f1, .., fc} to w̃.

Brute-force Attacker and Security Loss. Before for-
malizing a brute-force attacker, we first model the pass-
word distribution and typo distribution. The theoretical
analysis of security loss introduced by a brute-force
attacker against a relaxed checker assumes an attacker
with exact knowledge of these distributions.

We associate a distribution p to a set of all possible
passwords. Therefore, p(w) is the probability that a user
selects a string w as a password. A user with password

w may type a password w̃ upon authentication. The
probability of this event is represented by τw (w̃). If
w , w̃, a typo occurred. Furthermore, we say w̃ is a
neighbor of w if τw (w̃) > 0.

Let {w1, w2, w3, ...} be a non-increasing sequence
of passwords ordered by their probabilities. λq =∑q
i=1 p(wi) is called the q-success rate. The success rate

of an attacker A trying to guess a user’s password is
denoted by Att(checker,A,q), in which checker is
the checking algorithm, and q represents the maximum
number of tries attacker A can make. For an exact
checker, it is obvious that Att(ExChk,A,q) ≤ λq. To
achieve λq, a brute-force attacker must choose the
password with the highest probability in each round.

Regarding a relaxed checker, we define an optimal
attacker to be able to achieve the maximum password
guessing probability. Formally, the probability that an
optimal attacker successfully guesses a password in q

time is denoted by λf uzzyq = max
A

Att(Chk,A, q). Similar

to the case of an exact checker, where the attacker
chooses the passwords with the highest probabilities,
an optimal attacker against a relaxed checker tries to
guess a password w̃, so that the corresponding ball B(w̃)
has the highest aggregate probability in each round.
The construction of such an optimal attacker is NP-
hard. However, in [12], the authors proposed a greedy
algorithm to realize this attacker in practice. As a result,
the security loss caused by such a greedy attacker

against a relaxed checker can be calculated by ∆
greedy
q =

λ
greedy
q − λq.

3.2. Secure Typo-tolerant Checker
The naïve relaxed checker downgrades the security of
an authentication system in the presence of an optimal
attacker, i.e., ∆q > 0. However, there exists an optimal
relaxed checker, OpChk, that avoids causing security
degradation (free corrections), i.e., ∆q = 0 [12]. When
a user submits a string w̃ as password, the relaxed
checker creates a set of candidate passwords based
on a set of correctors C, and thereby a candidate set
B̂(w̃) = {w′ |w′ = fi(w̃), p(w′)τw′ (w̃) > 0, fi ∈ C}. To guar-
antee security, the optimal checker OpChk further rules
out some of the candidate passwords by solving an opti-
mization problem with a brute-force algorithm. OpChk
maximizes the password acceptance rate without losing
security. For the detailed explanation of the algorithm
see [12]; Section V.D.

3.3. Limitationsof Server-side Password
Auto-correction
Previous work is invaluable as it provides a theoretical
basis for a secure typo-tolerant authentication scheme,
in contradiction to the common belief that accepting

4
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

VaultIME:RegainingUser ControlforPasswordManagersthroughAuto-correction

more than the one correct password would significantly
degrade security. However, as shown in the paper,
the proposed scheme cannot handle proximity typos,
which, however, are the most prevalent form of
all typos (21.8%). Their occurrence is even more
pronounced for mobile clients (29.6%). Proximity
typos occur when a user accidentally hits a key
adjacent to the intended one (e.g., hitting an ‘a’
instead of an ‘s’). The reason for this limitation
is that correcting a proximity typo necessitates the
coverage of a larger space of possible passwords,
and running the hash-based authentication algorithm
for each possible password requires considerable
computational resources. For enterprises, this requires
more infrastructure investments to enhance computing
capability. For customers, the introduced latency can be
unacceptable.

Drawing on the specific situational context of
the mobile environment and ecosystem, we design
VaultIME to overcome innate limitations of the
previous work, and enable VaultIME to cover more
typos. Specifically, implemented as a password manager
on smartphones, VaultIME is aware of the correct
password. Therefore, checking a candidate password
is as simple as performing a string matching, as
opposed to the complex hash calculations needed
by previous work. Since computationally intensive
hash computation is avoided, covering proximity typos
becomes possible.

4. Empirical Study of Typos on Mobile Devices
Prior studies have shown that strong passwords are
difficult to type [20, 21, 30]. For example, users could
easily mistype a character by slipping to an adjacent
position on the keyboard, or they may forget to switch
off the caps lock status. These human problems are
further exacerbated on mobile devices. In particular,
the cramped, and less tactile virtual keypad, which is
widely used on today’s mobile phones, has a negative
influence on error-free typing [22, 23]. As a result,
it has been reported that the error rate is 8% higher
for text typed on virtual keypads than for physical
keyboards [23].

