
An On-Demand Defense Scheme Against DNS Cache
Poisoning Attacks
Zheng Wang1,∗, Shui Yu2, and Scott Rose1

1National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
2School of Information Technology, Deakin University, Burwood, VIC 3125, Australia

Abstract

The threats of caching poisoning attacks largely stimulate the deployment of DNSSEC. Being a strong but
demanding cryptographical defense, DNSSEC has its universal adoption predicted to go through a lengthy
transition. Thus the DNSSEC practitioners call for a secure yet lightweight solution to speed up DNSSEC
deployment while offering an acceptable DNSSEC-like defense. This paper proposes a new On-Demand
Defense (ODD) scheme against cache poisoning attacks, still using but lightly using DNSSEC. In the solution,
DNS operates in DNSSEC-oblivious mode unless a potential attack is detected and triggers a switch to
DNSSEC-aware mode. The modeling checking results demonstrate that only a small DNSSEC query load
is needed by the ODD scheme to ensure a small enough cache poisoning success rate.

Received on 23 April 2018; accepted on 09 March 2018; published on 15 May 2018
Keywords: DNS Security Extensions, DNS cache poisoning, model checking, query load, success rate.

Copyright © 2018 Zheng Wang et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.15-5-2018.154771

1. Introduction

Domain Name System (DNS) is today’s largest name
resolution system in use. Most of Internet applications
rely on DNS to translate human friendly names to
addresses, services, servers, etc. However, the early
design of DNS did not pay sufficient attention to its
security in 1980s. Thus the emerging security problems
of DNS drove the community’s efforts on developing
DNS security mechanisms. One major progress on
securing DNS is DNS Security Extensions (DNSSEC)
[1], [2] as a set of specifications agreed by IETF in 2005.
DNSSEC provides security capabilities by digitally
signing DNS data using public-key cryptography.When
a resolver issues a DNS query for a resource record
in a DNSSEC-signed zone, the response includes not
only the requested record but also the signatures for
the record. The validity of the signed record can be
determined via an authentication chain following the
DNS hierarchy.

∗Corresponding author. Email: zhengwang98@gmail.com

Unlike its standardization efforts, DNSSEC adoption
had been debatable over years before 2008. Up until
2008, the community was split on the value of the
DNSSEC effort ąłmany thought the deployment was
quixotic, while a few others thought it was appropriate.
However, the discovery of Kaminsky vulnerabilities [5]
had been believed to change the debate on DNSSEC
from “Do we really need DNSSEC?” to “How do we
implement DNSSEC”? For a few years since 2008, the
serious flaw in the DNS discovered by Dan Kaminsky
prompted the Internet engineering community to
grapple with what to do to remedy or fix it. While
some temporary mitigating solutions were proposed in
those years [3], [4], the community finally arrived at
a consensus that the ultimate DNS security solution,
namely DNSSEC, should roll out instead of tweaking
the DNS protocols to address the Kaminsky bug as an
interim step.

What security researcher Dan Kaminsky discovered
in July 2008 is a DNS bug [5] that allows for cache
poisoning attacks, where a hacker redirects traffic
from a legitimate Web site to a fake one by injecting
bogus DNS data without the user knowing. Thanks to
digital signature provided in public key cryptography,
DNSSEC strongly enough defends against hackers from

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

01 2018 - 05 2018 | Volume 4 | Issue 14 | e3

http://creativecommons.org/licenses/by/3.0/
mailto:<zhengwang98@gmail.com>

Z. Wang, S. Yu, and S. Rose

hijacking DNS transactions by allowing users to verify
DNS data using digital signatures.

The strong defense against Kaminsky attacks pro-
vided by DNSSEC virtually takes effects only when
DNSSEC is fully deployed across the Internet - from
the DNS root zone at the top of the DNS hierarchy
down to individual top-level domains (such as .com
and .net), second-level domains, lower level domains,
and even leaf domains in the DNS tree. Not only the
target domain itself but also all its ancestor domains
including the parent domain must be signed to ensure
a complete trust chain to get protected by DNSSEC.
Otherwise if only any domain in the trust chain turns
DNSSEC oblivious, the target domain turns vulnerable
to Kaminsky attacks. So the DNSSEC deployment is
much like an “all or nothing” proposition. That is,
incomplete or halfway DNSSEC deployment is likely to
leave a much larger subset of the entire domain name
space vulnerable than we may expect.

It is true that Internet scale DNSSEC deployment
requires substantial costs, efforts, coordination, and
time. Huston [6] measured the cost of DNSSEC
deployment in terms of traffic load and resolution
time. In his experiments, he observed that both cache
resolver and authoritative name server suffer significant
performance penalty when turning on DNSSEC. For
a resolver as a DNSSEC validator, it takes 4 times
longer in response time than and 8 times the traffic load
compared to the non-DNSSEC case. For an authoritative
name server serving a signed zone, the query response
traffic for the signed zone have risen approximately 7-
8 times the traffic for the unsigned zone. In another
measurement on the DNSSEC overhead [7], thememory
usage and the CPU usage are examined. The penalty
for DNSSEC-enabled authoritative servers is a factor of
two in terms of memory usage increase, and for cache
resolvers, the increase is much more dramatic as over
4 times. For CPU usage increase, DNSSEC introduces
an overhead of a factor of 1.1 to 2 to authoritative
servers, leaving cryptographic operations such as zone
signing for additional entities or equipment. And
the cache resolver’s CPU time for DNSSEC increases
by a factor of 2.3 compared to DNS. The average
packet size generated by DNSSEC is enlarged [8], [9].
Besides the performance penalty, as an Internet-scale
cryptographic system, DNSSEC heavily relies on the
secure key generation, storage, distribution and rollover
as well as zone signing and record authentication
operations. This make it necessary for a large amount
of system reconstruction and rebuilding, which often
need many hours of expensive human resources and
hardware and software life cycle maintenance costs.
Another important and indispensable aspect that
may be underestimated is changing and increasing
operational procedures and policies. DNSSEC poses

new and higher demands for procedural controls that
may materially affect: generation and protection of the
private component of the key, secure export or import
of the public components, and generation and signing
of zone data. The personnel controls under DNSSEC are
usually also enhanced to ensure personnel’s proof of the
requisite background, qualifications, and experience
needed to perform their prospective DNSSEC specific
and risk sensitive job responsibilities competently and
satisfactorily.

Hence despite that the community has been sparing
no efforts to use its resources to encourage DNS
registries, ISPs and enterprises to upgrade to DNSSEC,
global DNSSEC adoption is still well underway today.
The positive side is that the root and 1407 top-level
domains out of 1543 has rolled out DNSSEC [10].
But the rare adoption on lower level domains, which
are mostly the ultimate destination of individual DNS
lookups, might shed light on a low level of optimism
on the universal DNSSEC adoption as a whole. Hence
whether willing or not, there is no denying that
DNSSEC hasn’t been widely deployed yet, although it
has been on the way for almost two decades. In some
ways, the progress of DNSSEC deployment is similar
to the undergoing IPv4 to IPv6 transition: slow and
incremental.

Given that global DNSSEC deployment will not be
seen in a short term largely due to concerns about
its investment and costs, we propose in this paper a
light-weighted countermeasure against cache poisoning
attacks still using but lightly using DNSSEC. It changes
DNSSEC operation from a model of persistent-defense
to a model of detect-and-defense. In the solution,
DNS operates in the DNSSEC-oblivious mode unless
a potential attack is detected and triggers a switch
to the DNSSEC-aware mode. Hence DNSSEC can be
expected to be not so aggressively used. In this way, the
unnecessary costs wasted by DNSSEC in the absence
of attack are saved. The attack detection and the
mode switch are basically dominated by recursive
resolvers so that clients can be kept transparent to
the countermeasure. Unlike today’s DNSSEC practice
which only allows ignorant and incompetent clients
to make a decision on whether or not using DNSSEC,
the proposed model of detect-and-defense makes full
use of the detection capability of recursive resolvers
to take up DNSSEC whenever needed. So clients can
simply send DNSSEC-oblivious requests and count on
their recursive resolvers to take appropriate DNSSEC
defenses when necessary. Because of its efficiency
and efficacy, the proposal can serve as an interim
or transition mechanism for spreading and speeding
DNSSEC adoption over a long-term transition. The rest
of the paper is organized as follows: related work is
presented in Section 2. The ODD scheme is elaborated

2
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

in Section 3. The attack surface is discussed in Section
4. In Section 5, we present the performance analysis of
the ODD scheme. Section 6 evaluates the ODD scheme
through model checking. Finally, Section 7 concludes
the paper.

