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Abstract 
The growing demand for performance makes the processor logic design more complex, thereby making post-silicon 
validation a critical and complex step in processor development life cycle. There are complex units with newer timing and 
control logic paths which are almost impossible to exercise in regular verification environments. One such unit to cater to 
newer workloads in recent superscalar processors is the Nest Memory Management Unit (NMMU), a memory 
management unit for all I/O devices. This paper presents some of the major challenges in validating Nest MMU. A post-
silicon validation framework is proposed to mitigate these challenges. An asynchronous non-blocking accelerator job 
submission model is used in this approach to increase the translation traffic from the agent to NMMU. Core MMU 
translation is used as the reference model to validate nest MMU. The processor core storage exception handlers are 
leveraged to minimize the validation tool software development effort and to increase the efficiency of validation as well. 
This method makes use of an optimized threshold-based checker to detect potential NMMU hardware issues. The 
proposed methodology has been experimentally evaluated in Power9 NMMU to demonstrate the effectiveness of the 
method in providing considerable stress to the unit. 
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1. Introduction

Hardware accelerators allow the machine to offload work 
from the host CPU to the Accelerator. The Accelerator 
then completes the computation and returns the results 
back to the host CPU which relieves the host of precious 
computation cycles. Accelerator chips are becoming an 
important part of most processor designs where 
performance is considered essential. Due to the increase 
in the volume of data and inputs from the system, 
performance improvement has become critical. This 
renewed perception of performance has made accelerators 
an integral part of the system [1].  

A unified virtual address space between the host CPU 
cores and accelerators can largely improve the latency and 
bandwidth of FPGAs and ASICs [2]. It also allows 
accelerators to behave as if they are integrated into 

custom microprocessors, which in-turn necessitates 
hardware support for address translation. Supporting 
address translation for customized accelerators is 
becoming a complex task. In recent processors with state-
of-the-art I/O subsystem technology, this has been 
achieved using Nest Memory Management Unit.  

The Nest Memory Management Unit (NMMU), as 
shown in Fig. 1, is a complex integrated circuitry that 
resides within each processor chip and provides address 
translation support for multiple accelerator agents, 
including the on-chip nest accelerator (NX), off-chip 
Nvidia Processing Unit (NPU) and Coherent Accelerator 
Processor Proxy (CAPP0/1) units. Nest MMU primarily 
communicates with external units through the system bus 
(i.e., Fabric). The NMMU also interacts with memory to 
perform table-walks and to update the translation tables, 
as needed. In addition, cache management instructions 
(Translation cache invalidates) are sourced by the 
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core/NCU (Non-Cacheable Unit) of a given processor in 
the system and are snooped and managed by the NMMU 
on behalf of the attached accelerator units. The primary 
goal of NMMU is to provide effective address (EA) to 
physical address (PA) translation for the various 
Accelerator Agents within the processor's storage 
subsystem without going through the main processor core. 
This improves the response time of accelerator agents 
working in virtual address space. In addition, the NMMU 
protects the pages that are being translated by ensuring 
that only tasks with the proper authorization can access 
them [4].   

This paper is organized as follows: - Section 2 
describes the related works in this area and discusses the 
major challenges involved in validating NMMU. Section 
3 describes our methodology used to validate NMMU. 
The experimentation setup and results are summarized in 
Section 4. Finally, the last section concludes the paper 
with a summary of the work as well as future directions. 

2. Background

The Memory management unit (MMU) of a processor 
translates the effective address (EA)/virtual address (VA) 
to physical address (PA). The MMU is one of the 
complex units of a modern microprocessor and probably 
most ambiguous and difficult unit to validate due to 
various caching arrays such as Translation Look-aside 
Buffers (TLB) and Page Walk Caches (PWC) [4]. The 
result of translation, the physical address is not directly 
observable to a program, hence failure is detected late in 
the test and make it hard to debug the failure.  

Recent studies have presented a complete view of bug 
models for the address translation mechanism (ATM) and 
methods to detect ATM bugs using self-checking 
mechanisms [3]. This work presents a comprehensive 
experimental study on a state-of-the-art microarchitecture 
to assess and identify the bugs in address translation 
caching arrays and explains why these bugs persist across 
generations. The methods used in this approach primarily 
targets the verification and validation of address 
translation subsystem of the processor core. Our paper 
addresses the challenges involved in validating address 
translation sub-system of accelerators and proposes a 
solution for overcoming the challenges associated with 
the validation of nest address translation unit. 

