
EAI Endorsed Transactions
on Cloud Systems Research Article

1

Methodology for validating Nest Memory Management
Unit
Nandhini Rajaiah1,*, Jayakumar N Sankarannair1 and Larry S Leitner2

1IBM, Bangalore, India
2IBM, Austin, United States

Abstract
The growing demand for performance makes the processor logic design more complex, thereby making post-silicon
validation a critical and complex step in processor development life cycle. There are complex units with newer timing and
control logic paths which are almost impossible to exercise in regular verification environments. One such unit to cater to
newer workloads in recent superscalar processors is the Nest Memory Management Unit (NMMU), a memory
management unit for all I/O devices. This paper presents some of the major challenges in validating Nest MMU. A post-
silicon validation framework is proposed to mitigate these challenges. An asynchronous non-blocking accelerator job
submission model is used in this approach to increase the translation traffic from the agent to NMMU. Core MMU
translation is used as the reference model to validate nest MMU. The processor core storage exception handlers are
leveraged to minimize the validation tool software development effort and to increase the efficiency of validation as well.
This method makes use of an optimized threshold-based checker to detect potential NMMU hardware issues. The
proposed methodology has been experimentally evaluated in Power9 NMMU to demonstrate the effectiveness of the
method in providing considerable stress to the unit.

Keywords: Post-silicon validation, address translation mechanisms, microprocessor, accelerator, design verification.

Received on 01 February 2019, accepted on 05 March 2019, published on 15 March 2019

Copyright © 2019 A. Nandhini Rajaiah et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.15-3-2019.162139

*Corresponding author. Email: nrajaiah@in.ibm.com

1. Introduction

Hardware accelerators allow the machine to offload work
from the host CPU to the Accelerator. The Accelerator
then completes the computation and returns the results
back to the host CPU which relieves the host of precious
computation cycles. Accelerator chips are becoming an
important part of most processor designs where
performance is considered essential. Due to the increase
in the volume of data and inputs from the system,
performance improvement has become critical. This
renewed perception of performance has made accelerators
an integral part of the system [1].

A unified virtual address space between the host CPU
cores and accelerators can largely improve the latency and
bandwidth of FPGAs and ASICs [2]. It also allows
accelerators to behave as if they are integrated into

custom microprocessors, which in-turn necessitates
hardware support for address translation. Supporting
address translation for customized accelerators is
becoming a complex task. In recent processors with state-
of-the-art I/O subsystem technology, this has been
achieved using Nest Memory Management Unit.

The Nest Memory Management Unit (NMMU), as
shown in Fig. 1, is a complex integrated circuitry that
resides within each processor chip and provides address
translation support for multiple accelerator agents,
including the on-chip nest accelerator (NX), off-chip
Nvidia Processing Unit (NPU) and Coherent Accelerator
Processor Proxy (CAPP0/1) units. Nest MMU primarily
communicates with external units through the system bus
(i.e., Fabric). The NMMU also interacts with memory to
perform table-walks and to update the translation tables,
as needed. In addition, cache management instructions
(Translation cache invalidates) are sourced by the

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

http://creativecommons.org/licenses/by/3.0/

 Nandhini Rajaiah, Jayakumar N Sankarannair and Larry S Leitner

2

core/NCU (Non-Cacheable Unit) of a given processor in
the system and are snooped and managed by the NMMU
on behalf of the attached accelerator units. The primary
goal of NMMU is to provide effective address (EA) to
physical address (PA) translation for the various
Accelerator Agents within the processor's storage
subsystem without going through the main processor core.
This improves the response time of accelerator agents
working in virtual address space. In addition, the NMMU
protects the pages that are being translated by ensuring
that only tasks with the proper authorization can access
them [4].

This paper is organized as follows: - Section 2
describes the related works in this area and discusses the
major challenges involved in validating NMMU. Section
3 describes our methodology used to validate NMMU.
The experimentation setup and results are summarized in
Section 4. Finally, the last section concludes the paper
with a summary of the work as well as future directions.