2. Related Work

Before or in parallel with the DNSSEC rollout, there
have been some proposals attempting to address the
DNS cache poisoning risks in a light-weight way. As
a non-DNSSEC solution to the DNS security, Fan et
al. [11] proposed preventions embedded in security
proxies. But their deployment costs are fairly high
because security proxies need to be deployed at both
authoritative servers and recursive resolvers to support
packing and unpacking of all DNS packets with
security label. A radical change to the existing DNS
eco-system for tackling vulnerabilities in shared DNS
resolvers [12]: removing shared DNS resolvers entirely
and leaving recursive resolution to the clients. However,
each individual client conducting its own resolutions
may be still targeted by cache poisoning attackers.
The solution also has a large performance penalty
because the wide-area DNS traffic and DNS server
load will grow significantly due to the absence of
cache sharing. Sun et al. [13] proposed DepenDNS
as a countermeasure which query multiple resolvers
concurrently to verify a trustworthy answer. The
reliability and availability of history response data
used by DepenDNS is a great concern. Besides, the
performance concern about DepenDNS is when the
queries are multiplied, their processing overheads will
also be multiplied. An extension to DNSSEC was
proposed in [18], making the trust islands verifiable
through extended chain of trust. Nevertheless, the
overheads of DNSSEC are not lessened by the extension.

Shulman et al. [14] performed a critical study of
the prominent defense mechanisms against poisoning
attacks by off-path adversaries, concluding that existing
easy-to-deploy defenses are not so reliable and
thus transition to DNSSEC deserves the efforts. The
capability of the DNS cache poisoning attacks was
studied in [15] and [16], which are helpful to better
understand our proposed defense.

3. ODD Scheme

Non-cryptography fixes or countermeasures against
cache poisoning attacks are usually easy-to-deploy and
light-weighted in terms of deployment costs. However,
their vital weakness is insufficient defense compared
with cryptography solutions such as DNSSEC. As
analyzed above, the disadvantage of DNSSEC is its
difficulty and costs in deployment. To “condense”
DNSSEC as best as possible while retaining its

security capability against cache poisoning attacks, we
propose that DNSSEC can coalesce with other defense
techniques such as attack detection. In the following,
we will first discuss an attack detection scheme. Then
the transition from the DNSSEC-oblivious mode to the
DNSSEC-aware mode triggered by attack detection is
presented.

3.1. Attack Detection

Cache poisoning attacks. Cache poisoning is where the
attacker manages to inject bogus data into a resolver’s
cache with carefully crafted and timed DNS packets.
A cache poisoned resolver will response with its
wrongfully accepted and cached data, make its clients
contact the wrong, and possibly malicious, servers. A
resolver only accepts matching responses to its pending
queries, and unexpected responses are simply ignored.
A response packet is taken as “expected” and accepted
by a resolver if and only if:

• The Question section of the reply packet matches
the Question in the pending query;

• The response comes from the same network
address to which the question was sent;

• The ID field of the reply packet matches that of
the pending query;

• The response arrives on the same UDP port to
which the question was sent;

• The authority and additional sections represent
names that are within the same domain as the
question: this is known as “bailiwick checking”.

In order to have its bogus responses accepted by
the target resolver, the attacker aims at matching all
of the four sections in its bogus responses. Kaminsky
proposed a class of effective attack schemes, among
which the most mighty version is as follows:

1. The attacker sends a target DNS resolver a
number of queries for a domain name. The
domain name in question is random generated
so as to be unlikely to be in the resolver’s cache.
The domain authoritative for the queried domain
name is the target domain that the attacker tries
to compromise.

2. The resolver thus issues requests to the real
authoritative name servers for the domain name.
In the mean time, attacker sends a flurry of forged
responses to the target resolver. The responses
delegates authority to the name servers owned by
the attacker. In an attempt to be accepted by the
target resolver, the forged response should guess

3
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

the matching sections in the genuine response
such as source port number, source address, and
transaction ID.

3. When one matching forged response is fed on
the target resolver before the genuine response
arrives, the target resolver accepts the forged one
and discard the genuine one.

4. Any future requests for the domain names in
the target domain will be directed to the bogus
name server and thus responded with the bogus
records. The attacker may append a long enough
TTL (Time-To-Live) to the bogus delegation to
reserve the bogus delegation in the cache as long
as possible.

Detection. For the sake of being accepted by the target
resolver, cache poisoning attackers have to guess the
transaction ID, port number, and source address of the
genuine response in their bogus responses. A number of
bogus responses of guessing wrong are expected to be
found by the target resolver before one bogus response
may accidentally succeed. So failure response counting
can be utilized to detect possible cache poisoning
attacks.

For each specific domain name, failure responses
are defined as those mismatches the combination of
transaction ID, port number, and source address of the
outstanding (wait-for-response) requests. In particular,
failure responses are defined as any response attempt
satisfying the following:

a) It matches the name in question (or more
precisely, the triple <qname, qtype, qclass>) given in an
outstanding query or a set of outstanding queries. Note
that attackers usually exploits multiple outstanding
queries for the same name to significantly increase
the success rate of caching poisoning. This is referred
to as "birthday attack". In that case, more than one
outstanding queries may share one name in question.

b) If a) holds, it mismatches at least one item among
transaction ID, port number, and source address of the
name-matching outstanding query or any of the set of
name-matching outstanding queries. Thus the resolver
will not accept it as genuine.

As a means of attack detection, the resolver counts
the incoming failure responses for any name in question
in the outstanding queries until the count amounts to a
Threshold of Defense (ToD).

The appropriate setting of ToD should take the
following into considerations:

• A too large value will result in a non-negligible
increase of cache poisoning success rate before
defense measures come to effect. For example,
Wang [15], [16] illustrated that the number of

cache poisoning attempts is in the order of ten
thousands to ensure a 50% chance of compromise
in most cases of DNS operations. To secure the
effect of defense, the value of the threshold should
be no more than the order of ten thousands.

• A too small value will make it easier to
trigger a defense. Problem of false positive
stands here when non-malicious negligent users
may unintentionally create a small amount
of malformed responses which are identified
as failure responses. When such false positive
occurs, unnecessary defenses may be wasted due
to the small threshold. Another exploit of a
small threshold is that potential adversaries may
intentionally feed a few failure responses on
the target resolver in a bid to overload it with
excessive defenses. Since the defense proposed as
the following involves the DNSSEC-aware request
resolved by the authoritative servers, excessive
defenses will also cause substantial overhead of
the authoritative servers. In that way, less efforts
are needed for initiating such DoS like attacks
on both the target resolver and the authoritative
servers if the threshold is low.

3.2. Two Modes

DNSSEC-oblivious mode. In the DNSSEC-oblivious
mode, the recursive resolver operates in compliant
with the basic DNS. That is, it never sends DNSSEC
requests or authenticate DNSSEC response unless it is
explicitly required by the client (the client sets the DO
bit in the request). In handling incoming responses to
its outstanding queries, the recursive resolver simply
checks and accepts them if they meet the five matches
stated above. The only difference of the DNSSEC-
oblivious mode from the basic DNS is that the DNSSEC-
oblivious mode supplements the attack detection and
thereby the transition to the DNSSEC-aware mode into
the basic DNS.

The costs of the DNSSEC-oblivious mode are almost
as low as the basic DNS. As long as no attack is detected,
the DNSSEC-oblivious mode continues as a normalcy.

DNSSEC-aware mode. The DNSSEC-aware mode is
transitioned from the DNSSEC-oblivious mode for
some domain when that domain is hit by enough
failure responses counted in the attack detection. The
DNSSEC-aware mode is designed to use DNSSEC
transactions to validate suspicious responses to the
domain targeted by potential attackers.

The responding process in the DNSSEC-aware mode
is illustrated in Fig. 1. When some domain is labeled
as a suspicious target domain by the attack detection,
the resolver should immediately initiate a separate

4
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

DNSSEC-aware request for that domain. That DNSSEC-
aware request’s response, which is called “validating
response” hereinafter, is designated as the trustworthy
authority for all upcoming responses to that domain.
Thus all responses arriving prior to the arrival of
the validating response for that domain, including
those meet the aforementioned four matches, are
simply hold on rather than accepted. Note that the
hold-on responses may include a seemingly genuine
but virtually bogus response. That bogus response
looks like genuine because it meets the four matches.
However, it is injected in a cache poisoning attempt
which may accomplish such a success of response
guessing after a number of failures. The hold-on
responses may also contain the genuine response if it
arrives earlier than the validating response.

