
Kendall tau sequence distance: Extending Kendall
tau from ranks to sequences

Vincent A. Cicirello∗

Computer Science, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205

Abstract

An edit distance is a measure of the minimum cost sequence of edit operations to transform one structure
into another. Edit distance can be used as a measure of similarity as part of a pattern recognition system, with
lower values of edit distance implying more similar structures. Edit distance is most commonly encountered
within the context of strings, where Wagner and Fischer’s string edit distance is perhaps the most well-known.
However, edit distance is not limited to strings. For example, there are several edit distance measures for
permutations, including Wagner and Fischer’s string edit distance since a permutation is a special case of
a string. However, another edit distance for permutations is Kendall tau distance, which is the number of
pairwise element inversions. On permutations, Kendall tau distance is equivalent to an edit distance with
adjacent swap as the edit operation. A permutation is often used to represent a total ranking over a set
of elements. There exist multiple extensions of Kendall tau distance from total rankings (permutations) to
partial rankings (i.e., where multiple elements may have the same rank), but none of these are suitable for
computing distance between sequences. We set out to explore extending Kendall tau distance in a different
direction, namely from the special case of permutations to the more general case of strings or sequences of
elements from some finite alphabet. We name our distance metric Kendall tau sequence distance, and define
it as the minimum number of adjacent swaps necessary to transform one sequence into the other. We provide
two O(n lg n) algorithms for computing it, and experimentally compare their relative performance. We also
provide reference implementations of both algorithms in an open source Java library.

Received on 08 February 2020; accepted on 02 April 2020; published on 07 April 2020
Keywords: edit distance, Kendall tau, pattern recognition, sequences, similarity, strings
Copyright © 2020 Vincent A. Cicirello, licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.13-7-2018.163925

1. Introduction

There exists a wide variety of metrics for computing
the distance between permutations (Campos et al.,
2005; Cicirello, 2016, 2018, 2019; Cicirello and
Cernera, 2013; Fagin et al., 2003; Martí et al.,
2005; Meilă and Bao, 2010; Ronald, 1995, 1997,
1998; Sevaux and Sörensen, 2005; Sörensen, 2007).
The different permutation metrics that are available
consider different characteristics of the permutation
depending upon what it represents (e.g., a mapping
between two sets, a ranking over the elements of a set,
or a path through a graph). There is at least one instance
where a metric on strings is suggested for permutations.
Specifically, Sörensen (2007) suggested using string edit

∗Corresponding author. Email: vincent.cicirello@stockton.edu

distance to measure distance between permutations.
The specific edit distance suggested by Sörensen was
the string edit distance ofWagner and Fischer (1974). In
general, the edit distance between two structures is the
minimum cost sequence of edit operations to transform
one structure into the other.Wagner and Fischer’s string
edit distance is the minimum cost sequence of edit
operations to transform one string into the other where
the edit operations are element removals, insertions,
and replacements. The usual algorithm for computing it
is the dynamic programming algorithm of Wagner and
Fischer (1974), which has a runtime of O(nm) where
n and m are the lengths of the strings (in the case of
permutations, runtime is O(n2) since lengths are the
same).

In this paper, we begin with a metric on permuta-
tions, and adapt it to measure the distance between

1

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<vincent.cicirello@stockton.edu>

sequences (i.e., strings, arrays, or any other sequential
data). The specific metric that we adapt to sequences is
Kendall tau distance. Kendall tau distance is a metric
defined for permutations that is itself an adaptation
of Kendall tau rank correlation (Kendall, 1938). As a
metric on permutations, Kendall tau distance assumes
that a permutation represents a ranking over some set
(e.g., an individual’s preferences over a set of songs or
books, etc), and is the count of the number of pairwise
element inversions. We review Kendall tau distance, for
permutations, in Section 2, along with existing exten-
sions for handling partial rankings (i.e., instead of a
permutation or total ordering, partial orderings with
tied ranks are compared).
In the case of permutations, where each element

of the set is represented exactly one time in each
permutation, Kendall tau distance is the minimum
number of adjacent swaps necessary to transform
one permutation into the other. Thus, in the case of
permutations, Kendall tau distance is an edit distance
where the edit operations are adjacent swaps. Due to
this relationship, it is sometimes referred to as bubble
sort distance, since bubble sort functions via adjacent
element swaps. However, as soon as you leave the
realm of permutations, existing forms of Kendall tau no
longer correspond to an adjacent swap edit distance. We
provide an example of this in Section 2.5.
In the case of comparing partial rankings, the existing