2. Background

The Memory management unit (MMU) of a processor
translates the effective address (EA)/virtual address (VA)
to physical address (PA). The MMU is one of the
complex units of a modern microprocessor and probably
most ambiguous and difficult unit to validate due to
various caching arrays such as Translation Look-aside
Buffers (TLB) and Page Walk Caches (PWC) [4]. The
result of translation, the physical address is not directly
observable to a program, hence failure is detected late in
the test and make it hard to debug the failure.

Recent studies have presented a complete view of bug
models for the address translation mechanism (ATM) and
methods to detect ATM bugs using self-checking
mechanisms [3]. This work presents a comprehensive
experimental study on a state-of-the-art microarchitecture
to assess and identify the bugs in address translation
caching arrays and explains why these bugs persist across
generations. The methods used in this approach primarily
targets the verification and validation of address
translation subsystem of the processor core. Our paper
addresses the challenges involved in validating address
translation sub-system of accelerators and proposes a
solution for overcoming the challenges associated with
the validation of nest address translation unit.

2.1. Challenges

The Nest MMU is a complex unit which requires rigorous
validation effort to make sure that the design is bug-free.
Apart from design complexity and short schedule,
NMMU validation poses many other challenges. One
such major challenge involved in NMMU validation,
unlike core MMU validation, is the need to have special
accelerator agents to generate high-rate traffic conditions
sufficient enough to test the unit. The second major

challenge is that, unlike in core address translation, where
there are multiple processors creating simultaneous traffic
to stress the unit, in accelerator environment, there are a
few agents, through which translation requests can be
triggered to the NMMU. Unlike in core address
translation validation, where a single byte-level operation
such as load/store can trigger a translation request to
MMU, in nest, predominantly accelerator operates on
blocks of data, although, explicit work-loads can be
created with byte granularity for validation.

Figure 1. Nest Memory Management Unit

And moreover, the role of the core in job submission is
to post the control block into the accelerator queue. Then
the accelerator will pick up the job when it is free. There
may be a delay between the time when a job request is
submitted to the accelerator and the actual completion of
the job. We need a mechanism to submit jobs
asynchronously to the accelerator, in order to increase the
potential throughput of checkout, i.e., translation requests
to NMMU. Translation faults from agents are presented to
the processor as external interrupts by a virtualized
external interrupt hardware unit, and moreover,
applications running on a processor can be interrupted
asynchronously with address translation faults from the
accelerators. In this case, it is the responsibility of the
interrupt service routine running on the processor to
communicate the fault information to the corresponding
application running anywhere in the system through the
standard inter-process communication (IPC) mechanism.
The interrupt hardware unit was configured in such a way
that the interrupts were fairly distributed among different
applications running on the system. This approach
enhanced the efficiency of the tool by not swarming a
specific processor with interrupts.

3. Methodology

A new method has been demonstrated to overcome the
major challenges associated with validation of NMMU.
This method uses Nest Accelerator Unit (NX) as the agent
to induce translation traffic to NMMU. Nest Accelerator

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

3

Unit comprises one cryptographic and two memory
compression/decompression engines (coprocessors). The
Nest MMU and core MMU share the same translation
table that maps effective addresses to physical memory.
The main objective of sharing the translation table
between CPU and accelerator is to use core MMU
translation as the reference to validate nest MMU and to
reuse existing core interrupt service routines to set up nest
translations. An asynchronous job submission model has
been used for submitting jobs to the accelerator, where
each processor builds its own job-table with ‘n’ number of
jobs and submits each of the jobs to the targeted
coprocessor and continues with the next job without
waiting for the previously submitted job to complete. The
intention of using this model is to create a swarm of
translations requests without waiting for each request to
complete.