To understand the most frequent types of typos on
mobile devices, we need to analyze a sizable number
of real-world password-typing observations. For this
purpose, we work on publicly available password-
typing datasets from the previous work [12], and
particularly focus on the data collected on touchscreen
mobile devices.2 In this section, we first briefly
introduce these datasets. Then, we present our analysis

2The dataset collected on touchscreen devices can be down-
loaded from https://www.cs.cornell.edu/~rahul/data/mturk15-
touchonly.json.bz2.

results. Our results uncover several new findings,
which guide us in designing new mobile-centric auto-
correction schemes.

4.1. Password-typingDataset on Touchscreens
In [12], the authors carried out two experiments on the
Amazon Mechanical Turk (MTurk) platform to collect
typo records during the entering of passwords. One
experiment collected data from either PC or mobile
platforms, while the other only collected data from
mobile devices with touchscreens. In collecting the
latter dataset, human-intelligence tasks (HITs) were
assigned to participants over the web, where each
participant was required to type 10∼14 passwords in
an HTML password input box within 300 seconds. The
participants could only use touchscreen mobile devices.
The results were later verified by the user-agent field
in the HTTP header of the workers’ browsers. The
passwords were sourced from the RockYou password
leak [31], one of the largest leaked password databases.
In total, 24,000 password-typing records were collected
by 1,987 HITs.

4.2. UnderstandingTypos onMobileDevices
In this section, we explain our findings by analyzing
the dataset mentioned above. We first list top typos and
their corresponding correctors in Table 1. A corrector
is the reverse operation of the corresponding typo.
It returns a set of passwords that could potentially
contain the intended one. For example, corrector
rm-last removes the last character in the received
password, which effectively corrects typo ins-last.
While the definitions of many correctors can be found
in work [12], the newly introduced ones are quite self-
explanatory. For example, rep-prox-rs means for each
character, replace it with each of the adjacent ones in
the correct keyboard status.

In Table 2, we show top typos that occur in both the
mobile and general datasets. Let us first have a look at
the “any” row drawn directly from previous work [12].
Their solution can handle all typos except for prox and
others, resulting in a coverage rate of 21.5%. However,
prox alone contributes 21.8% of all typos, which the
previous solution does not address. We have discussed
the reason why previous work cannot handle proximity
errors in Section 3.3.

We independently conducted a typo distribution
analysis on the mobile dataset, the results of which are
shown in the “Mobile” row in Table 2. Our study differs
from the previous work as we are more concerned with
specifics in the mobile environment. We differentiate
between a virtual keyboard and a physical one, and pay
more attention to the respective influences on typing.

We explain our new findings in the following. First,
we find that PC users frequently make proximity typos

5
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

https://www.cs.cornell.edu/~rahul/data/mturk15-touchonly.json.bz2
https://www.cs.cornell.edu/~rahul/data/mturk15-touchonly.json.bz2

Le Guanet al.

Table 1. Top typos and their correspondingcorrectors.

Typo explanation Typo Corrector

Proximity errors, i.e., hitting an adjacent key regardless of the intended
keyboard status†, e.g., typing an ‘a’ as an ’S’. prox‡ n/a

Proximity errors with correct status, i.e., hitting an adjacent key in the same
keyboard status with the intended one, e.g., typing an ‘a’ as an ‘s’. prox-rs rep-prox-rs

All letters are flipped. swc-all‡ swc-all
First letter is flipped. swc-first‡ swc-first
An extra character is added to end. ins-last‡ rm-last
An extra character is added to front. ins-first‡ rm-first
Forget pressing shift for symbol at the end. n2s-last‡ n2s-last
Miss a character at an arbitrary location. rm-any ins-any
Insert an extra character at an arbitrary location. ins-any rm-any
An arbitrary letter is flipped. swc-any swc-any

†: The keyboard statuses are “normal”, “capitalized”, and “symbolized” in the AOSP keyboard.
‡: The definition of the typo is also used in [12].

Table 2. Top typos that occurin the mobiledataset and general dataset.

Environment Typo Percentages

Any
prox swc-all ins-last swc-first ins-first n2s-last others
21.8 10.9 4.6 4.5 1.3 0.2 56.6

Mobile
prox-rs rm-any ins-any swc-all swc-any ins-last others

21.4 20.4 10.8 8.0 7.6 1.2 32.6

1. The “Any” row covers the results drawn directly from [12]. The dataset is collected
from participants with PC or mobile devices.

2. The “Mobile” row covers the results obtained from mobile devices only.

3. The sum of all items in the mobile environment is greater than 1. This is because our
definitions of typos are not exclusive. For example, ins-last is a special case of ins-
any.

with incorrect keyboard status, such as typing ‘a’ as ‘S’.
This can be explained by the combined effect of finger
slipping and unnoticed caps status. However, mobile
users seldom make such mistakes. The reason is that a
virtual keyboard typically reflects the keyboard status
directly on the display of each key, which a user is likely
to notice. Therefore, we define a new mobile-centric
proximity error, i.e., prox-rs. The difference to the
general prox is that prox-rs only considers proximity
errors with correct caps and symbol status.3 Therefore,

3In the default AOSP keyboard layout, there are three statuses
(“normal”, “capitalized”, and “symbolized”), which map the letter ‘a’
to ‘a’, ‘A’, and ‘@’ respectively.