1: BogusCount ← 0;
2: SEND THE REQUEST;
3: while BogusCount < ToD do
4: if time out then
5: RETURN(TIME_OUT); % The DNS resolution times out
6: LISTEN TO THE RESPONSE;
7: if the response is bogus then
8: BogusCount ← BogusCount + 1;
9: else
10: RETURN(THE RESPONSE); % The real response received
11: SEND THE DNSSEC REQUEST;
12: while not time out do
13: LISTEN TO THE RESPONSE;
14: if the response is validated then
15: ValidResponse ← the response;
16: else if the response is genuine then
17: HoldonResponse ← HoldonResponse ∪ {the response};
18: if (ValidResponse � φ) & (HoldonResponse � φ) then
19: if any response ∈ HoldonResponse = ValidResponse

then
20: RETURN(THE RESPONSE); % The real response

received
21: RETURN(TIME_OUT); % The DNS resolution times out

Figure 1. The responding process of DNSSEC-aware mode.

The validating response, if passing the DNSSEC
validation, is deemed as trustworthy. It is compared
against each response in the hold-on list. If there is some
hold-on response matching the validating response, the
transaction ends with returning the matching response
to the client and discarding other hold-on responses,
if any. Otherwise, if no candidate hold-on response
survives the check for a match, all existing candidates
will be discarded and the resolver will continue to wait
for more candidate responses probably still to come
until the resolution times out. Then each newly arrived
responses, if any, will be checked against the validating
response before it can be accepted and returned. In
brief, the DNSSEC-aware mode attempts to return

the first candidate response matching the validating
response within the timeout period.

As can be seen from above, the DNSSEC-aware
mode differs from the conventional DNS or DNSSEC
specifications in the following:

• Unlike the conventional DNS specifications, the
DNSSEC-aware mode does not attempt to make
the resolver generate queries towards authorita-
tive servers completely upon the client’s requests
(in case of cache miss). Instead, the resolver in the
DNSSEC-aware mode produces specific separate
DNSSEC queries as the security supplement to the
conventional queries corresponding directly to
the clients’ requests. In other words, the DNSSEC-
aware mode adds the “isolated” requests for vali-
dating response to the conventional DNS specifi-
cations.

• Unlike the conventional DNSSEC specifications,
the DNSSEC-aware mode does not aggressively
make DNSSEC queries for all domains in
question. Instead, its DNSSEC transactions only
cover those domains which are detected as
suspicious victims of attacks.

• In some ways, the DNSSEC-aware mode inte-
grated with the DNSSEC-aware mode can be
considered as a new DNS transaction in case of
detected attacks. That new DNS transaction first
serves in the DNSSEC-aware mode for the DNS
requests and then transitions to the DNSSEC-
aware mode to generate replies.

Integration of the two modes. We present in detail how
the two modes are integrated to defend against cache
poisoning attacks. In particular, our example in Fig. 2
shows the defense procedure under the most mighty
version of Kaminsky class attacks:

(1): The attacker’s client sends the target resolver
a query for the IP address of “asq50pn.foo.com”
below the target domain “foo.com”. The domain
“asq50pn.foo.com” is delicately crafted with random
characters so that it is likely to miss the resolver’s cache
to trigger an outstanding query.

(2a): The forgery authoritative server tries to send
cache poisoning attempts to the target resolver guessing
the transaction ID, etc. of the genius response until
the failure responses accumulate to ToD. Each failure
response may, e.g., guess a wrong transaction ID,
and intends to inject the IP address of the forgery
authoritative server, say “Y.Y.Y.Y”.

(2b): Roughly in parallel with (2a), the target resolver
sends requests to the real authoritative name servers for
“asq50pn.foo.com”.

5
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

Attacker's Client

Target
Resolver

IP= Y.Y.Y.Y

Forgery
authoritative for:

foo.com

IP= X.X.X.X

Authentic
authoritative for:

foo.com

. . .
ID=1009 - mismatch

ID=1000 - mismatch

ID=1001 - mismatch

. . .
ID=2000 - success!

ID=1010 - mismatch

ID=1011 - mismatch

. . .ID=2001 - mismatch

ID=ZZZZ

Question asq50pn.foo.com A?

Answer (empty)

Authority foo.com NS ns.foo.com

Additional ns.foo.com A Y.Y.Y.Y

ID=2000

Question asq50pn.foo.com A?

Answer (empty)

Authority foo.com NS ns.foo.com

Additional ns.foo.com A X.X.X.X

Matching responses
pending for validation

1 IP for asq50pn.foo.com?

Attacker's Network
Poisoning attempts to reach
the threshold of defense (10)2a

Persistent poisoning attempts
3c

ID=2000
IP for asq50pn.foo.com?2b

3b

ID=3000 (doesn't matter)
IP for asq50pn.foo.com? (DNSSEC-aware)3a

...
ns.foo.com A X.X.X.X

...

...
ns.foo.com A Y.Y.Y.Y

...

7 Answer= (doesn't matter)

ID=3000

Question asq50pn.foo.com A?

Answer (empty)

Authority
foo.com NS ns.foo.com
foo.com DS ...
foo.com RRSIG DS...

Additional ns.foo.com A X.X.X.X

4

ID=4000 (doesn't matter)
IP for ns.foo.com? (DNSSEC-aware)5

ID=4000

Question ns.foo.com A?

Answer
ns.foo.com A
ns.foo.com RRSIG A...

Authority
foo.com NS ns.foo.com
foo.com RRSIG NS...

Additional
ns.foo.com A X.X.X.X
ns.foo.com RRSIG A...

X.X.X.X

6

Figure 2. An example of the integration of the two modes.

(3a): When the attack detection counts the number
of failure responses to ToD, the target resolver starts
the DNSSEC-aware mode by sending a DNSSEC-aware
query for “asq50pn.foo.com” soliciting a validating
response.

(3b): Perhaps at the same time as (3a), the genius
response arrives at the target resolver informing the IP
address of the real authoritative server, say “X.X.X.X”.
However, as the DNSSEC-aware mode is already turned
on, the response is hold on rather than simply accepted.

(3c): The target resolver may still persistently be fed
with cache poisoning responses after the ToD failure
responses triggers the DNSSEC-aware mode. Before
the validation response is returned, the continuous
response guessing efforts do have a chance of success.
The successful guessing response is also hold on for the
future validation.

(4): When the validating response is obtained by the
target resolver, the relevant records in the validating
response are subject to DNSSEC validation using the
verified public key. That DNSSEC validation may

render further DNSSEC transactions such as step (5)
and (6) because some signatures (RRSIG records) over
the interested data may be absent from the original
validating response.

(5): The target resolver initiates a newDNSSEC trans-
action to validate the IP address of the authoritative
server (“ns.foo.com”).

(6): The new validating response contains a RRSIG
record over the A type (IP address) record of
“ns.foo.com”. By then, the validating response can be
validated.

(7): By checking the hold-on list against the
validating response, the IP address of “ns.foo.com”,
namely “X.X.X.X”, is identified as genius and “Y.Y.Y.Y”
as bogus. The validated record can thus be used by the
target resolver in the final answer as well as in the cache.

3.3. Aggressive Use of Validating Response

Efficiency and security concerns on the one-time use of

validating response. As discussed above, the validating
response is introduced to defeat the cache poisoning
attempt within the resolution transaction of a single
query name. However, a validating response is under-
utilized if it is used only for a single query name, since
some data may be shared among different query names.
In the example of Fig. 2, the attacker may initiate a
query for a new name other than “asq50pn.foo.com”,
say “b3rr5v.foo.com”, immediately after he receives a
genius response (indicating cache poisoning failure)
rather than his intended bogus response (indicating
cache poisoning success). Because the two query names
fall into the same domain “foo.com”, the data flows
of the two defenses almost overlap except for where
the query name “asq50pn.foo.com” is replaced with
“b3rr5v.foo.com”. But with the one-time use validat-
ing response, the resolver need at least two separate
DNSSEC transactions for the two query names respec-
tively. When successive cache poisoning attacks are
launched using random generated query names within
the same target domain, the resolver would waste a
great number of DNSSEC transactions on the largely
overlapping data. So the one-time use of validating
response is sub-optimal in terms of efficiency.

Being a reasonably small value, ToD still allows for
a minor enough chance of caching poisoning success
within one window of the ODD transaction, since
the defense leaves the initial ToD-1 caching poisoning
attempts free of being detected and validated. While
that threat is negligible for a short window, it may
grow to serious when the brute force response guessing
attack is rapid and continuous for a long window. This
is because the success rate of caching poisoning increase
dramatically with the number of cache poisoning
attempts. The one-time use validating response only

6
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

defeats the ToD th caching poisoning attempt and its
successors within one ODD transaction, but it virtually
does nothing to defend against the initial ToD-1 caching
poisoning attempts in the next ODD transaction. So the
one-time use of validating response weakens the ODD
in terms of security.