The test environment includes multiple processors
configured to submit jobs to the accelerator in a bare-
metal configuration i.e., validation program is executed
directly on a system without any operating system. As
part of the processing of a job, the accelerator may
generate a translation request to NMMU. If a translation
does not exist for the address being processed NMMU
performs a look-up of its cache to see if a translation entry
exists for the requested EA. If so, it returns the physical
address. If not, it performs a table-walk to obtain the
targeted PA. If the table-walk also fails, an interrupt is
generated to notify the processor with the fault
information, including the fault status, faulted address.

Figure 2. Validation test setup

The translation faults are handled, and translations are
installed as described in Section 3.2. After handling the
faults, the processor now resubmits the job to the
accelerator and starts polling the coprocessor status block.
The expectation is that NMMU should not generate the
same fault again since the translations are now available.
Fig. 2 outlines the validation test setup and control flow
between the units involved in the nest address translation
process.

3.1. Testcase generation

The job to be performed by an accelerator is defined by
an agent-specific control block in memory. The control
block contains all the control information and pointers
needed to allow the accelerator to access the input
parameters, input data and to know where to store the
output data and finishing status. It also has a pointer to
address translation context. Translation context has
control fields including privilege levels, translation mode,
partition-id and process-id, to control the address
translation. The control block used by NX is called the
Coprocessor Request Block (CRB). The CRB contains all
the information necessary for NX to perform the
coprocessor functions. The test case generator builds the
coprocessor request block and the translation context in
the memory. It selects a random coprocessor operation.
Each processor pre-selects a random translation context
with pseudo-random values for privilege levels, modes
and the process-id, to increase the test coverage.

Test case generator generates random addresses for the
agent’s source and target area. It then builds coprocessor
request block and other control structures with fields
specific to the randomly selected coprocessor operation.
The context information for each job is stored in a data
structure in main memory. Thereafter, the job is
dispatched to the accelerator. Each of the processors can
continue with other tests. The status of submitted jobs is
determined from the coprocessor status block or from the
processor job queue. The coprocessor status block in
memory is updated by the accelerator upon job
completion. The per-processor queue is updated by the
interrupt handling process, with fault information, upon
fault interrupt.

One limitation with the proposed methodology is that,
over the course of test execution, translations will be
installed for most of the address pages and the number of
faults generated by the unit will be drastically reduced. To
alleviate this problem, two strategies were adopted. One, a
special irritator mode was used, where a randomly
selected processor invalidates translation addresses used
by other processors in the system, by changing their
corresponding translation entry valid bits to invalid,
which in turn, triggers storage interrupts. Another, after a
predefined number of test-cases, the accelerator job table
is rebuilt with new parameters for translation context and
agent source/target addresses for each job. This helps to
maintain the fault requests from the agent to an optimum
level, to stress the unit.

Nest accelerator has a provision to specify source and
target memory locations as a list of Data Descriptor
Entries (DDE). Our method leverages this hardware
facility to increase the number of storage interrupts
generated by the agent. Each DDE of a job points to a
different effective address page. This provokes the agent
to generate a translation fault for each DDE processed by
it.

3.2. Translation generation

Methodology for validating Nest Memory Management Unit

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

4

The accelerator can interrupt any processor on the
system when it fails to find the translation for an address.
The translation entry to be installed for the address
depends on the translation context of the processor which
submitted the faulted job. The submitted processor
number is determined from the fault data structure in
memory which is updated by the accelerator on a page
fault. The interrupted processor sends the faulted address
and other fault information to the submitted processor
through an inter-process communication mechanism for
further processing. The submitted processor, on receipt of
fault information from the interrupted processor, attempts
to access the data from the faulted address. This generates
a storage interrupt to the core and the core storage
interrupt handler sets up the required translation entry for
the address. The core and the nest environments use the
same translation table and hence the new translation entry
installed by the core is visible to the nest. The validated
core MMU and core storage interrupt handlers are used in
the validation of nest MMU. This approach eliminated the
need for developing explicit interrupt service routines for
NMMU fault handling and in-turn reduced the software
development effort for NMMU validation.

