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Abstract 

A practical algorithm of determination of the set of Pareto optimal output parameters and a solution of the reverse 

optimization problem have been proposed. Basics of building and usage of multiresponse model are presented, which 

allows to perform multicriteria optimization optimization for different design and manufacturing situations. 
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1. Introduction

Well-founded definition of regions of admissible values 

of the vector of input (independent) constructive or 

technological parameters X = x1,x2,…xk
T
 ,  allows to

exclude non-optimal solutions at the early stages of 

design or in the technological process. To solve this 

problem, it is necessary to build a model of the 

dependence of the vector of output parameters Y= 

y1,y2,…ym
T
 from the input parameters and on its basis to

solve the problem of determining the optimum values of 

the output parameters taking into account the available 

technological (constructive) constraints [1].  

Then, for the obtained optimal values of the output 

parameters, it is necessary to determine the corresponding 

values of the input parameters (the inverse optimization 

problem).  

2. Definition of the regions of admissible
values of output parameters 

The region N of changing of the input parameters is 

determined by the physical factors and is usually given by 

a system of inequalities in the form of xi1  xi 

xi2, .,1 ki  .The region M of admissible values of output 

parameters (parameters-acceptance criteria) Y= 

y1,y2,…ym
T
 is given by the normative values of these

parameters in the form of a system of inequalities yj1  yj 

yj2. .,1 mj   Vector X= x1,x2,…xk in the space of the 

input technological parameters determines the point in the 

space of the parameters- acceptance criteria 

corresponding to the given article.  

If the transformation X Y is known in the form of a 

multiresponse function Y = F(X,B), where F(X,B) – 

multiresponse function, which is determined 

experimentally, and B is a coefficient vector, then for a 

given point X in the space of input parameters it is 

possible to determine the corresponding point Y in the 

space of output parameters. Thus, a k-dimensional region 

N ( mk  ) is represented into the space of output 

parameters in the form of a m-dimensional region T.  
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There are, also, functional limitations, determined by 

the principles of operation of the designed equipment or 

technological process. 

 These constraints are represented as a system of 

inequalities G(Y) 0 and they define the region K for 

which these constraints are satisfied [2].   

If the point X corresponds to a point Y inside the 

region of nondefective items M (Y M), then this product 

meets the requirements of the technical specifications for 

these parameters Taking into account functional 

limitations, the desired region S of output parameters is 

determined by the intersection of the regions T, M, K, i.e. 

S= T M K (Fig. 1).  

Fig. 1. Determination of the region S of admissible 
values of output parameters 

3. Solution of the inverse optimization
problem with incontrollable input 
parameters  

The task of determining the admissible input parameters 

is the determination of such region of input parameters 

which ensures the belonging of the given article to the 

class of nondefective ones, which is the content of the 

problem of reverse optimization. If the image L of the 

region S is defined in the space of input parameters, then 

it is possible to specify the technological parameters X 

L, ensuring certainly nondefective articles (Fig. 2). To 

specify independent intervals of the admissible values of 

technological parameters in the region L, it is necessary to 

inscribe the k-dimensional parallelepiped R in accordance 

with the criterion of optimality.  

If the input parameters are uncontrollable and have 

scatted values (Fig. 2), then the percentage of yield is 

used as a criterion for the optimality of the intervals of 

admissible values.  

Fig. 2. Obtaining independent intervals of admissible 
values for input technological parameters  

In this case, the optimal region R is constructed on the 

basis of the joint probability density function of the input 

parameters (xi). The criterion of optimality D for 

determining the intervals of admissible values is the yield 

of nondefective articles by technological parameters in the 

form 
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where  kxxx ,,, 21  is the joint probability density 

function of technological parameters. 

The construction of the region R in accordance with 

the criterion of optimality (1) is performed by the method 

of statistical tests. 

4. Construction of a multiresponse
model and its use for determining input 
parameters 

The XY transformation is represented as a 

multiresponse model 

      Y = F(X,B),         (2) 

where F(X,B)= f1(X,B), f2(X,B), …, fm(X,B)
T
  is m -

dimensional vector of the functions, Y= y1,y2,…ym
T
  are

admittance/reject criterion (responses), X= x1,x2,…xk
T

are independent variables, B= b1,b2,…bl
T
 is l-

dimensional vector of coefficients whose exact values are 

determined from the experimental data. 

In the general case, the calculation of the estimates of 

the coefficients of the model (2) is carried out using an 

iterative procedure [3] 
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where matrix EV  is covariance matrix of observation 

errors and 
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The covariance matrix for estimating the coefficients (3) 

is     
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where ES  is covariance matrix estimate EV . 