Based on the above analysis, the underutilized
validating response raises not only efficiency concerns
but also security concerns. In order to maximize the
utilization of validating response and minimize the
cache poisoning opportunities, we propose to retain
validating responses in cache for a long-lived defense
rather than just use them once.

Caching of validating response. The signed records
contained in the validating responses and validated
by the recursive resolver should be regarded as more
trustworthy than the unsigned records in the valid
normal responses. Similar to the conventional DNS
caching, those records are cached by the recursive
resolver for a period to validate the normal responses.
Nevertheless, the caching of validating responses differs
from the conventional DNS caching in the following:

a) The validating records are given a priority over
the unsigned normal records and they are stored in
a priority cache other than a normal cache. Here
“priority” means: a record in the priority cache can
overwrite its unsigned counterparts in the normal cache
if they conflict with each other; a record in the priority
cache cannot be overwritten by any unsigned record
in the more recent normal response; the life cycle of
any record in the priority cache is ended either with its
TTL expiration or with a replacement by a more recent
validating response.

b) The records in the priority cache are basically
used for validating normal responses. When a normal
response arrives with any record conflicting with
the priority cache, the recursive resolver should not
accept the response. Instead it waits for its possible
successor consistent with the priority cache until the
resolution times out. The mechanism of waiting for
genius response and denying bogus responses, used by
the caching of validating responses, is very similar to
that used by the fresh validating responses stated in the
DNSSEC-aware mode. But for the sake of maintaining
strong priority cache consistency, the recursive resolver
should do more than simply return a timeout error as a
response in case of resolution timeout.

Proactive updating of validating response. One common
concern on the Time-to-Live (TTL) based caching such
as DNS caching is the weak cache consistency. In DNS
caching, a resolver stores a record in the cache as
long as specified in that record’s TTL field. The typical
setting of TTL in DNS records ranges from 1 hour to
1 day. So the change of DNS records in authoritative

servers is usually unlikely to be rapidly synchronized
to resolvers because the resolvers follow the TTL
expiration rule to invalidate the out-of-date cache
entries and fetch the up-to-date copies upon requests.
In conventional DNS specifications, cache inconsistency
only poses a threat to the availability of Internet
services because during the cache inconsistency period,
the client served with out-to-date DNS records cannot
reach the appropriate Internet servers. In the aggressive
caching use of validating response, cache inconsistency,
however, may result in a serious false positive of
genuine response. This is simply because the out-to-
date validating records in cache can deny genuine
response containing more up-to-date copies of records.
When both the genuine response and the bogus
responses are invalidated by the stale validating records
in cache, a resolution timeout takes place. So a
resolution timeout may imply the possibility of cache
inconsistency of validating records (and, of course, the
possibility of authoritative server unresponsiveness or
packet loss in the network).

Thus the hold-on mechanism specified in the
DNSSEC-aware mode is slightly changed for caching of
validating response. That is, the responses inconsistent
with the responses in the priority cache are temporally
hold on rather than discarded. Because the inconsistent
responses may include the genuine response and
the bogus responses in case of cache inconsistency
of validating records, they are reserved for further
validation.

To still obtain an up-to-date copy of validating
record in cache when a resolution timeout (indicating
the possibility of cache inconsistency), the resolver
should proactively update the validating record in
cache by acquiring a fresh validating response. The
new validating response will has two usages: validating
the hold-on responses and then returning the validated
response if any; updating the corresponding validating
records in cache. The responding process for the
aggressive use of validating response is detailed in Fig.
3.

4. Analysis of Attack Surface

4.1. Attack surface if Turning off Aggressive Use of
Validating Response

The window of opportunity is the time frame exploited
by caching poisoning to inject bogus response into
the recursive resolver. Within it, any bogus response
matching the current outstanding query is accepted
by the recursive resolver. With conventional DNS, the
window of opportunity opens when the outstanding
query departs from the recursive resolver and closes
when the genuine response arrives at the recursive

7
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

1: BogusCount ← 0;
2: SEND THE REQUEST;
3: while BogusCount < ToD do
4: if time out then
5: RETURN(TIME_OUT); % The DNS resolution times out
6: LISTEN TO THE RESPONSE;
7: if the response is bogus then
8: BogusCount ← BogusCount + 1;
9: else
10: RETURN(THE RESPONSE); % The real response received
11: SEND THE DNSSEC REQUEST;
12: while not time out do
13: LISTEN TO THE RESPONSE;
14: if the response is validated then
15: ValidResponse ← the response;
16: USE ValidResponse TO UPDATE ValidCache;
17: if (HoldonResponse � φ) & (any response ∈

HoldonResponse = ValidResponse) then
18: RETURN(THE RESPONSE); % The real response

received
19: else if the response is genuine then
20: HoldonResponse ← HoldonResponse ∪ {the response};
21: if (ValidCache � φ) & (HoldonResponse � φ) then
22: if any response ∈ HoldonResponse matches V alidCache

then
23: RETURN(THE RESPONSE); % The real response

received
24: RETURN(TIME_OUT); % The DNS resolution times out

Figure 3. The responding process of DNSSEC-aware mode with
aggressive use of validating response.

resolver. That is, the window of opportunity in
conventional DNS is equivalent to the response
time at the recursive resolver. For a given window
of opportunity, attackers typically hasten its cache
poisoning attempts in order to employ more bogus
responses for a more chance of success.

ODD limits the window of opportunity in the
number of bogus responses available for cache
poisoning rather than in the length of time. Only
ToD bogus responses at maximum are permitted for
a successful cache poisoning attempt. For attackers
with an average ability of sending bogus responses, the
window of opportunity allowed by conventional DNS is
far longer than that allowed by ODD if ToD is set as a
sound value ranging from 1 to 10.

Competent as it is in terms of window of opportunity,
ODD still has some, if non-negligible for some cases,
impacts on the overall response time. Because an extra
validating request is initiated during a transition to
DNSSEC-aware mode, the recursive resolver in ODD
has to await the validating response even after the
genuine response is received. The recursive resolver
should hold on any matching response since ToD is
reached (and a validating request is initiated) until the
validating response arrives. The validating response is
then used to validate all matching responses on hold.

Attacker Target Resolver
Authoritative Server for the

target domain

Response ID=1000

Response ID=1001

Response ID=1002

Query

Genuine responseToD bogus responses
(NToD=3)

Query from the attacker's
client received

Response
time
of

genuine
response

Validating query

Validating response

Response
time
of

validating
response

Time taken
to

send
ToD

bogus
responses

Figure 4. Illustration of a cache poisoning attempt.

The final response is returned as a successful genuine
response only if at least one matching response is
validated by the validating response. Otherwise, if no
matching response is ever received, or any matching
response received is ever validated as bogus, or no
validating response is ever received, a final response of
timeout is returned. In some (relatively unlikely) cases,
it is also possible that the genuine response arrives
later than the validating response. If so, the recursive
resolver with a validating response may still expect
a matching response to be validated as the received
matching response, if any, is likely to be validated as
bogus.

Consider the most common case that the genuine
response as well as the validating response is
successfully received by the recursive resolver. Without
loss of generality, the overall response time of ODD
is jointly determined by the response time of genuine
response and the sum of time taken to count ToD failure
responses and the response time of validating response.
As illustrated in Fig. 4, it can be expressed as:

RT = max{TToD + Rv, Rg } (1)

Where TToD is the time taken to reach ToD failure
responses, Rv is the response time of validating
response, and Rg is the response time of genuine
response.

As a maximum-efficacy strategy, the attacker would
tend to persistently send response guessing packets
until he gets to know the compromise effort is a success
or not. The only way for an attacker to become aware
about the result of cache poisoning is to check the
final responses to his initial queries. If the response
contains the bogus information that the attacker has
tried to inject, the cache poisoning is successful.
Otherwise, if the response is left unpolluted by the
bogus information, the cache poisoning is a failure. The
effective cache poisoning attempts are virtually ended
at the time when the DNSSEC-aware mode is triggered
and therefore all responses are hold on, because the
lately retrieved DNSSEC response will invalidate all

8
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

matching but bogus response injected by the attacker.
However, the attacker, who is likely to be still unaware
about this, would waste his resources to keep trying
cache poisoning attempts until the final response is
returned from the target recursive resolver. Once the
attacker finds a failure of cache poisoning in the
response, the best strategy for him is to stop sending
bogus responses for his recent queried domain name
but initiate a new query for a new domain name below
the target domain. That is virtually the end of the old
round of cache poisoning attempt and the start of a new
old round of cache poisoning attempt. That periodical
cache poisoning attempt may repeat likewise until a
success cache poisoning is found in the response by the
target resolver.