typing ‘a’ as ‘S’ or ‘@’ is not considered as a proximity
error in our analysis.4

Apart from proximity errors, we found that mobile
users frequently miss (20.4%) or insert (10.8%) a
character at arbitrary locations. In addition, they may
also ignore capitalization, either completely (8.0%) or
only for a single letter (7.6%). Compared with the
“any” environment, where the users frequently add
an additional character, mobile users are more likely
to miss a character. Indeed, unintentional extra key-
strokes can happen due to inertia in high-speed input
on physical keyboards. Among these typos, we found
that correcting a missing character is challenging, i.e.,
a huge number of password candidates would need

4As a result, the results of the previous work exhibit a higher
proportion of proximity error (29.6%) than measured with prox-rs

(21.4%) on the same raw data.

6
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

VaultIME:RegainingUser ControlforPasswordManagersthroughAuto-correction

to be examined. This number is roughly estimated
as the number of all possible characters (over 100)
multiplied by the length of a password. Therefore, we
do not consider this kind of typo in this work. It is also
interesting to mention that both of swc-all and swc-

any contribute substantially to mobile typos. While the
previous work only handles swc-all, we argue that
people are equally likely to flip only one letter, which
has already been validated by our experiments. In the
next section, we show how we auto-correct these typos.
In total, our correctors can handle as many as 47.8% of
the typos, which is the union of typos of type prox-rs,
ins-any, swc-all, and swc-any.

5. Password Auto-correction for Mobile
VaultIME implements a password auto-correction
scheme on the mobile client side. Instead of letting the
authentication algorithm on the server judge whether a
password should be accepted or not, VaultIME directly
auto-corrects the passwords on the mobile client’s side
if only minor typos occur. To achieve this, VaultIME,
as a special IME, stores the correct password for users
on a per-app basis, and runs a password checker
as defined in Section 3. Before a typed password is
fed to the corresponding app, the checker checks the
received input. If the checker returns true, the stored
correct password is forwarded to the app, otherwise, the
received input is forwarded as is.

More specifically, after the user is done with
password input, the checker in IME first checks the
received password w̃. If it matches with the correct
password, w, recorded in the password vault, the IME
leaves the password as is and returns. Otherwise, a
ball B(w̃) of candidate passwords is derived from a
predefined transformation function set C = {f1, ..., fc},
where fi is a corrector defined in Section 4. Then, w is
compared with each element in the ball. If a match is
found, w̃ is replaced by w; otherwise, w̃ is left as is.

This section first defines the used transformation
function sets. Since we enlarge the ball size, more
passwords are tested in each query. Therefore, we
introduce how to apply checking policies to restrict the
size of ball. It has been proven theoretically that after
applying the optimal one, the security of the password
is not degraded for a brute-force attacker. Then, we
present how these functions influence the ball size
under different checking policies. A checking policy is
a filter applied to the candidate ball obtained by the
naïve relaxed checker. A stricter filter leads to a reduced
ball size, but retains more security of the password.
Our results show that the optimal checker, OpChk,
does not reduce the ball size significantly. Since OpChk

has been proven to lose zero security of a password,
our system can achieve both high security and high
usability. Finally, we also run simulation experiments to

Table 3. Average ball size for all RockYou passwords over
di˙erentcheckerpolicies and transformationfunctionsets.

Ctop1 Ctop2 Ctop3 Ctop4

Chk-All 59.25 69.61 70.54 79.16
Chk-wBL 59.24 69.60 70.53 79.14
Chk-AOp 53.80 58.77 57.87 64.06

demonstrate that our scheme is secure against a greedy
attacker.

5.1. TransformationFunctionSets
A transformation function is also called a corrector,
which is the reverse operation of a typo, and can
be used to recover the correct password. We have
listed top-rated mobile correctors in Table 2. Based
on their capabilities (i.e., coverage of typos) to
correct typos, we define four transformation function
sets. They are Ctop1 = {rep-prox-rs}, Ctop2 = Ctop1 ∪
{rm-any}, Ctop3 = Ctop2 ∪ {swc-all}, and Ctop4 = Ctop3 ∪
{swc-any}, respectively.

5.2. Ball Size Estimation
In [12], three checking policies are discussed. In Chk-

All, the algorithm tries all the derived passwords
in the ball B(w̃). In Chk-wBL, the ball is filtered
by a predefined blacklist that is comprised of a set
of frequently used passwords. In Chk-AOp, based on
empirical distributions of passwords and typos (p, τ),
a brute-force algorithm is executed to filter the ball.
The algorithm maximizes the password acceptance rate
without losing security against a greedy attacker who
knows both the distribution (p, τ) and the algorithm of
the checker.