3.3. Checker logic

An end-of-test checking method is used to check the
correctness of target data. The expectation here is that,
with a correctly functioning memory management logic,
the agent should find the correct physical address for a
given virtual source or target address and should read the
right source location and write the output data to the
correct location. Each job has two operations and the
output of the first operation is used as an input to the
second operation. The second operation is the reverse of
the first one. At the end of each job, data-checker will
compare the expected data (original source) with the
actual data (output of the second operation). Any incorrect
translation is manifested as a data mismatch and the
mismatch is detected by the data checker logic.

To detect the case where NMMU is not able to resolve
the page fault, a checker code is used which increments a
counter value upon fault from NMMU. When the checker
has reached a maximum threshold value, it stops the test
and reports fail.

The challenge with this approach is to identify the right
threshold value to halt the test execution. If the threshold
value is too high, there is a possibility that we may miss a
potential bug. For example, a specific processor
invalidates a mapping in the MMU cache, as part of
setting up its entry, but the invalidation signal is missed.
In this case, the test continues to use the old translation,
which in turn generates repeated faults. As part of
processing these faults, the subsequent invalidation may
eventually go through and the bug goes undetected. In this
case, a high threshold value is undesirable. On the other
hand, if the threshold value is too low, there is a
possibility of false alarm, indicating a test failure. For

example, consider that a specific processor has installed a
translation entry in the translation table.

Figure 3. Proposed validation methodology flow

Now if some other processor replaces this entry, then
the first processor will fail although it had installed the
entry previously. Here, it would be appropriate to give
another chance for the processor to re-install the entry,
instead of abruptly stopping. An optimal threshold value
is determined by empirical means, and this value varies
depending on the work-load and core configuration on
which the test is running. Fig. 3 outlines the proposed
validation methodology flow.

4. Experimentation and Results

The proposed methodology was applied to validate
Nest Memory Management Unit (NMMU) of Power9
processor. The test was run on both pre-silicon
verification and post- silicon validation environment.

Our tool was implemented using a mix of assembly-
level and C programs. The kernel has procedures required
to enable the NX accelerator engines and setup
configuration registers. The test generator builds 16 NX
jobs, each comprising of two Coprocessor Request
Blocks. VAS has memory-mapped areas called send and
receive window contexts to establish a communication
channel between user process and the accelerator. As part
of the system initialization, the kernel configures VAS
receive-window contexts for each of the accelerator types
that will be accessed directly via user-level processes. The
VAS receive-window context points to the requested
accelerator’s FIFO (First In First Out) data structure in
system memory. When the processor wants to access an
NX accelerator, it sets up a VAS send-window context.
The number of requests that can be simultaneously
submitted is controlled through a hardware credit-based
system. The test now configures a CRB and uses the
copy-paste facility [4] to copy the contents of the request
block to the accelerator’s receive FIFO. The NX-unit
accelerator receives notification of the request and pulls it
from the FIFO to be processed. When the operation is

 Nandhini Rajaiah, Jayakumar N Sankarannair and Larry S Leitner

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

5

complete, the processor is notified via an interrupt, or it
detects completion via polling, as configured by the
processor.

4.1. System level simulator

Developing validation software for complex hardware
units in the absence of the target hardware is often error-
prone. Many times, the test will fail due to software
infrastructure issues such as improper memory
configurations, illegal memory writes or software race
conditions. However, delaying software debug until the
hardware is available results in finding software defects
too late, thus increasing the time to market for the
product. To alleviate these problems, a system-level
behavioural simulator is used to detect software defects
earlier in the development cycle, effectively in parallel
with hardware development [6].

The system-level simulator is a high-performance,
functional behavioural model of architecture mirroring the
hardware functionality that is visible to software. The
lower level represents the hardware and operating system
choices that can be used to execute the simulation
environment. Various user-level programs can be loaded
on top of it. This provided a virtual environment to
validate design assumptions, verify the developed code
and ensure the reliability of validation software.