Despite that the response time of ODD is somewhat
comparable to that of conventional DNS, the window of
opportunity within which effective response guessing
packets are tried is remarkably reduced by ODD.
We can find that the period of each round of cache
poisoning attempt is approximated as the response time
for both conventional DNS and ODD. So in comparison
with conventional cache poisoning, the capability of
cache poisoning attacks is significantly limited by ODD
because of the diminished window of opportunity in the
period of each round of cache poisoning attempt.

Let the bandwidth available for cache poisoning be B,
and the average size of the bogus responses be S. Then
the maximum rate of bogus response is B/S. The valid
time exploited for cache poisoning in a period of each
round of cache poisoning attempt is decreased to the
time taken to send ToD bogus responses. Let the value
of ToD be NToD . So the utilization of cache poisoning is

U =
(NToD − 1)S

RT B
(2)

E.q. 2 indicates that an increase ofNToD or a decrease
of RT will favor the utilization of cache poisoning.
But E.q. 1 also gives rise to an illusion that a smaller
bandwidth of an attacker would benefit cache poisoning
in the way that it improves the utilization of cache
poisoning. So in E.q. 3 we define an alternative metric
to express the equivalent rate of cache poisoning
attempts using ODD. E.q. 3 shows that the equivalent
rate of injecting cache poisoning responses is virtually
dependent on NToD and RT rather than the attacker’s
sending capability B/S.

VE =
NToD − 1

RT
(3)

In a period of each round of cache poisoning attempt,
the attacker actually has an opportunity of NToD −
1 cache poisoning responses to guess the genuine
response by matching the current outstanding queries.

Attacker's Client

Target Resolver

Authoritative Server for

the Target Domain

A cache poisoning cycle

(overall re
sponse tim

e perceived

at th
e attacker's side)

Response tim
e of cache

hittin
g queries

A cache poisoning attempt

(response time perceived at the

target resolver's side)

Figure 5. Illustration of a cache poisoning cycle.

A cache poisoning cycle is defined as a non-stop action
that can be repeated continuously for the sake of a
quickest compromise. As illustrated in Fig. 5, the period
of a cache poisoning cycle (namely overall response
time perceived at the attacker’s side) roughly consists
of response time perceived at the target resolver’s
side (namely the period of a cache poisoning attempt
RT) and RTT between the attacker’s client and the
target resolver (namely response time of cache hitting
queries). The latter refers to the delay taken to deliver
the query from the attacker’s client to the target resolver
and return its response if the query is hit by the target
resolver’s cache. For each cache poisoning cycle, only
NToD − 1 cache poisoning responses at maximum are
allowed at the target resolver no matter how many
cache poisoning responses are virtually generated by
the attacker. The period of a cache poisoning cycle is

RC = RH + RT (4)

4.2. Attack Surface if Turning on Aggressive Use of
Validating Response

As analyzed above, the attacker knows nothing about
whether his cache poisoning attempts success until
the final response is forwarded to it from the target
resolver. If the final response is consistent with the
bogus response it has tried to inject, the target resolver
knows that cache poisoning is done. Otherwise, the
attacker understands that its cache poisoning efforts for
that window of opportunity are fruitless in this cache
poisoning cycle, and then he can initiate a new cache
poisoning cycle by generating a request for a different
randomname in the target domain. As the best efforts to
compromise the target resolver as soon as possible, the
attacker is likely to persistently send bogus responses to
the target resolver at a rate of his utmost during a cache
poisoning cycle. Among those bogus responses, only
NToD − 1 attempts are useful for cache poisoning if they
fail to hit. Therefore, a lot of caching poisoning attempts
are expected to be a waste of resources of attacker. Even

9
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

so, the best strategy of attack is still to feed a flurry of
bogus responses as fast as possible because this may
reduce the time taken to reach a given ToD, namely
a given number of valid cache poisoning attempts. In
this way, the size of the window of opportunity is also
decreased. The attacker can thereby continue its efforts
by starting a new cache poisoning cycle as early as
possible.

It is a rather rare chance for cache poisoning attacker
to guess the genuine response successfully in NToD − 1
attempts ifNToD is set as a sound small value. However,
a sensible attacker can perform every NToD − 1 cache
poisoning responses in successive cache poisoning
cycles. A minor probability of compromise in one
cache poisoning cycle may add up to a non-negligible
probability over time and over cache poisoning cycles.

Aggressive use of validating response may greatly
strengthen the defense capability of ODD by prolong-
ing the cache poisoning cycle with a constant window
of opportunity. Let the resident time of validated record
of the validating response in the cache be Tr . The pro-
tection provide by the validating response lasts Tr after
each cache poisoning cycle. Taking that prolonged pro-
tection into account, the utilization in E.q. 2 becomes

U ′ = (NToD − 1)S
(RT + Tr)B

(5)

The equivalent rate of injecting cache poisoning
responses E.q. 3 can be rewritten as

V ′E =
NToD − 1
RT + Tr

(6)

The period of a cache poisoning cycle is

R′C = RH + RT + Tr (7)

Most TTLs of the authoritative records, especially
those of the authoritative servers’ records, range from
minutes to days. And the update intervals of those
records are usually expected to be larger or much larger
than their TTLs. That setting makes sense in that the
records in cache are fairly unlikely to be inconsistent
with the authoritative ones. More frequently updated
records are thus more frequently synchronized from
their authoritative servers to recursive resolver’s cache
because of their relatively smaller TTLs.

Given that TTL setting convention, there is a chance,
albeit usually a small one, that the data in cache is
outdated before its TTL expires. Some update may be
taken on an authoritative record and meanwhile its
counterpart in cache is unaware of the update because
it is kept as it is in cache until its TTL expires. When
that happens to a priority cache, the proposed scheme
still has ways to handle it. As stated above, the outdated
data in a priority cache tends to deny both the bogus

responses and the up-to-date response because they
are both inconsistent with the priority cache. Since
all responses are discarded as bogus, the resolver will
persist the hold-on until response timeout occurs. Then
the old data in the priority cache is likely to be updated
by the new validating response containing the up-to-
date data. Another possibility of response timeout is
that the genuine response is, rather than updated, lost
in the path or the authoritative server is unresponsive.
In that case of response absence, the old data in the
priority cache may be simply renewed by a new one
as its residual TTL is replaced with a full TTL. The
detailed analysis of Tr is presented in Section 5.1.

5. Performance Analysis

5.1. Query Load on the Authoritative Server

ODD never initiates DNSSEC transactions unless
possible cache poisoning attack is detected at the target
resolver. Thus for a vast majority of recursive resolvers
which are not constantly targeted by cache poisoning
adversaries, ODD is lightweight in the name resolution
cost at both recursive resolvers and authoritative servers
because DNSSEC is much less used by ODD than by the
existing DNSSEC deployment strategy.

Consider the case of most severe cache poisoning
attack targeting the victim resolver. That is, the attacker
continuously sends caching poisoning responses at
a high rate towards the target resolver. A DNSSEC
transaction is generated by the target resolver if and
only if:

• The validated records in the priority cache expire
so that an immediate flurry of caching poisoning
responses triggers the DNSSEC-aware mode;

• No validated response is found until timeout
because of the updated authoritative records.
As DNSSEC is triggered roughly either by the
expiration of TTL or by the updated authoritative
records, we first investigate the event of queries
triggered by them separately. Without loss
of generality, we assume the TTL follows a
probability distribution function.

If the target record is heavily requested, the
times between successive events (queries) can be
approximated by the value of TTL at the instances of
events. Let the TTLs or the successive inter-event times
are independently and identically distributed. So there
is a renewal process in operation for the TTL-triggered
queries. Assume that the successive times between
the updates of authoritative records are independently
and identically distributed. So there is also a renewal
process in operation for the update-triggered queries.

10
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

However, it is not true that the two renewal processes
can be supposed to be independent renewal processes
in operation simultaneously. No matter how long the
TTL elapses, the update-triggered queries take place
merely following the inter-update times. This means
the renewal process of update-triggered queries is
independent of the renewal process of TTL-triggered
queries. But the inter-event times of TTL-triggered
queries are dependent of those of update-triggered
queries. For example, if there is no update between
two successive TTL-triggered queries, their inter-time
is a TTL; if there is one update between them, the
residual TTL is renewed to a full TTL at the instance
of update, and so their inter-time is prolonged to be
a full TTL plus a residual TTL; if there is more than
one updates between them, the residual TTL is renewed
more than one times, and their inter-time becomes a
full TTL plus more than one residual TTLs. Given the
dependence analyzed above, the sequence of events of
DNSSEC queries cannot be considered to be formed by
superposing the two individual processes. Instead, we
depict the process of DNSSEC queries using the code in
Fig. 6.