To understand the effect of policies applied to the
ball, we run a simulation to calculate the averaged
ball size after filtering. As shown in Table 3, the
ball size decreases when policies are applied (Chk-All
can be viewed as an all-pass policy), and increases
as more transformation functions are added to the
set C. Each increase is a reflection of the added
corrector. From Ctop1 to Ctop2, we observe an increment
of around 10, indicating that rm-any produces 10
password candidates, which conforms to the length of a
password. From Ctop2 to Ctop3, only one new password is
produced. This is expected because swc-all is a one-to-
one mapping. Lastly, swc-any produces less than 9 new
passwords as there are around 9 letters in a password
on average.

Statistically, all the checkers in Table 3 significantly
increase the number of candidate passwords to be
checked. On the one hand, this indicates that our
checkers could achieve a high auto-correction rate,

7
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

Le Guanet al.

because more passwords are examined in each query.
On the other hand, security could be degraded because
an attacker gains more information about the real
password in each query. Interestingly, from Chk-All

to Chk-AOp, we do not observe an abrupt shrinkage of
the ball size. Since Chk-AOp leaks no more information
about the real password than an unmodified exact
checker leaks to an optimal brute-force attacker, this
proves that our checker can achieve both a high
auto-correction rate and a low security loss. In the
next section, we show results from our simulation
experiments. We emulate a greedy attacker who has
complete knowledge about the implementation details
of the used typo-tolerant checker.

5.3. Security Evaluation

We begin by clarifying the threats we consider in this
work. Then, we show the measured security losses
under a set of simulated attacks.

Threats in Scope. We consider an attacker who has
physical access to an unlocked victim phone. This
is particularly likely to happen considering an in-
house betrayer. However, we do not consider a fully
compromised mobile OS. In a compromised mobile
OS, the attacker may retrieve user’s credential data
(including all keystrokes) remotely.

We consider a brute-force attacker who is given q
chances to query the authentication system. Such an
attacker has been formalized in Section 3.1. Specifically,
the attacker follows the greedy algorithm mentioned in
Section 3.1, and the security loss can be represented by

∆
greedy
q = λgreedyq − λq.

Results. In Figure 1, we show the security loss of
each checker for different query numbers. We set the
upper bound of q to 10, because it is a reasonable upper
bound for queries given observations in practice before
a device is locked. Mobile devices often enforce a long
waiting time if consecutive failed login attempts are
detected. For example, in the default setting of Android,
q is equal to 5. After 5 unsuccessful tries, a user must
wait for 30 seconds before the next screen-locking
request can be processed [32]. The default policy of iOS
devices is even stricter. The device will be disabled if six
wrong passwords are entered in a row [33].

It is obvious that the security loss increases with
q. However, Chk-AOp remains zero throughout our
experiments, because it is an optimal checker that
suffers no security loss in theory. For Chk-All and Chk-

wBL shown in the figure, there is a clear gap between
the transformation function set Ctop1 and others. This
indicates that the security loss caused by applying
rep-prox-rs alone can be quite limited – as low as

0.085% (λgreedyq = 0.02937 and λq0.02852) in the worst
case when q = 10 using checker Chk-All. This can be
explained by the fact that a proximity typo often leads
to low probability passwords, which do not increase the
overall aggregate probability of the attacker’s ball. For
example, when checking the password ‘password’, rep-
prox-rs will derive a huge ball containing candidate
passwords such as ‘oassword’ and ‘psssword’, which
are rarely used by humans. On the other hand,
applying swc-all will obtain ‘PASSWORD’, which is also
a frequently used password. In the worst case, the

security loss is 0.427% (λgreedyq = 0.03279 and λq =
0.02852) when q = 10 and using checker Chk-All under
the transformation function set Ctop4.

Attacker with Incorrect Password Distribution. In
practice, when calculating the trial passwords, a greedy
attacker does not necessarily hold the same password
distribution used by the checker. The password
distribution used by the attacker is called an attacker
distribution while the distribution used by the checker
is called a challenge distribution. We ran the same
experiment as above except that we used different
attacker distributions (based on the phpBB [34] and
Myspace [35] password leakage datasets).

The security loss for attackers who use an estimated
password distribution is shown in Table 4. The
maximum success rate an attacker could reach under
the exact checker ExChk is measured by calculating
the aggregate possibility of the top q passwords in
the RockYou password distribution, and is shown in
the second row. These figures serve as the baseline for
calculating security loss under different checkers and
attackers. As shown in the table, when an attacker
choses a different password distribution, he would gain
negative security loss, meaning that he did even worse
under a typo-tolerant checker than under an exact
checker. This can be explained by the fact that the
wrong password distribution may mislead the attacker
to choose a suboptimal trial set.

6. Implementation and Evaluation
We have implemented a proof-of-concept prototype
of VaultIME for the Android OS. A user is able to
customize the transformation function set ranging from
Ctop1 to Ctop4, and the checking algorithms among Chk-

All, Chk-wBL, and Chk-AOp.
The prototype uses the standard QWERTY US

keyboard layout (Figure 2a). It automatically detects
the attribute of the current TextView, and inserts an
“AuCo” key in the bottom right of the keyboard for
the TYPE_TEXT_VARIATION_PASSWORD and TYPE_TEXT_

VARIATION_VISIBLE_PASSWORD input types. VaultIME
records a new password entry when the “AuCo” key
is pressed (Figure 2b). We use the package name of a

8
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

VaultIME:RegainingUser ControlforPasswordManagersthroughAuto-correction

0 2 4 6 8 1 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

Se
cu

rity
Lo

ss

N u m b e r o f G u e s s e s (q)

T o p 1
T o p 2
T o p 3
T o p 4

(a) Chk-All.