2.1. Challenges 

The Nest MMU is a complex unit which requires rigorous 
validation effort to make sure that the design is bug-free. 
Apart from design complexity and short schedule, 
NMMU validation poses many other challenges. One 
such major challenge involved in NMMU validation, 
unlike core MMU validation, is the need to have special 
accelerator agents to generate high-rate traffic conditions 
sufficient enough to test the unit. The second major 

challenge is that, unlike in core address translation, where 
there are multiple processors creating simultaneous traffic 
to stress the unit, in accelerator environment, there are a 
few agents, through which translation requests can be 
triggered to the NMMU. Unlike in core address 
translation validation, where a single byte-level operation 
such as load/store can trigger a translation request to 
MMU, in nest, predominantly accelerator operates on 
blocks of data, although, explicit work-loads can be 
created with byte granularity for validation. 

Figure 1. Nest Memory Management Unit 

And moreover, the role of the core in job submission is 
to post the control block into the accelerator queue. Then 
the accelerator will pick up the job when it is free. There 
may be a delay between the time when a job request is 
submitted to the accelerator and the actual completion of 
the job. We need a mechanism to submit jobs 
asynchronously to the accelerator, in order to increase the 
potential throughput of checkout, i.e., translation requests 
to NMMU. Translation faults from agents are presented to 
the processor as external interrupts by a virtualized 
external interrupt hardware unit, and moreover, 
applications running on a processor can be interrupted 
asynchronously with address translation faults from the 
accelerators. In this case, it is the responsibility of the 
interrupt service routine running on the processor to 
communicate the fault information to the corresponding 
application running anywhere in the system through the 
standard inter-process communication (IPC) mechanism. 
The interrupt hardware unit was configured in such a way 
that the interrupts were fairly distributed among different 
applications running on the system. This approach 
enhanced the efficiency of the tool by not swarming a 
specific processor with interrupts. 

3. Methodology

A new method has been demonstrated to overcome the 
major challenges associated with validation of NMMU. 
This method uses Nest Accelerator Unit (NX) as the agent 
to induce translation traffic to NMMU. Nest Accelerator 
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Unit comprises one cryptographic and two memory 
compression/decompression engines (coprocessors). The 
Nest MMU and core MMU share the same translation 
table that maps effective addresses to physical memory. 
The main objective of sharing the translation table 
between CPU and accelerator is to use core MMU 
translation as the reference to validate nest MMU and to 
reuse existing core interrupt service routines to set up nest 
translations. An asynchronous job submission model has 
been used for submitting jobs to the accelerator, where 
each processor builds its own job-table with ‘n’ number of 
jobs and submits each of the jobs to the targeted 
coprocessor and continues with the next job without 
waiting for the previously submitted job to complete. The 
intention of using this model is to create a swarm of 
translations requests without waiting for each request to 
complete. 

The test environment includes multiple processors 
configured to submit jobs to the accelerator in a bare-
metal configuration i.e., validation program is executed 
directly on a system without any operating system. As 
part of the processing of a job, the accelerator may 
generate a translation request to NMMU. If a translation 
does not exist for the address being processed NMMU 
performs a look-up of its cache to see if a translation entry 
exists for the requested EA. If so, it returns the physical 
address. If not, it performs a table-walk to obtain the 
targeted PA. If the table-walk also fails, an interrupt is 
generated to notify the processor with the fault 
information, including the fault status, faulted address.  

Figure 2. Validation test setup 

The translation faults are handled, and translations are 
installed as described in Section 3.2. After handling the 
faults, the processor now resubmits the job to the 
accelerator and starts polling the coprocessor status block. 
The expectation is that NMMU should not generate the 
same fault again since the translations are now available. 
Fig. 2 outlines the validation test setup and control flow 
between the units involved in the nest address translation 
process.  

3.1. Testcase generation 

The job to be performed by an accelerator is defined by 
an agent-specific control block in memory. The control 
block contains all the control information and pointers 
needed to allow the accelerator to access the input 
parameters, input data and to know where to store the 
output data and finishing status. It also has a pointer to 
address translation context. Translation context has 
control fields including privilege levels, translation mode, 
partition-id and process-id, to control the address 
translation. The control block used by NX is called the 
Coprocessor Request Block (CRB). The CRB contains all 
the information necessary for NX to perform the 
coprocessor functions. The test case generator builds the 
coprocessor request block and the translation context in 
the memory. It selects a random coprocessor operation. 
Each processor pre-selects a random translation context 
with pseudo-random values for privilege levels, modes 
and the process-id, to increase the test coverage.  