The constructed model can be used to solve the inverse 

problem, that is, to estimate the values of the input 

parameters for given values of the output parameters. 

When the type of the model (2) is selected and the 

estimates of its coefficients (3) are calculated, the 

calculation of the estimates of the input values of the 

parameters is performed by the formula 

 YB,FX
1 ,          (5) 

where  1
F is the function inverse to the function

 
 F ,

Y  is the vector of the output parameters. 

Expanding expression (2) in terms of independent 

variables in a Taylor series, we obtain 

  XXB,Y  Ω ,         (6) 

where 
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Then, in the case of the equality of the number of 

independent and dependent variables, the solution of the 

nonlinear problem (6) can be obtained by the following 

iterative procedure 

   sss ΔΩ
11   XX ,         (7) 

where s  is iteration number,  XB,FYΔ .

The covariance matrix XV  of the estimates X  is 

derived from expression (6) and is equal to 

          T1T1 ΩΩ  XB,PVXB,PV BX . (8) 

If the number of input parameters k is greater than the 

number of output parameters m, then for solving the 

equation (5) it is necessary to specify (k-m) input 

parameters, and the remaining m input parameters are 

determined according to equation (7) 

When constructing the model (2), it is necessary to 

perform:  

(i) analysis of the covariance matrix of observation 

errors; 

(ii) the choice and justification of the model;  

(iii) checking the significance of coefficient estimates; 

(iv) checking the adequacy of the model. 

4. Approximation of the admissible set
of input parameters 

As a result of analyzing the matrix W, the region of 

admissible values of the input parameters is presented in a 

discrete form and its boundaries are not defined 

analytically. Often in practice, this form of the region of 

permissible values leads to problems when trying to 

analyze it and use it for decision making. For example, 

when a vector of input parameters is set on the boundary 

of an admissible region, it is not clear whether it enters 

the region of admissible values.  

To solve the approximation problem, the form of the 

region of admissible values should be approximated by 

some analytic surface. This convolution of the region of 

admissible values greatly simplifies its use. For example, 

it allows to easily set the desired input parameters within 

this region. To identify the shape of a admissible region, it 

is possible to construct it in the form of a separating 

surface that includes all (or at least the majority) values of 

the input parameters related to the admissible region and 

does not include parameters that are not within the 

admissible region.  

In these circumstances, it is proposed to use the method 

of least squares to construct a separating surface [5]. ]. In 

accordance with this method, estimates of the coefficients 

A of the separating surface   0,g AX  are calculated so

that they provide a minimum of the sum of squares of 

deviations in the form   
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where  AX,g  is separating function,  T21 ,,, rxxx X

is vector of parameters,  T21 ,,, laaa A  is vector of

coefficients, y is the attribute of the point of the 

admissible region (for example, y = 1 if the parameter 

enters the admissible region, and y = -1 otherwise),  n is 

the sample size. 

However, with this approach, the contribution to the sum 

of the deviations (9) will be given by parameters with 

large values of the function  AX,g , which leads to

significant recognition errors, especially in the complex 

form of the separating function, which is typical for 

technical applications.   

We assume that for each parameter there is a 

probability of belonging to an admissible region 1q  and 

the probability does not belong to this region 2q

( 1qq 21  ). Experimentally belonging to the admissible 

region ( 1y ) is determined from the matrix W (the 

parameters enter the matrix W). 

This gives an estimate y of the value of the 

membership function   21 qqq X  as a function of the

magnitude of the parameter vector. 

As a result of the construction of an admissible region 

for n items, the estimation of the membership vector 

 T21 ,,, nyyy Y  is determined. Approximation of the

dependence of the magnitude q  on the values of the 

parameters can be presented in the form [6]: 

        AXAXBX ,fexp1,fsign,q   , (10) 

where  AX,f  is some approximation of function

 AX,g .

The function (10) is equal to zero at the interface between 

two classes (belonging to the range of admissible values 

or non-belonging) and tends to 1 (or -1) when moving 
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away from the separating surface. The separating surface 

is determined by the equation  

  0,g AX . (11) 

In this case, the calculation of the coefficient estimates in 

expression (11) by the least squares method is performed 

using the following iterative procedure [6]: 

            


 
n

i
ii

s
i

ss y
1

1 ,, AXqAXPVAA A , (12) 

where s is iteration number and 

      
A
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For a complete quadratic function with three parameters, 

for example, one can obtain

 T2
33121321 ,,,,,,,1
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xxxxxxxx 
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

A

AX
. 