0 2 4 6 8 1 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

Se
cu

rity
Lo

ss

N u m b e r o f G u e s s e s (q)

T o p 1
T o p 2
T o p 3
T o p 4

(b) Chk-wBL.

Figure 1. Security loss measuredfor di˙erent checkersand query numbers.Note that the security loss for Chk-AOp is zero, so we
omitit for the sake of fin typography.

Table 4. Security loss measuredagainst attackerswithestimatedpassworddistributions.The challengedistributionis fi ed to be the
RockYou database. To showthe worsecase security,we used Ctop4 as the transformationfunctionset.

q 1 5 8 10

λq under ExChk 0.01368 0.02400 0.02697 0.02852

checker Chk-All Chk-wBL Chk-AOp Chk-All Chk-wBL Chk-AOp Chk-All Chk-wBL Chk-AOp Chk-All Chk-wBL Chk-AOp

RockYou +0.00114 +0.00005 +0.00000 +0.00370 +0.00127 +0.00000 +0.00385 +0.00146 +0.00000 +0.00427 +0.00174 +0.00000

phpBB +0.00113 +0.00004 +0.00000 -0.00075 -0.00568 -0.00571 -0.00176 -0.00319 -0.00391 -0.00216 -0.00359 -0.00391

Myspace -0.01024 -0.01307 -0.01304 -0.00246 -0.02172 -0.02124 -0.00407 -0.02383 -0.02361 -0.00408 -0.02418 -0.02433

(a) NormalLayout. (b) PasswordVault. (c) Auto-correction.

Figure 2. Screen-shots of a Dropbox login process. The pop-updialogs are for the purposeof demonstration and do not appear in
the real app.

9
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

Le Guanet al.

Table 5. Normalizedtimeconsumptionfor each checker.

Ctop1 Ctop2 Ctop3 Ctop4

Chk-All 1.03 1.17 1.14 1.25
Chk-wBL 1.00 1.08 1.10 1.20
Chk-AOp 2.21 2.55 3.30 5.14

login app5 and the account information6 as the key to
index the password. Once a correct password has been
recorded, subsequent login attempts will go through
the typo-tolerant checker to auto-correct possible
typos. As shown in Figure 2c, the corrector rep-

prox-rs successfully corrects the mistyped password
“helloworls” into “helloworld”. As with traditional
password vaults, the file storing passwords is encrypted
by a secure master key [36]. The master key is randomly
generated, and managed by the Android KeyStore
provider.

Performance Evaluation. We measured the average
time needed to run each checker. In particular, 1000
password-typing records from the dataset mentioned
in Section 4.1 are randomly chosen and tested. We
normalized the results based on the time consumption
for Chk-wBL under Ctop1, because it is the most
efficient checker in our implementation. As shown in
Table 5, Chk-All and Chk-wBL perform much better
than Chk-AOp. This is because running Chk-AOp requires
a brute-force calculation to obtain all the subsets
of the ball, which is time consuming. In fact, data
measured in Table 5 is the result of an optimized
implementation of Chk-AOp, that is, only passwords
with non-zero probability in the ball are considered.
If there are still more than 20 passwords in the
ball, running the brute-force algorithm for finding all
subsets of the ball becomes impractical. In this case,
we abort auto-correction. In our experiments, such a
case rarely happened, because human passwords are
sparely distributed. In all settings, no obvious delay can
be observed.

Optimization. In the proof-of-concept implementa-
tion, we ran the auto-correction algorithm for every
login operation. However, many of the intermediate
results are common in each run for the same app.
Therefore, as a trade-off between time and storage,
one potential optimization could be to calculate all the
acceptable passwords for each app beforehand in the

5We obtain the name of the APP by querying the Editor-

Info.packageName property.
6The account information is obtained based on the hypothesis that a
user usually inputs the account information just before inputting the
password.

background. In particular, after obtaining the correct
password w, VaultIME runs a reverse operation of
each corrector in Ctopx(x = 1 . . . 4), which gets a set of
neighboring passwords w̃ that can be auto-corrected.
Then, each w̃ is tested by the activated typo-tolerant
checker. Only those that are accepted remain. With
this precomputed acceptance set, performance can be
further improved. Note since the acceptance set is cal-
culated in the background (potentially during a low-
intensity usage period), users likely will not perceive
these computations as disturbing. Further optimization
in the form of human-in-the-loop experimentation is
left for future work.

7. Discussion and Future Work
In this section, we discuss the security issues of the
proposed system, explain the advantage of our solution
over traditional password managers, and propose
potential interesting future work.