extensions of Kendall tau distance to partial rankings
are fine. However, if we are comparing sequences
(e.g., strings, arrays of data points, etc) that do not
represent a ranking, then the partial ranking versions
of Kendall tau distance do not apply. We propose a
new extension of Kendall tau distance for sequences
in Section 3. We call it Kendall tau sequence distance,
and show that it meets the requirements of a metric.
It is applicable for computing the distance between
pairs of sequences, where both sequences are of the
same length, and consist in the same set of elements
(i.e., duplicates are allowed, but both sequences must
have the same duplicated elements). It is otherwise
applicable to strings over any alphabet or any other
form of sequence (such as an array of integers or an
array of floating-point values, etc). We argue that it is
more relevant as a measure of array sortedness than
the existing partial ranking adaptations of Kendall tau.
In Section 3.3, we provide two O(n lgn) algorithms for
computing Kendall tau sequence distance.
We implemented both algorithms in Java, and

we have added those reference implementations to
JavaPermutationTools (JPT), an open source Java library
of data structures and algorithms for computation on
permutations and sequences (Cicirello, 2018), which
can be found at https://jpt.cicirello.org/. In
Section 4, we experimentally compare the relative
performance of the two algorithms. The code to

replicate these experiments is also available in the code
repository of the JPT.

2. Kendall tau distance for permutations

2.1. Notation and Assumptions

Without loss of generality, we will assume a permuta-
tion of length n is a permutation of the integers in the
set S = 1, 2, . . . , n. Let σ(i), where i ∈ S, be the position
of element i in the permutation σ. If the permutation is
a ranking over a set of n objects, then σ(i) represents the
rank of object i in that ranking. Let p(r), where r ∈ S, be
the element in position r of the permutation (or with
rank r). Our notation assumes that the index into the
permutation begins at 1.
The σ and p are two alternative representations of the

permutation. They are related as follows: σ(i) = r ⇐⇒
p(r) = i. Throughout the paper, we will use whichever
is more convenient in the given context.
We will initially assume that permutations (whether

defined with σ or with p) are true permutations. That is,
we assume σ(i) = σ(j) ⇐⇒ i = j and also that p(r1) =
p(r2) ⇐⇒ r1 = r2. Therefore, if the application is one
of rankings, we assume that there are no ties. In other
words, two objects have the same rank only if they are
the same object; and each object has only one rank. We
relax this assumption later in Section 2.4.

2.2. Kendall tau rank correlation

Kendall tau distance for permutations is strongly
based on the Kendall tau rank correlation coefficient.
Consider two permutations σ1 and σ2. The Kendall tau
rank correlation coefficient (Kendall, 1938) is defined
as:

τ(σ1, σ2) =

2

n(n − 1)

∑

i,j∈S∧i<j

sign(σ1(i) − σ1(j)) sign(σ2(i) − σ2(j)).

(1)

The function sign(x) evaluates to 1 if x is positive, and
−1 if x is negative. The summation has a maximum
value of n(n − 1)/2, which occurs when σ1 = σ2; and the
summation has a minimum value of −n(n − 1)/2, which
occurs when σ1 is the reverse of σ2. The 2/(n(n − 1))
term scales such that τ ∈ [−1, 1].
Another way of expressing it is as follows:

τ(σ1, σ2) =
2

n(n − 1)
(|C | − |D|), (2)

where C is the set of concordant pairs, defined as:

C = {(i, j) ∈ S × S | i < j ∧ (σ1(i) < σ1(j) ∧ σ2(i) < σ2(j)

∨ σ1(i) > σ1(j) ∧ σ2(i) > σ2(j))}, (3)

2

Vincent A. Cicirello

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

https://jpt.cicirello.org/

and D is the set of discordant pairs:

D = {(i, j) ∈ S × S | i < j ∧ (σ1(i) < σ1(j) ∧ σ2(i) > σ2(j)

∨ σ1(i) > σ1(j) ∧ σ2(i) < σ2(j))}. (4)

2.3. Kendall tau distance

For a function d : S × S → R to be a measure of distance,
we must have non-negativity (d(i, j) ≥ 0 for all i, j ∈ S),
identity of indiscernibles (d(i, j) = 0 ⇐⇒ i = j for all
i, j ∈ S), and symmetry (d(i, j) = d(j, i) for all i, j ∈ S).
Further for d : S × S → R to be a metric, it must also
satisfy the triangle inequality (d(i, j) ≤ d(i, k) + d(k, j)
for all i, j , k ∈ S). The Kendall tau rank correlation
coefficient is not a measure of distance (e.g., it clearly
doesn’t satisfy the first two requirements of non-
negativity and identity of indiscernibles.
Kendall tau distance (for permutations) is found in

the literature in two forms, as follows:

K(σ1, σ2) = |D|, (5)

and

K(σ1, σ2) =
2|D|

n(n − 1)
, (6)

where D is the set of discordant pairs as previously
defined in Equation 4. The only difference between
these is that in the latter case, the distance is normalized
to lie in the interval [0, 1], and in the former case
the distance lies in the interval [0, n(n − 1)/2]. We have
K(σ1, σ2) = 0 only when σ1 = σ2. And the maximum
occurs when σ1 is the reverse of σ2. Kendall tau distance
for permutations satisfies all of the metric properties.
The version seen in Equation 5 is also equal to

the minimum number of adjacent swaps necessary to
transform one permutation p1 into the other permuta-
tion p2. That is, it is an edit distance where the edit
operation is adjacent swap. Consider as an example,
the permutations σ1 = [2, 4, 1, 3] and σ2 = [4, 1, 3, 2].
Their equivalents in the other notation are p1 =
[3, 1, 4, 2] and p2 = [2, 4, 3, 1]. The discordant pairs are
D = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}. Thus, K(σ1, σ2) = 5
in this example. You can transform p1 = [3, 1, 4, 2] into
p2 via the following sequence of five adjacent swaps:
[3, 4, 1, 2], [3, 4, 2, 1], [4, 3, 2, 1], [4, 2, 3, 1], [2, 4, 3, 1] =
p2. You cannot do it with fewer than five adjacent swaps
in this example.
Note that as an adjacent swap edit distance, it

specifically concerns the p representation of the
permutation and not the σ notation. For example,
adjacent swaps on σ1 leads to a shorter sequence (3
swaps): [4, 2, 1, 3], [4, 1, 2, 3], [4, 1, 3, 2] = σ2. However,
there is an equivalent operation for the σ notation,
swapping consecutive ranks (i.e., rank 1 with 2, 2 with
3, etc). That is, since p lists the elements in their
“ranked” order, an adjacent swap in p is equivalent

to exchanging the ranks of two elements whose ranks
differ by 1.
Another (slightly less direct) way of connecting the

σ representations of the permutations to the view of
Kendall tau distance as an adjacent swap edit distance
leads to the common O(n lgn) algorithm for computing
it. Define the following list of ordered pairs:

T = [(σ1(1), σ2(1)), (σ1(2), σ2(2)), . . . , (σ1(n), σ2(n))]. (7)

Sort T by first component of the tuples (any sorting
algorithm will do, but preferably one with worst
case runtime in O(n lgn)). Let T ′ be the sorted
T . While sorting T ′ by the second component
(e.g., such as by mergesort), count the number of
inversions. The number of inversions in T ′ (per
second components of tuples) is the Kendall tau
distance, and is the number of adjacent swaps necessary
to sort T ′ . For the previous example where we
had σ1 = [2, 4, 1, 3] and σ2 = [4, 1, 3, 2], we define T =
[(2, 4), (4, 1), (1, 3), (3, 2)]. Sorting by first component
results in T ′ = [(1, 3), (2, 4), (3, 2), (4, 1)], which has 5
inversions (per second components of tuples): 3 with
2, 3 with 1, 4 with 2, 4 with 1, and 2 with 1. This
O(n lgn) approach to computing Kendall tau distance
has been described by several previously, such as by
Knight (1966) though in the context of Kendall tau rank
correlation.

2.4. Partial ranking Kendall tau distance

We now amend the notation previously introduced
in Section 2.1. Specifically, we will now assume that
rankings may be partial (i.e., there may be ties). That is,
although i = j =⇒ σ(i) = σ(j) is still the case, we now
allow σ(i) = σ(j) in cases where i , j (i.e., two different
elements may have same rank).
The simplest way to extend Kendall tau rank

correlation or Kendall tau distance to partial rankings
is to compute it without modification. That is, compute
the number of discordant pairs, etc and use the
definitions of Sections 2.2 and 2.3. The algorithm of
Knight (1966) described in the previous section is
actually specified to handle partial rankings in this way.
In the first sort, where the list of tuples T is sorted by the
first component of the tuples, Knight (1966) indicates to
break ties using the second component.
Among the potential problems with directly applying