4.2. Verification test bench

The verification environment also forms an important
component of chip bring-up when the hardware arrives.
Test cases are easily moved back and forth between
hardware and simulation environments to perform root-
cause analysis of any unexpected hardware behaviour.
This allows us to find workarounds and can also be used
to find an occasional subtle software bug.

During pre-silicon verification, the test was run on an
internal ASIC-based simulation acceleration platform
called AWAN, also known as, Exercisers on Accelerators
(EoA), [5] to provide two benefits. First, to provide
additional functional coverage to pre-silicon testing.
Secondly, it helps us to use the pre-silicon coverage data
to further enhance the test-cases. In addition, tool
development and testing are done in the simulation
environment before the actual hardware is running in the
laboratory.

AWAN uses a massive network of Boolean function
processors each loaded with multiple logic instructions.
Typically, each run through the sequence of all
instructions in all logic processors in parallel constituted
one machine cycle, this implementing the cycle-based
simulation paradigm. Formal verification re-uses RTL
(Register Transfer Level) models abstracting blocks (i.e.,
units) with behavioural [5]. Models exceeding 31 million
gates have been simulated in AWAN. These are
essentially multi-unit models with heavy black-boxing.
Simulation speed depends on the configuration, model

size, model complexity, and the amount of host
interaction.

Figure 4. Pre silicon verification setup

The chip level model used in our experiment had
POWER9 chip with four cores together with the L2 and
L3 cache complex, the on-chip fabric, memory controllers
populated with behavioural DIMMs and the nest complex
constituting of VAS (Virtual Accelerator Switchboard),
NX, NMMU and XIVE (External Interrupt Virtualization
Engine) units.

Internally, BugSpray, [7] an extension of VHDL is
used for functional coverage and assertion
instrumentation. This tool is used to efficiently annotate
the RTL with assertion and coverage events. BugSpray
enables verification objects to be portable across
verification disciplines and across hierarchies and allows
for their reuse with design. The coverage events provided
by the design team helps in assessing the efficiency of the
validation tool used to stress the device under test. Test
coverage statistics were collected using this coverage
checker tool and analysed to detect low coverage areas.
The test was enhanced to hit all the coverage events to
exercise the corner cases. Fig.4 shows the pre-silicon
verification setup.

4.3. Post silicon validation

The test was run on post-silicon environment, to achieve
the following objectives. First, to validate the correct
behaviour of NMMU in various translation modes.
Second, to ensure that the unit is stressed well by
collecting coverage statistics and analysing them. In
addition, the proposed method runs the way application is
supposed to use accelerator which verifies the interface
between NMMU and the associated hardware units such
as NX, processor core, External Interrupt unit. The post-
silicon validation procedure followed is described in Fig.
5.

To put this in perspective, Table 1 and 2 show samples
of event data collected primarily with Validation Test
Suite 1 (VTS1) and Validation Test Suite 2 (VTS2) on a
post-silicon validation environment.

Methodology for validating Nest Memory Management Unit

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

6

System reset and initialization are done through boot
procedures.
Kernel and testcase generator are loaded into system
memory.
All cores are triggered to start execution.
Scheduling of test-case is done on different cores by the
kernel.
Scratch register is written which is polled for pass or fail
criteria.

Figure 5. Post Silicon Validation procedure

VTS1 is the bare metal test designed using this
methodology to generate more page/segment faults. VTS2
is the test created by randomizing the authorization
privileges of each page, to generate more protection
faults.

Table 1. Statistics collected by coverage tool with
VTS1

Coverage parameters VALUES
Total translations 5440
Clean checkouts 3452
Total number of cycles 469341426
Cycles per translation 86275.99743
Translations per second 23181.418

Table 2. Statistics collected by coverage tool with
VTS2

Coverage parameters VALUES
Total translations 4481
Clean checkouts 3812
Total number of cycles 237279016
Cycles per translation 52952.24
Translations per second 37769.88

Fig. 6 shows the average number of checkout requests
generated by the agent measured by running validation
suite 1 and 2 on the processor.