Vault Security. VaultIME is designed to defeat on-line
brute-force attackers. No security can be given if the
password file which stores user’s login credentials is
leaked. For example, a careless developer may leave
the password file in the unprotected shared SD card
storage, which allows a physical attacker to easily access
the plaintext content of the file. Fortunately, VaultIME
can benefit from the success of existing password vault
implementations such as 1Password [13], LastPass [17]
and KeePassDroid [14].

In the current design, if the Android OS is
compromised, the whole password vault is disclosed.
To defeat an attacker with root privilege, we can
leverage the Trusted Execution Environment (TEE) [37]
technology available in most Android phones. TEE
provides an isolated execution environment for the
most critical services. With TEE support, VaultIME
can be augmented to protect the password file from
a compromised OS. The basic idea is that the auto-
correction module is implemented as a trusted app
(i.e., a trustlet) running inside the TEE. The ordinary
Android OS forwards the received password to the
trustlet, which runs the checker and directly responds
to the Android OS with the processed password. In
this way, the password vault is never exposed to the
Android system. As major manufacturers implement
their proprietary TEEs, integrating VaultIME with TEE
requires collaboration with manufactures. We leave this
aspect as future work, but note that manufacturers
routinely customize their devices and may consider
VaultIME as a user-friendly extension to enhance
market appeal.

Advantages Over Traditional Password Managers.
The auto-filling feature of a traditional password vault

10
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

VaultIME:RegainingUser ControlforPasswordManagersthroughAuto-correction

is an extreme usage of an auto-correction mechanism
– when the vault is unlocked, it “auto-corrects” a null
string of a password field into the correct password.
That being said, misplacing a phone with an unlocked
password vault may result in the loss of all stored
user credentials. Indeed, identity theft, and privacy
intrusions frequently happen in the circle of family and
friends, i.e., people who have access to the phones [8–
10, 38]. Our system makes it much less likely that
people can invade valuable resources on a phone
because the password vault is not automatically giving
access to them.

Future Work. In the future, we plan to conduct user
studies to investigate the usability of the VaultIME app
as well as adoption intentions in detail. Specifically,
by empirically evaluating how users interact with our
system, we aim to deliver a more usable and secure
user experience for mobile phone users. Moreover,
we are interested to learn to which degree users
prefer our method to the traditional auto-fill password
manager, whether users feel less threatened, have less
frustration, and whether the correction process fits
users’ habituated login process.

In evaluating the security loss imposed by VaultIME,
we mainly focus on a brute-force attacker who attempts
to maximize the possibility coverage in each guessing.
However, given that some personal data is publicly
available (e.g., user name, birthday, etc.), particularly
to family members or close friends, a targeted guessing
attack could be more efficient [39]. Building an attack
model which incorporates personal information into
the on-line guessing and designing a new free auto-
correction schema specific to this model constitutes an
interesting research topic.

8. Conclusion
In this paper, we present VaultIME, a new password
auto-correction scheme for mobile platforms. Our work
ameliorates concerns of password manager users that
they lack control over the use of their credentials.
We achieve this by requiring the user to type a “near
correct” password, which is automatically replaced
with the correct one.

In designing the auto-correction policies, we conduct
a mobile-centric password typo analysis, and are
able to categorize the observed typos occurring while
using virtual keyboards. Based on these empirical
observations, we are able to develop a customized set of
password correctors, which can cover as much as 47.8%
of the detected password typos on mobile systems.
This substantial coverage is made possible through a
client-side implementation of our password-correction
scheme as an app which allows for the treatment of
the most common typographical errors, i.e., proximity

typos. Moreover, the proposed auto-correction scheme
is secure against a brute-force attacker under the formal
model proposed in [12]. Our experimental results
reveal that in the worst case, our scheme causes a
security loss of 0.43%, indicating our auto-correction
scheme has a high level of security robustness.

In order to measure the security loss associated with
our auto-correction scheme, we conduct a series of
simulated attacks. The results reveal that in the worst
case, our scheme introduces a security loss of 0.43%,
indicating our auto-correction scheme has a high level
of security robustness. Moreover, VaultIME can also be
implemented with a free auto-correction policy which
introduces no security loss, but maintains a substantial
coverage of password typos.

We have implemented a prototype of VaultIME as an
Android IME app, and evaluated its performance. The
app introduces no human-observable delay during the
auto-correction process.

References
[1] Li, Z., He, W., Akhawe, D. and Song, D. (2014) The

emperor’s new password manager: Security analysis of
web-based password managers. In USENIX Security ’14.

[2] Komanduri, S., Shay, R., Kelley, P., Mazurek, M.,
Bauer, L., Christin, N., Cranor, L. et al. (2011) Of
passwords and people: Measuring the effect of password-
composition policies. In ACM CHI ’11.

[3] Gasti, P. and Rasmussen, K. (2012) On the security of
password manager database formats. In ESORICS ’12.

[4] Butler, R. and Butler, M. (2015) The password
practices applied by South African online consumers:
Perception versus reality. South African Journal of
Information Management 17(1): 1–11.