1: % The present time is initialized at an instance of update-
triggered query

2: t ← 0; % The time is initialized as zero
3: T ← TTL; % The residual TTL is a TTL after an update-

triggered query
4: while True do
5: if T = 0 then
6: SEND A REQUEST; % Initiate a TTL-triggered query
7: T ← TTL;
8: else if an authoritative update occurs at t then
9: SEND A REQUEST; % Initiate an update-triggered query
10: T ← TTL;
11: t ← ELAPSE(t); % Time elapses
12: T ← T − (ELAPSE(T) − T); % The residual TTL decreases

as time elapses

Figure 6. The process of DNSSEC query event by ODD.

5.2. Cache Poisoning Success Rate

In conventional Kaminsky cache poisoning attacks,
the attacker can balance between the number of
outstanding requests and the number of bogus response
attempts at will to achieve maximum efficiency. Because
the number of bogus response attempts is limited for
cache poisoning attacks if protected by the proposed
scheme, the attacker has to create more duplicate
requests for the same target domains subject to bogus
response attempts in a bid to increase the probability
of successful compromise. However, the number of
outstanding requests are also bounded by two aspects
in practice:

• The maximum number of outstanding requests
is usually set as a default configuration in most
widely used authoritative server implementa-
tions. Authoritative servers will thereby discard
excessive outstanding requests surpassing the
configured limit. So any efforts of producing over-
the-limit outstanding requests will prove fruit-
less.

• The window allowed to persistently elicit out-
standing requests may be bounded by the
response time. When the resolver begins receiving
a responsematching an outstanding request in the
wait-for-response list, the list will not necessarily
be on the rise since then because the responding
rate may be not below the request rate. Hence
a conservative estimation of the window of out-
standing requests is the response time perceived
by the target resolver. As an equivalent of the
first limit, the window can be converted to the
number of outstanding requests if the sending
rate is constant.

In summary, the maximum number of outstanding
requests is the minimum of the two limits stated above.

Let the threshold of bogus response attempts be H ,
and the maximum number of outstanding requests be
D. We can express the cumulative probability of cache
poisoning failure in all attempts up to and including the
H th attempt as

PD(H) = P(the 1st attempt misses, the 2nd attempt

misses, ..., the H th attempt misses | D
identical outstanding queries)

(8)
If H � (I + P) ∗N , PD(H) can be written as

PD(H) = (1 −D/((I + P) ∗N))H (9)

If no window extension mechanism is applied, the
window allocated for launching the H th attempts
equals the window of eliciting outstanding requests
plus the window of validating the responses. As
analyzed above, the first is roughly the response time
and the second is also approximated as the response
time. That is, one round of cache poisoning attempt
takes two response times to obtain a success rate of
1 − PD(H). The success rate of cache poisoning within
i rounds of cache poisoning attempt is 1 − PD(H)i .

The window extension mechanism will dramatically
diminish the success rate of cache poisoning in a given
time because one round of cache poisoning attempt
with a constant success rate of cache poisoning just lasts
much longer. The cached validating records suppress
the attacker from initiating a new round of cache
poisoning attempt immediately after the old round

11
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

proves a failure. A new window starts whenever the
validating records expires from the cache. So the length
of window is at least the TTL of the validating records.
Furthermore, the window may be prolonged to above
a TTL if updates take place before the TTL expires. In
such cases, the continuous elapse of TTL is interrupted
by any update which renews the residual TTL to a full
TTL. Then the cached validating records will still at
least last a full TTL to expires its TTL. During this
period, the residual TTL may be renewed again and
again whenever a update occurs before it reaches zero.
In general, the effects of window extension are better
pronounced for a more frequent update.

6. Model Checking Results

Probabilistic model checking is one of the most
common used formal verification technique for the
modeling and analysis of stochastic systems. In
probabilistic model checking, the construction and
analysis of a probabilistic model explores all possible
all possible states that can occur as well as all possible
process scheduling. In comparison with discrete-event
simulation techniques, which generate approximate
results based on averaging results from a large number
of random samples, probabilistic model checking
typically yields exact results by employing numerical
computation in an efficient and exhaustive fashion.
Thus probabilistic model checking is applied to the
design and analysis of complex systems across a broad
spectrum of application domains.

PRISM [17] is an open-source probabilistic model
checker, providing support for building and analyzing
several types of probabilistic models: discrete-time
Markov chains (DTMCs), continuous-time Markov
chains (CTMCs), Markov decision processes (MDPs),
etc. plus extensions of these models with costs and
rewards. A probabilistic model in PRISM is constructed
as a set of state-transition actions (called as commands)
in each module (each module comprises a set of
commands and a set of variables): a guard is associated
with each command, representing a predicate over the
command; a command updates some variables with
new values if the guard is satisfied; the probability (in
the case of DTMCs) or rate (in the case of CTMCs) of the
transition of each variable in a command is assigned;
the label for each command allows commands in
different modules to share their labels as a mechanism
for them to synchronize in a rate as the product of the
rates of the individual transitions.

6.1. Modeling Cache Poisoning Attack & ODD

Wemodel Kaminsky cache poisoning attack as a CTMC
using PRISM. In modeling the attack, we assume that
in each round of cache poisoning attempt, the queries

originated from the attackerąŕs client look up a random
generated domain such that they will never hit the
target resolver’s cache. Instead those queries will trigger
the target resolver to issue their corresponding requests
towards the authoritative servers. Attackers are very
likely to adopt this strategy in order to strengthen their
attack efficacy. We also assume that the IP addresses
of the target domain’s authoritative servers are always
maintained in the cache of the target resolver such
as queries in each round of cache poisoning attempt
will never render the target resolver request for the IP
addresses of the target domain’s authoritative servers.
The assumption is valid in the sense that it is a very rare
case that the target domain in question finds no cached
records of its authoritative servers in a cache poisoning
attempt. The TTLs of records of authoritative servers
typically range from hours to days or even months for
the sake of lowering the wide-area DNS traffic as well
as the authoritative server’s load. In comparison, one
round of cache poisoning attempt lasts for a period
comparable to a DNS lookup RTT (usually from tens
to hundreds of milliseconds). So the simplification is
sound because of the significantly minor percentage of
authoritative server’s cache miss for a cache poisoning
attempt.

Our model defines the following four modules, two
for the attacker side and two for the victim side:

Attacker’s Client (AC): AC is the DNS client in the
control of the attacker. Like normal DNS clients, it
functions as an originator of DNS requests. However,
its requests aim at opening a window of opportunity for
bogus responses rather than getting the real responses.
The other exploiting of AC is to notify the attacker of
the failure of a cache poisoning attempt in operation
upon the receipt of the real responses to all requests.
Then the attacker may make AC initiate a new round
of cache poisoning attempt by querying a new random
generated domain.

Attacker’s Bogus Authoritative Server (AS): AS is
the bogus DNS authoritative server in the control of
the attacker. AS is coordinated with AC to launch a
cache poisoning attempt. When AC has issued DNS
requests for the target domain, AS starts feeding the
target resolver with bogus responses. When AC has
received the real responses to all requests (this is the
end of cache poisoning attempt in operation), AS stops
sending bogus responses to the old domain and awaits
sending bogus responses to the new domain in the next
round of cache poisoning attempt.

Target resolver (TR): TR is the victim of the cache
poisoning attack. When it receives a request from AC, it
will forward the request to the real authoritative server.
Then the bogus response may be potentially accepted
by TR with a probability. If a bogus response fails to
hit any of the outstanding requests, it is counted into

12
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

the overall number of failed bogus responses by TR.
When the number reaches the threshold, a validating
request is initiated, and all received responses to the
original requests are hold on from then on until
the corresponding response to the validating request
arrives. That corresponding response will then validate
all responses which are finally returned to AC.

Real Authoritative Server (RS): RS is authoritative
for the target domain. It operates as no other than a
normal DNS authoritative server. That is, no matter the
incoming request is a normal request or a validating
request, RS returns a DNS-compliant response.

The model parameters are the following:

Sending rate of queries from AC to TR Ra : The rate
of queries that AC sends to TR in order to create the
wait-to-response requests.

Number of outstanding queries N : The number of
queries for the same domains AC sends to TR in each
round of cache poisoning attempt.

Guess rate of bogus responses Rg : The rate of the
bogus responses that AS sends to TR in order to match
one of the wait-to-response requests.

Sending rate of queries from TR to RS Rt .

Responding rate of queries from RS to TR Rr .

These two parameters above jointly determines the
length of window of opportunity: Lw = 1/Rt + 1/Rr .

The total number of query ID and transaction ID
space to be guesses by the cache poisoning attempt S.