Test case generator generates random addresses for the 
agent’s source and target area. It then builds coprocessor 
request block and other control structures with fields 
specific to the randomly selected coprocessor operation. 
The context information for each job is stored in a data 
structure in main memory. Thereafter, the job is 
dispatched to the accelerator. Each of the processors can 
continue with other tests. The status of submitted jobs is 
determined from the coprocessor status block or from the 
processor job queue. The coprocessor status block in 
memory is updated by the accelerator upon job 
completion. The per-processor queue is updated by the 
interrupt handling process, with fault information, upon 
fault interrupt.  

One limitation with the proposed methodology is that, 
over the course of test execution, translations will be 
installed for most of the address pages and the number of 
faults generated by the unit will be drastically reduced. To 
alleviate this problem, two strategies were adopted. One, a 
special irritator mode was used, where a randomly 
selected processor invalidates translation addresses used 
by other processors in the system, by changing their 
corresponding translation entry valid bits to invalid, 
which in turn, triggers storage interrupts. Another, after a 
predefined number of test-cases, the accelerator job table 
is rebuilt with new parameters for translation context and 
agent source/target addresses for each job. This helps to 
maintain the fault requests from the agent to an optimum 
level, to stress the unit.  

Nest accelerator has a provision to specify source and 
target memory locations as a list of Data Descriptor 
Entries (DDE). Our method leverages this hardware 
facility to increase the number of storage interrupts 
generated by the agent. Each DDE of a job points to a 
different effective address page. This provokes the agent 
to generate a translation fault for each DDE processed by 
it.  

3.2. Translation generation 
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The accelerator can interrupt any processor on the 
system when it fails to find the translation for an address. 
The translation entry to be installed for the address 
depends on the translation context of the processor which 
submitted the faulted job. The submitted processor 
number is determined from the fault data structure in 
memory which is updated by the accelerator on a page 
fault. The interrupted processor sends the faulted address 
and other fault information to the submitted processor 
through an inter-process communication mechanism for 
further processing. The submitted processor, on receipt of 
fault information from the interrupted processor, attempts 
to access the data from the faulted address. This generates 
a storage interrupt to the core and the core storage 
interrupt handler sets up the required translation entry for 
the address. The core and the nest environments use the 
same translation table and hence the new translation entry 
installed by the core is visible to the nest. The validated 
core MMU and core storage interrupt handlers are used in 
the validation of nest MMU. This approach eliminated the 
need for developing explicit interrupt service routines for 
NMMU fault handling and in-turn reduced the software 
development effort for NMMU validation. 

3.3. Checker logic 

An end-of-test checking method is used to check the 
correctness of target data. The expectation here is that, 
with a correctly functioning memory management logic, 
the agent should find the correct physical address for a 
given virtual source or target address and should read the 
right source location and write the output data to the 
correct location. Each job has two operations and the 
output of the first operation is used as an input to the 
second operation. The second operation is the reverse of 
the first one. At the end of each job, data-checker will 
compare the expected data (original source) with the 
actual data (output of the second operation). Any incorrect 
translation is manifested as a data mismatch and the 
mismatch is detected by the data checker logic.  

To detect the case where NMMU is not able to resolve 
the page fault, a checker code is used which increments a 
counter value upon fault from NMMU. When the checker 
has reached a maximum threshold value, it stops the test 
and reports fail. 

The challenge with this approach is to identify the right 
threshold value to halt the test execution. If the threshold 
value is too high, there is a possibility that we may miss a 
potential bug. For example, a specific processor 
invalidates a mapping in the MMU cache, as part of 
setting up its entry, but the invalidation signal is missed. 
In this case, the test continues to use the old translation, 
which in turn generates repeated faults. As part of 
processing these faults, the subsequent invalidation may 
eventually go through and the bug goes undetected. In this 
case, a high threshold value is undesirable. On the other 
hand, if the threshold value is too low, there is a 
possibility of false alarm, indicating a test failure. For 

example, consider that a specific processor has installed a 
translation entry in the translation table.   