[5] Fagan, M. and Khan, M. (2016) Why do they do what
they do?: A study of what motivates users to (not) follow
computer security advice. In SOUPS ’16.

[6] Tabini, M. (2013), Review: Lastpass takes your
passwords to the cloud. http://www.macworld.com/
article/2032046/review-lastpass-takes-your-

passwords-to-the-cloud.html.
[7] Gott, A. (2017), Important security updates for

our users. https://blog.lastpass.com/2017/03/
important-security-updates-for-our-users.html/.

[8] Stroup, J. (2016), Who Commits Identity Theft?
https://www.thebalance.com/who-commits-
identity-theft-1947637.

11
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

Acknowledgments

This work was supported by NSF CNS-1422594 and ARO
W911NF-13-1-0421 (MURI). The research activities of Jens
Grossklags are supported by the German Institute for Trust
and Safety on the Internet (DIVSI).

http://www.macworld.com/article/2032046/review-lastpass-takes-your-passwords-to-the-cloud.html
http://www.macworld.com/article/2032046/review-lastpass-takes-your-passwords-to-the-cloud.html
http://www.macworld.com/article/2032046/review-lastpass-takes-your-passwords-to-the-cloud.html
https://blog.lastpass.com/2017/03/important-security-updates-for-our-users.html/
https://blog.lastpass.com/2017/03/important-security-updates-for-our-users.html/
https://www.thebalance.com/who-commits-identity-theft-1947637
https://www.thebalance.com/who-commits-identity-theft-1947637
http://www.cnbc.com/2015/07/21/identity-theft-victims-may-know-the-culprit.html
http://www.cnbc.com/2015/07/21/identity-theft-victims-may-know-the-culprit.html
http://www.cnbc.com/2015/07/21/identity-theft-victims-may-know-the-culprit.html
http://www.creditcards.com/credit-card-news/familiar_fraud-damage-1282.php
http://www.creditcards.com/credit-card-news/familiar_fraud-damage-1282.php
http://www.creditcards.com/credit-card-news/familiar_fraud-damage-1282.php

Le Guanet al.

[12] Chatterjee, R., Athalye, A., Akhawe, D., Juels, A.

and Ristenpart, T. (2016) pASSWORD tYPOS and how
to correct them securely. In IEEE Security and Privacy
(S&P).

[13] AgileBits, Inc. 1password https://1password.com/.
[14] Pellin, B. KeePassDroid http://

www.keepassdroid.com/.
[15] KeePassDroid Dropbox and KeePassDroid http:

//blog.keepassdroid.com/2010/06/dropbox-and-
keepassdroid.html.

[16] Ltd, R.C. USB password manager: When your
password database is right where you need it
http://www.anypassword.com/password-database-
in-usb-password-manager.html.

[17] LastPass Inc. LastPass https://lastpass.com/.
[18] Google Inc. Chrome https://www.google.com/

chrome/.
[19] Mozilla Firefox https://www.mozilla.org/en-US/

firefox.
[20] Keith,M., Shao, B. and Steinbart, P. (2007) The usability

of passphrases for authentication: An empirical field
study. International Journal of Human-Computer Studies
65(1): 17–28.

[21] Keith, M., Shao, B. and Steinbart, P. (2009) A behavioral
analysis of passphrase design and effectiveness. Journal
of the Association for Information Systems 10(2): 63–89.

[22] Park, Y., Han, S., Park, J. and Cho, Y. (2008) Touch
key design for target selection on a mobile phone. In
MobileHCI ’08.

[23] Lee, S. and Zhai, S. (2009) The performance of touch
screen soft buttons. In CHI ’09.

[24] Schaub, F., Deyhle, R. and Weber, M. (2012) Password
entry usability and shoulder surfing susceptibility on
different smartphone platforms. In MUM ’12.

[25] Maydebura, S., Jeong, D. and Yu, B. (2013) Understand-
ing environmental influences on performing password-
based mobile authentication. In IRI ’13.

[26] Owusu-Agyeman, P., Xie, W. and Yeboah, Y. (2016)
A robust alternative virtual key input scheme for
virtual keyboard systems. Journal of Computer and
Communications .

[27] Zhai, S., Hunter, M. and Smith, B.A. (2000) The
metropolis keyboard - An exploration of quantitative

techniques for virtual keyboard design. In UIST ’00.
[28] Hakoda, H., Shizuki, B. and Tanaka, J. (2016) QAZ

keyboard: QWERTY based portrait soft keyboard. In
International Conference of Design, User Experience, and
Usability (Springer): 24–35.

[29] Gelormini, D. and Bishop, B. (2013) Optimizing the
android virtual keyboard: A study of user experience.
In IEEE International Conference on Multimedia and Expo
Workshops.

[30] Shay, R., Komanduri, S., Durity, A., Huh, P., Mazurek,

M., Segreti, S., Ur, B. et al. (2014) Can long passwords
be secure and usable? In ACM CHI ’14.