Kendall tau distance without modification to partial
rankings is that it no longermeets the metric properties.
Fagin et al. (2006) developed the K (p), known as the
Kendall distance with penalty parameter p to deal with
this, and determined the range of values for the penalty
parameter that enables fulfilling the metric properties.
Define K (p) as follows:

K (p)(σ1, σ2) = |D| + p|E|, (8)

3

Kendall tau sequence distance: Extending Kendall tau from ranks to sequences

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

whereD is still the set of discordant pairs, as previously
defined in Equation 4. Note the strict < and > in the
definition of D, and that a tie within either permutation
is not a discordant pair. E is the set of pairs that are ties
in one permutation, but not the other (i.e., one ranking
considers the objects equivalent, but the other does not).
Therefore, E is defined as:

E = {(i, j) ∈ S × S | i < j ∧ (σ1(i) = σ1(j) ∧ σ2(i) , σ2(j)

∨ σ1(i) , σ1(j) ∧ σ2(i) = σ2(j))}. (9)

Fagin et al. (2006) showed that K (p) is a metric when
0.5 ≤ p ≤ 1, and that it is what they termed a “near
metric” when 0 < p < 0.5, and that it is not a distance
when p = 0. We do not use their “near metric” concept
here so we leave it to the interested reader to consult
Fagin et al. (2006).

2.5. Partial ranking Kendall tau distance , adjacent
swap edit distance

As a distance metric on partial rankings, the Kendall
distance with penalty parameter p of Fagin et al.
(2006) is an effective choice, and commonly used
in the context of comparing partial rankings.
However, it is not adjacent swap edit distance.
Consider the following illustrative example. Let
σ1 = [1, 2, 3, 1, 1, 2, 2] and σ2 = [3, 2, 1, 2, 1, 2, 1].
In this case, the set of discordant pairs is D =
{(1, 2), (1, 3), (1, 6), (1, 7), (2, 3), (3, 4), (3, 6), (4, 7)}, and
the set E = {(1, 4), (1, 5), (2, 4), (2, 7), (3, 5), (3, 7), (4, 5),
(4, 6), (5, 7), (6, 7)}. Thus, K (p)(σ1, σ2) = 8 + 10p
(Equation 8).
You can compute |D| and |E| without

actually computing the sets D and E via the
approach of Knight (1966) based on sorting.
Let T = [(1, 3), (2, 2), (3, 1), (1, 2), (1, 1), (2, 2), (2, 1)].
Sort T by first component of tuples, breaking
ties via the second components, and obtain:
T ′ = [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 2), (3, 1)]. You
can finally sort T ′ via mergesort (or another O(n lgn)
sort), with the sort modified to count inversions. In this
case, there are 8 inversions in T ′, which is equal to |D|.
It is also straightforward enough to compute |E|.
The |D| in this example is the minimum number

of adjacent swaps necessary to sort T ′. However, it is
not the minimum number of adjacent swaps necessary
to transform σ1 into σ2. That can be done with fewer
than eight adjacent swaps. Specifically, it can be done
via the following sequence of six adjacent swaps:
σ1 = [1, 2, 3, 1, 1, 2, 2], [1, 3, 2, 1, 1, 2, 2], [3, 1, 2, 1, 1, 2, 2],
[3, 2, 1, 1, 1, 2, 2], [3, 2, 1, 1, 2, 1, 2], [3, 2, 1, 2, 1, 1, 2],
[3, 2, 1, 2, 1, 2, 1] = σ2.
Now, previously in Section 2.3, we saw that with

full rankings (i.e., permutations) Kendall tau distance
is equal to the minimum number of adjacent swaps to

transform p1 into p2 (i.e., an adjacent swap edit distance
on the p notation, where p(r) yields the object with rank
r). With partial rankings, we don’t have the equivalent
of p since multiple objects may have the same rank.
One attempt might be to allow p(r) to map to the set
of objects with rank r. Thus, for the example of the
prior paragraph, we’d have p1 = [{1, 4, 5}, {2, 6, 7}, {3}],
and p2 = [{3, 5, 7}, {2, 4, 6}, {1}]. Transforming p1 to p2
via adjacent swaps (if we define an adjacent swap in this
context as swapping two elements in adjacent sets) can
be done with four such swaps.
Also in Section 2.3, for full rankings, we saw