Figure 3. Proposed validation methodology flow 

Now if some other processor replaces this entry, then 
the first processor will fail although it had installed the 
entry previously. Here, it would be appropriate to give 
another chance for the processor to re-install the entry, 
instead of abruptly stopping. An optimal threshold value 
is determined by empirical means, and this value varies 
depending on the work-load and core configuration on 
which the test is running. Fig. 3 outlines the proposed 
validation methodology flow. 

4. Experimentation and Results

The proposed methodology was applied to validate
Nest Memory Management Unit (NMMU) of Power9 
processor. The test was run on both pre-silicon 
verification and post- silicon validation environment.  

Our tool was implemented using a mix of assembly-
level and C programs. The kernel has procedures required 
to enable the NX accelerator engines and setup 
configuration registers. The test generator builds 16 NX 
jobs, each comprising of two Coprocessor Request 
Blocks. VAS has memory-mapped areas called send and 
receive window contexts to establish a communication 
channel between user process and the accelerator. As part 
of the system initialization, the kernel configures VAS 
receive-window contexts for each of the accelerator types 
that will be accessed directly via user-level processes. The 
VAS receive-window context points to the requested 
accelerator’s FIFO (First In First Out) data structure in 
system memory. When the processor wants to access an 
NX accelerator, it sets up a VAS send-window context. 
The number of requests that can be simultaneously 
submitted is controlled through a hardware credit-based 
system. The test now configures a CRB and uses the 
copy-paste facility [4] to copy the contents of the request 
block to the accelerator’s receive FIFO. The NX-unit 
accelerator receives notification of the request and pulls it 
from the FIFO to be processed. When the operation is 
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complete, the processor is notified via an interrupt, or it 
detects completion via polling, as configured by the 
processor.  

4.1. System level simulator 

Developing validation software for complex hardware 
units in the absence of the target hardware is often error-
prone. Many times, the test will fail due to software 
infrastructure issues such as improper memory 
configurations, illegal memory writes or software race 
conditions. However, delaying software debug until the 
hardware is available results in finding software defects 
too late, thus increasing the time to market for the 
product. To alleviate these problems, a system-level 
behavioural simulator is used to detect software defects 
earlier in the development cycle, effectively in parallel 
with hardware development [6].  

The system-level simulator is a high-performance, 
functional behavioural model of architecture mirroring the 
hardware functionality that is visible to software. The 
lower level represents the hardware and operating system 
choices that can be used to execute the simulation 
environment. Various user-level programs can be loaded 
on top of it. This provided a virtual environment to 
validate design assumptions, verify the developed code 
and ensure the reliability of validation software.  

4.2. Verification test bench 

The verification environment also forms an important 
component of chip bring-up when the hardware arrives. 
Test cases are easily moved back and forth between 
hardware and simulation environments to perform root-
cause analysis of any unexpected hardware behaviour. 
This allows us to find workarounds and can also be used 
to find an occasional subtle software bug.  

During pre-silicon verification, the test was run on an 
internal ASIC-based simulation acceleration platform 
called AWAN, also known as, Exercisers on Accelerators 
(EoA), [5] to provide two benefits. First, to provide 
additional functional coverage to pre-silicon testing. 
Secondly, it helps us to use the pre-silicon coverage data 
to further enhance the test-cases. In addition, tool 
development and testing are done in the simulation 
environment before the actual hardware is running in the 
laboratory. 

AWAN uses a massive network of Boolean function 
processors each loaded with multiple logic instructions. 
Typically, each run through the sequence of all 
instructions in all logic processors in parallel constituted 
one machine cycle, this implementing the cycle-based 
simulation paradigm. Formal verification re-uses RTL 
(Register Transfer Level) models abstracting blocks (i.e., 
units) with behavioural [5]. Models exceeding 31 million 
gates have been simulated in AWAN. These are 
essentially multi-unit models with heavy black-boxing. 
Simulation speed depends on the configuration, model 

size, model complexity, and the amount of host 
interaction.   

Figure 4. Pre silicon verification setup 

The chip level model used in our experiment had 
POWER9 chip with four cores together with the L2 and 
L3 cache complex, the on-chip fabric, memory controllers 
populated with behavioural DIMMs and the nest complex 
constituting of VAS (Virtual Accelerator Switchboard), 
NX, NMMU and XIVE (External Interrupt Virtualization 
Engine) units.  