The proposed approach proved invaluable for the
validation program in the following 3 areas:
1. Logic verification and validation: - Some of the
functional bugs were uncovered, fixed, and re-checked at
the early verification stage. Tests were executed,
accumulating tens of billions of simulation cycles and
ultimately ensuring a high-quality tape out of the ASIC,
reducing overall program risk. After hardware arrived, the
same test was leveraged without any modification, to
validate the unit.

2. Coverage and throughput enhancement: - At pre-silicon
level, coverage metrics were used to quantify which
design functions have been reached by simulation. Test
coverage statistics were collected in the post-silicon phase
and tests were tuned to improve the coverage.

Figure 6. Number of checkout requests against time

3. Foster rapid software development: - The kernel
software for core interrupt handlers were reused in this
approach. This avoided duplicate development work for
interrupt handlers. We achieved the goal of reducing the
software development time, thereby shrinking the overall
validation tool development time.

4. Conclusion

Validation is one of the most complex and critical tasks in
the current processor design process. Recent trends in
computer systems have evolved into many accelerators
and units to support new accelerator functionalities.
Especially for units which are external to the core,
innovative validation techniques are needed to achieve
throughput and efficiency. In summary, this paper
discusses the major challenges in validating accelerator
address translation sub-system. A validation methodology
has been presented for nest MMU, that uses an
asynchronous accelerator job submission model with an
optimized threshold checker. The framework is designed
to use core MMU and core storage interrupt handlers for
installing translation for the nest environment. This
reduced the validation software development effort by a
considerable amount. The proposed methodology has
been successfully applied in stressing the nest MMU unit
of the processor and the results are presented for the same.
The test could reach up to 80% of the maximum
throughput supported by NMMU.

The NMMU interface supports up to eight outstanding
translation requests from each of its agents. With all the
four agents, there can be up to 48 outstanding requests to
NMMU. To keep all the NMMU channels busy, it is good
to run multi-agent test-cases, where all the agents together
can swarm NMMU with translation traffic. In the future,
the innovative methods described in this paper can be

 Nandhini Rajaiah, Jayakumar N Sankarannair and Larry S Leitner

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

7

extended to other agents/units to generate multi-agent
traffic to NMMU.

Acknowledgements.
The authors of this paper would like to thank Manoj
Dusanapudi, IBM India Pvt. Ltd., for his valuable
feedback and support in completing this paper.

References
[1] Semiconductor Engineering - The Secret Life of

Accelerators,2017. https://semiengineering.com/the-secret-
life-of-accelerators/

[2] Accelerate the Future of Computing with Power
Acceleration,2018,https://www.linkedin.com/pulse/acceler
ate-future-computing-power-acceleration-manoj-
dusanapudi/?published=t

[3] George Papadimitriou; Athanasios Chatzidimitriou;
Dimitris Gizopoulos; Ronny Morad,“An Agile Post-
Silicon Validation Methodology for the Address
Translation Mechanisms of Modern Microprocessors”,
IEEE Transactions on Device and Materials
Reliability,2016.

[4] Power9 Processor’s User Manual, 2018,
https://openpowerfoundation.org/?resource_lib=power9-
processor-users-manual

[5] J. Darringer et al. ,“EDA in IBM: past, present, andfuture”,
IEEE Transactions on Computer-Aided Designof
Integrated Circuits and Systems, 19(12):1476–
1497,December 2000.

[6] K.-D. Schubert ; S. S. Abrar ; D. Averill ; E. Bauman ; A.
C. Brown ; R. Cash ; D. Chatterjee ; J. Gullickson ; M.
Nelson ; K. A. Pasnik ; K. Sugavanam ,”Addressing
Verification challenges of heterogeneous systems based on
IBM POWER9”,IBM Journal of Research and
Development,2018

[7] Viresh Paruthi, “Large-scale application of formal
verification:from fiction to fact”, Formal Methods in
Computer Aided Design,2010.

Methodology for validating Nest Memory Management Unit

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e5