Covariance matrix for estimating coefficients A is 

calculated by the formula 

       
1

1

T2 ,,
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

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
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n

i
iie AXPAXPVA  ,  (13) 

where 2
e  is variance of class recognition error. 

As an estimate of the variance in the recognition of 

classes, we used the estimate of the variance of the 

model's adequacy error, calculated by the formula: 

      






n

i
iie y

ln
s

1

22 ,q
1

AX ,           (14) 

where l is number of coefficients in the model (11). 

The diagonal elements of the matrix BV  (13) represent 

the variances of the estimates of the corresponding 

coefficients, which makes it possible to calculate their t-

statistics and, therefore, to verify the significance of the 

coefficient estimates.  

The lower bound of the one-sided confidence interval 

for the separating function that ensures the probability of 

recognizing the first class of at least P% is defined as: 

        efP st ,,q,q  AXAX ,  (15) 

where Pt  is Student's quantile for confidence probability 

P and number of degrees of freedom f, A is coefficient 

estimator vector.  

Then the separating surface is defined by the 

expression 

  0,q ,  efP stAX .             (16) 

By changing confidence probability P, one can achieve 

such a "compression" of region  AX,g  so that it does

not include points that do not belong to the admissible 

region D. In this case, the resulting surface will be 

inscribed into the region D with some "reserve". 

To calculate vector of estimates of the coefficients of 

separating function A in accordance with iteration 

procedure (12), a computer program has been developed. 

A two-dimensional illustration of the construction of 

approximating surface for three parameters is shown in 

Fig.3. 

Fig. 3. Approximation of a two-parameter region of 
admissible values D by an inscribed ellipse DE with 

a given confidence probability 

5. Construction of a discrete Pareto-
optimal set 

The Pareto-optimal set will be constructed on the basis of 

the matrix E, which determines the admissible set of input 

parameters D . The search for Pareto-optimal points is 

performed among the rows of the matrix W in accordance 

with the following conditions 

The point iX  ( DX i ) is Pareto optimal if there is no 

such point DX  that    iXX  ff   for all kmv  ,1

and at least for one v exists    iXX  ff  . A set DP  

is called Pareto-optimal if it consists of all Pareto optimal 

points. Based on the analysis of the Pareto-optimal set, the 

decision-maker determines the most preferable option 

.0
X

Pareto set is important for multicriterion optimization 

tasks, because, firstly, it is easier for designer to analyze it 

than the entire admissible set, secondly, whatever system 

of preferences  designer used when comparing different 

vectors from the admissible region, the optimal vector 

always belongs to the Pareto set. It is known [1] that if 

admissible set D is closed and criteria  Xf  are 

continuous, then Pareto set is not empty. This means that 

in any project task, we must determine the set of Pareto-

optimal solutions.  

The construction of Pareto-optimal set begins after 

obtaining admissible set D in the space of input 

parameters in the form of a matrix W. The first r columns 

of this matrix form discrete admissible set D in the space 

of input parameters containing s points.  

The following m columns form the image of set D in 

space of parameters- acceptance criteria  DF . At the

request of designer, it is possible to include in 

optimization process also k parameters that are not 
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parameters- acceptance criteria and for which technical 

limitations are not specified, but which are desirable to be 

optimized. 

For each point
 iX   all local criteria are calculated 

 iv Xf , kmv  ,1 . Thus, for each test point, a line is

obtained in test table W, which has dimensions

  kmn   in the form of:
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, (17) 

where n is number of test points, m is number of 

parameters-acceptance criteria, k is number of controlled 

output parameters that are not constrained. 

By checking the conditions for a point to belong to 

Pareto-optimal set for all points of the matrix W (17), 

only the Pareto-optimal points remain in this table. 

Consider simplified illustration of constructing Pareto-

optimal solution set (the criteria should be minimized). In 

Fig. 4 Pareto-optimal set in the space of criteria is 

represented by solid line confined by points A and B. 

Fig. 4. The Pareto set  PF  obtained with functional

and criterial constraints 

Conclusion 

The proposed engineering method for constructing an 

admissible set of parameters allows one to obtain an 

admissible set in an analytical form, which makes it 

possible to provide an admissible probability of an error 

of its construction. The Pareto-optimal set is constructed 

in discrete form with a specified accuracy. The 

optimization procedure is based on a multiresponse 

model, the construction of which is the first stage of 

multi-criteria optimization. 
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