Each module defines certain actions, which syn-
chronize with appropriate actions from other mod-
ules. Since our model is a CTMC, each action (CTMC
transition) has an associated rate. Actions also have
associated preconditions that need to be satisfied for
their execution to take place. We now describe some
of the important actions for each module. Unless stated
otherwise, each action is executed with a constant rate
of 1.

Actions Defined for AC:
[Send request to TR] With rate request_rate, AC

sends requests to TR. When the number of queries
accumulates to number of outstanding queries in each
round of cache poisoning attempt, AC awaits for the
next round of cache poisoning attempt to implement
this action again. This action is synchronized with
action [Send request to TR] of TR.

[Receive response from TR] AC receives response
from TR. When the number of received responses
accumulates to number of outstanding queries in each
round of cache poisoning attempt, AC awaits for the
next round of cache poisoning attempt to implement
this action again.

[Initialize a new round of cache poisoning attempt]
AC initializes a new round of cache poisoning
attempt at the time the number of received responses
accumulates to number of outstanding queries. The
number of queries and the number of received
responses are both initialized as zero.

Actions Defined for AS:

[Send a bogus response of correct guess to TR] With
rate guess_rate, AS sends a bogus response of correct
guess to TR. The action is allowed when the number of
queries accumulates to number of outstanding queries.
This action is synchronized with action [Send a bogus
response of correct guess to TR] of TR.

[Send a bogus response of incorrect guess toTR]With
rate guess_rate, AS sends a bogus response of incorrect
guess to TR. The action is allowed when the number of
queries accumulates to number of outstanding queries.
This action is synchronized with action [Send a bogus
response of incorrect guess to TR] of TR.

Actions Defined for TR:

[Send request to TR] TR receives a request from AC
and places it in the queue of wait-for-response. This
action is synchronized with action [Send request to TR]
of AC.

[Send request to RS] TR sends a request to RS if
the queue of wait-for-response is not empty. The action
opens a window of opportunity by setting a switch
variable of guessing. That is, action [Send a bogus
response of correct guess to TR] and action [Send a
bogus response of incorrect guess to TR] can be enacted
following this action. This action is synchronized with
action [Send request to RS] of RS.

[Receive response from RS] TR receives a response
from RS if the queue of wait-for-response is not
empty and the cache poisoning attack does not succeed
yet. This action pops a request from the queue of
wait-for-response and places it in the queue of wait-
to-response. This action is synchronized with action
[Receive response from RS] of RS.

[Receive response from TR] TR finally returns a
response to AC if the following are satisfied: the
queue of wait-to-response is not empty; the number of
incorrect guesses is below the threshold or the response
is validated when the number of incorrect guesses
reaches the threshold. This action pops the queue
of wait-to-response. Furthermore, if the number of
responses reaches the number of requests, all relevant
parameters are initialized to meet the next round of
cache poisoning attempt.

[Send a bogus response of correct guess to TR] AS
sends a bogus response of correct guess to TR if the
switch variable of guessing is set, the cache poisoning
attack does not succeed yet, and the number of incorrect

13
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

guesses is below the threshold. The rate of this action
is dependent of the probability of cache poisoning
success, which is expressed as: trials/(query_id ∗
port_id − space_explored). This action is synchronized
with action [Send a bogus response of correct guess to
TR] of AS.

[Send a bogus response of incorrect guess to TR] AS
sends a bogus response of incorrect guess to TR if the
switch variable of guessing is set, the cache poisoning
attack does not succeed yet, and the number of incorrect
guesses is below the threshold. The rate of this action
is dependent of the probability of cache poisoning
failure, which is expressed as: 1 − trials/(query_id ∗
port_id − space_explored). This action is synchronized
with action [Send a bogus response of incorrect guess to
TR] of AS.

[Send a validating request to RS] AS sends a validat-
ing request to RS if the number of incorrect guesses
reaches the threshold. This action is synchronized with
action [Send a validating request to RS] of RS.

[Receive a validating response from RS]AS receives a
validating response from RS if there is an outstanding
validating request. This action is synchronized with
action [Receive a validating response from RS] of RS.

Actions Defined for RS:

[Send request to RS] With rate request_arrive_-
rate, RS receives a request from TR. This action is
synchronized with action [Send request to RS] of TR.

[Receive response from RS] With rate response_-
serve_rate, RS processes a request to generate a
response returned to TR. This action is synchronized
with action [Receive response from RS] of TR.

[Send a validating request to RS] With rate
validating_request_arrive_rate, RS receives a validating
request from TR. This action is synchronized with
action [Send a validating request to RS] of TR.

[Receive a validating response from RS] With rate
validating_response_serve_rate, RS processes a request
to generate a validating response returned to TR. This
action is synchronized with action [Receive a validating
response from RS] of TR.

6.2. Results of Query Load

To investigate the effects of combination of TTL expi-
ration and authoritative update on the intertime of
DNSSEC queries, we generate a sequence of authorita-
tive update events following a probabilistic distribution
while setting the TTLs in the DNSSEC responses as con-
stant and probabilistic values respectively. In one set of
experiments, we let the TTLs of records in question be
evenly distributed on the interval from 500s to 1500s.
In the other set of experiments, the TTLs of records in
question take a constant value as 1000s. For both sets

of experiments, the intertime of authoritative updates
follows exponential distribution with the parameter
ranging from 100s to 1400s.

We use Monte Carlo method to estimate the mean
of intertimes of DNSSEC queries. In each experiment,
100,000 times of authoritative updates are generated
from an exponential distribution. A number of TTLs,
taking either constant values or probabilistic values,
are also produced to cover the same time span at
the instances when the predecessor TTL expires or
authoritative update takes place.

200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

The mean of update intervals
T

he
 m

ea
n

of
 q

ue
ry

 in
te

rv
al

s

Random TTL
Constant TTL

Figure 7. DNSSEC query intervals vs authoritative update

intervals.

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The mean of update intervals

T
he

 r
at

io
 o

f T
T

L−
tr

ig
ge

re
d

qu
er

ie
s

Random TTL
Constant TTL

Figure 8. Ratio of TTL-triggered queries vs authoritative update

intervals.

Fig. 7 illustrates how DNSSEC query intervals change
with authoritative update intervals. We can see that a
very small authoritative update interval has almost the
same DNSSEC query interval because TTL expiration
rarely happens. But for a larger authoritative update
interval, the limiting effect of TTL is better pronounced
because a TTL has more chance of being smaller than
an authoritative update interval thus more chance
of expiration. Random TTLs, though have the same
mean as constant TTLs, tend to cause a slightly larger
DNSSEC query intervals and thereby a smaller DNSSEC

14
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

200 400 600 800 1000 1200 1400
10

3

10
4

10
5

10
6

10
7

The mean of update intervals

T
he

 m
ea

n
of

 T
T

L
ex

pi
ra

tio
n

in
te

rv
al

s

Constant TTL
Random TTL

Figure 9. TTL expiration intervals vs authoritative update

intervals.

query load on authoritative servers. The ratio of TTL-
triggered queries is illustrated in Fig. 8. We can see that
the ratio of TTL-triggered queries grows as the mean
of update intervals increases. But the authoritative
update tends to pronounce more than TTL expiration
on triggering DNSSEC queries even if they share the
same mean interval. As shown in Fig. 9, when both
update interval and TTL take a mean of 1000s, TTL-
triggered DNSSEC queries only account for about 36%
of the total. That can be explained by the fact that the
event of authoritative update is independent of and
never superceded by the event of TTL expiration while
the even arrival of TTL expiration may be interrupted
and restarted by an authoritative update.

It is obvious that DNSSEC query interval will be
larger if authoritative update and TTL expiration are
independent. So in order to examine the lower bound
of DNSSEC query interval or the upper bound of
DNSSEC query rate, we assume that authoritative
update and TTL expiration are independent. Then the
mean DNSSEC query interval can be written as

Ioverall =
Iupdate ∗ Ittl
Iupdate + Ittl

(10)

Where Iupdate and Ittl represent the authoritative update
interval and the TTL respectively.

As can be seen from Fig. 7 and Fig. 8, we can conclude
that the maximum DNSSEC query rate of ODD under
intense cache poisoning attempts is of the same order
as the minimum of the authoritative record update rate
and the reciprocal of TTL.

6.3. Results of Cache Poisoning Success Rate

We configure the default values in Tab. 1 for the
parameters in the model checking unless their values
are otherwise stated.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Life cycle of validating records (in hour)

T
im

e
ne

ed
ed

 fo
r

a
50

%
 s

uc
ce

ss
 r

at
e

(in
 d

ay
) Num of outstanding queries=10

Num of outstanding queries=20
Num of outstanding queries=30

Figure 10. Time needed for a 50% success rate vs life cycle of

validating records (ToD=3).