Internally, BugSpray, [7] an extension of VHDL is 
used for functional coverage and assertion 
instrumentation. This tool is used to efficiently annotate 
the RTL with assertion and coverage events. BugSpray 
enables verification objects to be portable across 
verification disciplines and across hierarchies and allows 
for their reuse with design. The coverage events provided 
by the design team helps in assessing the efficiency of the 
validation tool used to stress the device under test. Test 
coverage statistics were collected using this coverage 
checker tool and analysed to detect low coverage areas. 
The test was enhanced to hit all the coverage events to 
exercise the corner cases. Fig.4 shows the pre-silicon 
verification setup. 

4.3. Post silicon validation 

The test was run on post-silicon environment, to achieve 
the following objectives. First, to validate the correct 
behaviour of NMMU in various translation modes. 
Second, to ensure that the unit is stressed well by 
collecting coverage statistics and analysing them. In 
addition, the proposed method runs the way application is 
supposed to use accelerator which verifies the interface 
between NMMU and the associated hardware units such 
as NX, processor core, External Interrupt unit. The post-
silicon validation procedure followed is described in Fig. 
5. 

To put this in perspective, Table 1 and 2 show samples 
of event data collected primarily with Validation Test 
Suite 1 (VTS1) and Validation Test Suite 2 (VTS2) on a 
post-silicon validation environment. 
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System reset and initialization are done through boot 
procedures.  
Kernel and testcase generator are loaded into system 
memory.  
All cores are triggered to start execution. 
Scheduling of test-case is done on different cores by the 
kernel.  
Scratch register is written which is polled for pass or fail 
criteria.  

Figure 5. Post Silicon Validation procedure 

VTS1 is the bare metal test designed using this 
methodology to generate more page/segment faults. VTS2 
is the test created by randomizing the authorization 
privileges of each page, to generate more protection 
faults.  

Table 1. Statistics collected by coverage tool with 
VTS1 

Coverage parameters VALUES 
Total translations  5440 
Clean checkouts  3452 
Total number of cycles  469341426 
Cycles per translation  86275.99743 
Translations per second 23181.418 

Table 2. Statistics collected by coverage tool with 
VTS2 

Coverage parameters VALUES 
Total translations   4481 
Clean checkouts   3812 
Total number of cycles      237279016 
Cycles per translation      52952.24 
Translations per second     37769.88 

Fig. 6 shows the average number of checkout requests 
generated by the agent measured by running validation 
suite 1 and 2 on the processor. 

The proposed approach proved invaluable for the 
validation program in the following 3 areas: 
1. Logic verification and validation: - Some of the
functional bugs were uncovered, fixed, and re-checked at 
the early verification stage. Tests were executed, 
accumulating tens of billions of simulation cycles and 
ultimately ensuring a high-quality tape out of the ASIC, 
reducing overall program risk. After hardware arrived, the 
same test was leveraged without any modification, to 
validate the unit.  

2. Coverage and throughput enhancement: - At pre-silicon
level, coverage metrics were used to quantify which
design functions have been reached by simulation. Test
coverage statistics were collected in the post-silicon phase
and tests were tuned to improve the coverage.

Figure 6. Number of checkout requests against time 

3. Foster rapid software development: - The kernel
software for core interrupt handlers were reused in this
approach. This avoided duplicate development work for
interrupt handlers. We achieved the goal of reducing the
software development time, thereby shrinking the overall
validation tool development time.

4. Conclusion

Validation is one of the most complex and critical tasks in 
the current processor design process. Recent trends in 
computer systems have evolved into many accelerators 
and units to support new accelerator functionalities. 
Especially for units which are external to the core, 
innovative validation techniques are needed to achieve 
throughput and efficiency. In summary, this paper 
discusses the major challenges in validating accelerator 
address translation sub-system. A validation methodology 
has been presented for nest MMU, that uses an 
asynchronous accelerator job submission model with an 
optimized threshold checker. The framework is designed 
to use core MMU and core storage interrupt handlers for 
installing translation for the nest environment. This 
reduced the validation software development effort by a 
considerable amount. The proposed methodology has 
been successfully applied in stressing the nest MMU unit 
of the processor and the results are presented for the same. 
The test could reach up to 80% of the maximum 
throughput supported by NMMU.  

The NMMU interface supports up to eight outstanding 
translation requests from each of its agents. With all the 
four agents, there can be up to 48 outstanding requests to 
NMMU. To keep all the NMMU channels busy, it is good 
to run multi-agent test-cases, where all the agents together 
can swarm NMMU with translation traffic. In the future, 
the innovative methods described in this paper can be 
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extended to other agents/units to generate multi-agent 
traffic to NMMU. 
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