[31] Siegler, M. (2009) One of the 32 million with a
RockYou account? You may want to change all your
passwords. Like now. TechCrunch, http://techcrunch.
com/2009/12/14/rockyou-hacked .

[32] Changes on waiting time for wrong input on Galaxy S6.
http://gadgetguideonline.com/galaxys6/galaxy-
s6-android-marshmallow-update-guide/changes-

on-waiting-time-for-wrong-input-on-galaxy-s6-

lock-screen-in-android-marshmallow-update/.
[33] Apple Inc., If you forgot the passcode for your iPhone,

iPad, or iPod touch, or your device is disabled. https:
//support.apple.com/en-us/HT204306.

[34] Graham, R. (2009), PHPBB password analysis,
http://www.darkreading.com/risk/phpbb-password-
analysis/d/d-id/1130335.

[35] LeakedSource (2013), LeakedSource analysis of MyS-
pace.com hack. https://www.leakedsource.com/blog/
myspace.

[36] AgileBits, Inc., 1password security. https:

//support.1password.com/1password-security/.
[37] Google Inc., Trusty TEE. https://

source.android.com/security/trusty/.
[38] of the Fog, O. (2015), Top 100 traits of people

who suffer from personality disorders. http:

//outofthefog.website/top-100-trait-blog/2015/
11/4/domestic-theft.

[39] Wang, D., Zhang, Z., Wang, P., Yan, J. and Huang,

X. (2016) Targeted online password guessing: An
underestimated threat. In ACM CCS ’16.

12
EAI Endorsed Transactions on

Security and Safety
01 2018 - 05 2018 | Volume 4 | Issue 14 | e4

[9] Grant, K. (2015), Identity theft victims: You might
know the culprit. http://www.cnbc.com/2015/
07/21/identity-theft-victims-may-know-the-

culprit.html.
[10] Kossman, S. (2014), Familiar fraud: When

family and friends steal your identity. http:

//www.creditcards.com/credit-card-news/
familiar_fraud-damage-1282.php.

[11] Knijnenburg, B., Kobsa, A. and Jin, H. (2013) Counter-
acting the negative effect of form auto-completion on the
privacy calculus. In ICIS ’13.

https://1password.com/
http://www.keepassdroid.com/
http://www.keepassdroid.com/
http://blog.keepassdroid.com/2010/06/dropbox-and-keepassdroid.html
http://blog.keepassdroid.com/2010/06/dropbox-and-keepassdroid.html
http://blog.keepassdroid.com/2010/06/dropbox-and-keepassdroid.html
http://www.anypassword.com/password-database-in-usb-password-manager.html
http://www.anypassword.com/password-database-in-usb-password-manager.html
https://lastpass.com/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox
https://www.mozilla.org/en-US/firefox
http://gadgetguideonline.com/galaxys6/galaxy-s6-android-marshmallow-update-guide/changes-on-waiting-time-for-wrong-input-on-galaxy-s6-lock-screen-in-android-marshmallow-update/
http://gadgetguideonline.com/galaxys6/galaxy-s6-android-marshmallow-update-guide/changes-on-waiting-time-for-wrong-input-on-galaxy-s6-lock-screen-in-android-marshmallow-update/
http://gadgetguideonline.com/galaxys6/galaxy-s6-android-marshmallow-update-guide/changes-on-waiting-time-for-wrong-input-on-galaxy-s6-lock-screen-in-android-marshmallow-update/
http://gadgetguideonline.com/galaxys6/galaxy-s6-android-marshmallow-update-guide/changes-on-waiting-time-for-wrong-input-on-galaxy-s6-lock-screen-in-android-marshmallow-update/
https://support.apple.com/en-us/HT204306
https://support.apple.com/en-us/HT204306
http://www.darkreading.com/risk/phpbb-password-analysis/d/d-id/1130335
http://www.darkreading.com/risk/phpbb-password-analysis/d/d-id/1130335
https://www.leakedsource.com/blog/myspace
https://www.leakedsource.com/blog/myspace
https://support.1password.com/1password-security/
https://support.1password.com/1password-security/
https://source.android.com/security/trusty/
https://source.android.com/security/trusty/
http://outofthefog.website/top-100-trait-blog/2015/11/4/domestic-theft
http://outofthefog.website/top-100-trait-blog/2015/11/4/domestic-theft
http://outofthefog.website/top-100-trait-blog/2015/11/4/domestic-theft

	1 Introduction
	2 Background
	3 Server Side Typo-tolerant Checking Scheme
	3.1 System Model
	3.2 Secure Typo-tolerant Checker
	3.3 Limitations of Server-side Password Auto-correction

	4 Empirical Study of Typos on Mobile Devices
	4.1 Password-typing Dataset on Touchscreens
	4.2 Understanding Typos on Mobile Devices

	5 Password Auto-correction for Mobile
	5.1 Transformation Function Sets
	5.2 Ball Size Estimation
	5.3 Security Evaluation

	6 Implementation and Evaluation
	7 Discussion and Future Work
	8 Conclusion