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Life cycle of validating records (in hour)

T
im

e
ne

ed
ed

 fo
r

a
50

%
 s

uc
ce

ss
 r

at
e

(in
 d

ay
) Num of outstanding queries=10

Num of outstanding queries=20
Num of outstanding queries=30

Figure 11. Time needed for a 50% success rate vs life cycle of
validating records (ToD=2).

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Time (in hour)

C
ac

he
 p

oi
so

ni
ng

 s
uc

ce
ss

 r
at

e

Figure 12. Cache poisoning success rate vs time (ToD=3).

First, we illustrate the time needed for a 50% success
rate under different life cycle of validating records
in Fig. 10 (ToD=3). We can see that the time cost
of cache poisoning roughly grows linearly with the
life cycle of validating records. For a life cycle above
10 hours, the time required for a 50% success rate

15
EAI Endorsed Transactions Preprint

Z. Wang, S. Yu, and S. Rose

Table 1. Parameters and their settings.

Parameter Setting

Number distinct IDs available 65536
Number of ports used (ports less than 1024 are unavailable) 64000
Number of authoritative servers for a domain 2.5
Window of opportunity 0.02 s
Number of identical outstanding queries of a resolver 20
Query sending rate from the target resolver to the authoritative servers 100 qps
Query responding rate from the authoritative servers to the target resolver 100 qps
Query sending rate from the attacker to the target resolver to create outstanding requests 1000 qps
ToD 3
Bogus responding rate from the attacker to the target resolver 100
Life cycle of validating records 10 hour

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5
x 10

−3

Time (in hour)

C
ac

he
 p

oi
so

ni
ng

 s
uc

ce
ss

 r
at

e

Figure 13. Cache poisoning success rate vs time (ToD=5).

amounts to no less than 2 years. This is because the
longer are the validating records provided in cache
to defend against cache poisoning attacks, the longer
does an attacker have to wait to embark the next cache
poisoning attempt (if the current attempt fails). As
the TTLs of many authoritative records are set in the
order of days or even weeks, it is very hard in practice
to compromise them through cache poisoning attacks.
Fig. 10 also shows creating more outstanding queries
may dramatically decrease the difficulty of cache
poisoning. Thus in the defense, the resolver should
not allow excessive identical outstanding queries in
order to prevent an unacceptable success rate of cache
poisoning.

Second, we investigate the impacts of ToD on the
success rate. In Fig. 11, the time needed for a 50%
success rate is shown when the ToD is lowered to 2.
We can see that limiting ToD helps significantly to
suppress the success rate of cache poisoning. Since
ToD defines the maximum number of forgery responses
(ToD-1) allowed without defense, a larger ToD means
more chance of guessing attempts in a cache poisoning

attempt thus a larger success rate. To ensure the efficacy
of ODD, ToD should be set as a sound small value.

Third, we study how the cache poisoning success rate
evolves over time. In Fig. 12, we can see that the success
rate over time grows like a stair-step shape. In the curve,
each step virtually represents a cache poisoning attempt
in time and an accumulation of ToD-1 forgery responses
in success rate. And the width of each stair-step is
dominated by the life cycle of validating response.
When ToD is three in Fig. 12, there are two forgery
responses aggregated in a cache poisoning attempt to
increase the overall success rate.

Fourth, how the setting of ToD impacts the cache
poisoning success rate is studied. As illustrated in Fig.
13, the increase of ToD from 3 to 5 will lessen the
defense of ODD against cache poisoning attacks. While
the width of each stair-step stays the same as Fig. 12, the
jump of each stair-step in the success rate is doubled. So
the overall success rate grows much faster than Fig. 12.
This shows again that a large ToD may undermine the
defense capability of ODD.

7. Conclusions

DNSSEC deployment suffers from its significant costs
which in turn slow its progess. The resulting long
transition to DNSSEC leaves a large name space still
vulnerable to cache poisoning attacks. To speed up
DNSSEC adoption and thereby narrow the window of
transitional risks, a lightweight DNSSEC solution was
proposed. The attack detection performed by recursive
resolvers is employed to take up DNSSEC on demand
rather than incessantly. The lightly used DNSSEC
not only greatly lowers the DNSSEC overheads but
also basically reserves the DNSSEC defense capability
against cache poisoning attacks.

16
EAI Endorsed Transactions Preprint

An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks

References

[1] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
Resource Records for the DNS Security Extensions, RFC
4034, Mar. 2005.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
Protocol Modifications for the DNS Security Extensions,
RFC 4035, Mar. 2005.

[3] L. Yuan, C. C. Chen, P. Mohapatra, C. N. Chuah, and K.
Kant, A Proxy View of Quality of Domain Name Service,
Poisoning Attacks and Survival Strategies, ACM Trans.
Internet Technol, 12(3), Article 9, 26 pages, 2013.

[4] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W.
Lee, Increased DNS Forgery Resistance Through 0x20-
bit Encoding: Security via Leet Queries, Proc. of the
15th ACM conference on Computer and communications
security (CCS ’08), 211-222, 2018.

[5] D. Kaminsky, It’s the End of the Cache As We Know It,
BlackHat 2008.

[6] G. Huston, G. Michaelson, Mea-
suring DNSSEC Performance, 2013.
potaroo.net/ispcol/2013-05/dnssec-performance.pdf

[7] D. Migault, C.Girard, and M. Laurent, A Performance
View on DNSSEC Migration, Proc. of the Int. Conf. on
Network and Service Management (CNSM’10), 469-474,
2010.

[8] B. Ager, H. Dreger, and A. Feldmann, Predicting the
DNSSEC Overhead Using DNS Traces, Proc. of the Conf.
on Information Sciences and Systems (CISS’06), 1484-
1489, 2006.

[9] W. Lian, E. Rescorla, H. Shacham, and S. Savage,
Measuring the Practical Impact of DNSSEC Deployment,

Proc. of the USENIX SEC’13, 573-588, 2013.
[10] ICANN, TLD DNSSEC Report (2018-04-23 00:02:21),

2018. stats.research.icann.org/dns/tld_report/
[11] L. Fan, Y. Wang, X. Cheng, and J. Li, Prevent DNS Cache

Poisoning Using Security Proxy, Proc. of the Int. Conf.
on Parallel and Distributed Computing, Applications and
Technologies (PDCAT’11), 387-393, 2011.

[12] K. Schomp, M. Allman, and M. Rabinovich, DNS
Resolvers Considered Harmful, Proc. of the ACM
HotNets’14, 16-22, 2014.

[13] H. M. Sun, W. H. Chang, S. Y. Chang, and Y. H. Lin,
DepenDNS: Dependable Mechanism Against DNS Cache
Poisoning, Proc. of the Int. Conf. on Cryptology and
Network Security (CANS’09), 174-188, 2009.

[14] H. Shulman and M. Waidner, Towards Forensic Analysis
of Attacks With DNSSEC, Proc. of the IEEE Security and
Privacy Workshops (SPW’14), 69-76, 2014.

[15] Z. Wang, POSTER: On the Capability of DNS Cache
Poisoning Attacks, Proc. of the ACM CCS’14, 1523-1525,
2014.

[16] Z. Wang, A Revisit of DNS Kaminsky Cache Poisoning
Attacks, Proc. of the IEEE GLOBECOM’15, 1-6, 2015.

[17] M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0:
Verification of Probabilistic Real-time Systems, Proc. of
the Int. Conf. on Computer Aided Verification (CAV’11),
585-591, 2011.

[18] Z. Wang, S. Rose, and J. Huang, Securing DNS-
Based CDN Request Routing, IEEE COMSOC MMTC
Communications - Frontiers, Vol. 12, No. 2, 45-49, 2017.

17
EAI Endorsed Transactions Preprint

http://www.potaroo.net/ispcol/2013-05/dnssec-performance.pdf
http://stats.research.icann.org/dns/tld_report/

	1 Introduction
	2 Related Work
	3 ODD Scheme
	3.1 Attack Detection
	Cache poisoning attacks
	Detection

	3.2 Two Modes
	DNSSEC-oblivious mode
	DNSSEC-aware mode
	Integration of the two modes

	3.3 Aggressive Use of Validating Response
	Efficiency and security concerns on the one-time use of validating response
	Caching of validating response
	Proactive updating of validating response

	4 Analysis of Attack Surface
	4.1 Attack surface if Turning off Aggressive Use of Validating Response
	4.2 Attack Surface if Turning on Aggressive Use of Validating Response

	5 Performance Analysis
	5.1 Query Load on the Authoritative Server
	5.2 Cache Poisoning Success Rate

	6 Model Checking Results
	6.1 Modeling Cache Poisoning Attack & ODD
	6.2 Results of Query Load
	6.3 Results of Cache Poisoning Success Rate

	7 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