that Kendall tau distance is equal to the mini-
mum number of applications of an operation that
exchanges the ranks of two elements whose ranks
differ by 1. For this example, a sequence of four
such operations can transform σ1 = [1, 2, 3, 1, 1, 2, 2]
into σ2 = [3, 2, 1, 2, 1, 2, 1]. That sequence is as follows:
σ1 = [1, 2, 3, 1, 1, 2, 2], [1, 2, 3, 2, 1, 2, 1], [1, 3, 2, 2, 1, 2, 1],
[2, 3, 1, 2, 1, 2, 1], [3, 2, 1, 2, 1, 2, 1] = σ2. This is equiva-
lent to our redefinition of p(r) to the set of elements with
rank r.
There is no interpretation where K (p) or any other

partial ranking variation of Kendall tau distance that is
based on the number of discordant pairs is equivalent
to an adjacent swap edit distance. The example of
this section illustrates this in that there are eight
discordant pairs (thus K (p) ≥ 8 unless p is negative)
while less than eight adjacent swaps is sufficient for
sorting the permutation (either 6 or 4 depending
upon the interpretation of “adjacent swap” and the
representation to which it is applied).

2.6. Positions of elements in a sequence are not
ranks

If the sequences we are comparing do not define
rankings, then the partial ranking variants of Kendall
tau distance are not applicable as it would be arbitrary
to impose a ranking interpretation upon them, and
also likely to lead to a nonsensical interpretation. For
example, consider the string s: “abacab”. It would
be arbitrary to impose a lexicographical order of the
characters as if they are ranks (e.g., “a” as 1, “b” as 2,
etc), such as transforming s to σ = [1, 2, 1, 3, 1, 2]. Or, if
you consider position in the sequence to be an element’s
rank, then you’d have something meaningless like “a” is
simultaneously ranked first, third, and fifth.

3. Kendall tau sequence distance

3.1. Notation and Assumptions

Let s be a sequence of length n, where s(i) ∈ Σ for some
alphabet Σ and i ∈ {0, 1, . . . , n − 1}. The alphabet Σ can
be a character set for some language, but can also be
the set of integers, the set of real numbers, the set of

4

Vincent A. Cicirello

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

complex numbers, or any other set of elements. The
alphabet Σ is not necessarily a finite alphabet, although
we do assume finite length sequences (i.e., n is finite).
Without loss of generality, we also assume that

the elements of the alphabet Σ can be ordered. The
specific ordering does not affect the measure of distance
between the sequences.

3.2. Kendall tau sequence distance = adjacent swap
edit distance

We previously saw in Section 2.3 that the original
form of Kendall tau permutation distance is equivalent
to an adjacent swap edit distance when applied
to permutations (i.e., no duplicates) and specifically
when applied to the p representation (and not the
σ representation). But that the existing extensions of
Kendall tau beyond permutations (e.g., partial ranking
variants) are not equivalent to an adjacent swap edit
distance.
We now define the Kendall tau sequence distance, τS ,

as follows:

τS (s1, s2) = min # adjacent swaps to transform s1 to s2.
(10)

where s1 and s2 are sequences as defined in Section 3.1.
We require the lengths of the sequences to be
equal, i.e., |s1| = |s2|. And for each character c ∈ Σ, we
require count(s1, c) = count(s2, c), where count(s, c) is
the number of times that c appears in s. The τS distance
is undefined if these conditions do not hold for a
specific pair of sequences.
The τS distance satisfies all of the metric proper-

ties. It clearly satisfies non-negativity, identity of indis-
cernibles, and symmetry. We must have τS (s1, s2) ≥ 0,
since it is not possible to apply a negative number
of swaps. If s1 = s2, then τS (s1, s2) = 0 since 0 swaps
are required to transform a sequence to itself. And if
τS (s1, s2) = 0, then s1 = s2 since the only case when a
sequence can be transformed to another with 0 adjacent
swaps is obviously when the two sequences are identi-
cal. It is also obvious that τS (s1, s2) = τS (s2, s1).
The τS also satisfies the remaining metric property,

the triangle inequality:

τS (s1, s2) ≤ τS (s1, s3) + τS (s3, s2). (11)

The proof is as follows (via contradiction). Suppose
there exists sequences s1, s2, and s3, such that:
τS (s1, s2) > τS (s1, s3) + τS (s3, s2). The minimum cost edit
sequence from s1 to s3 is τS (s1, s3) (by definition
via Equation 10). Likewise, the minimum cost edit
sequence from s3 to s2 is τS (s3, s2). One sequence of
edit operations that will transform s1 to s2 is to first
transform s1 to s3, and then to transform s3 to s2. The
cost of that edit sequence is clearly the sum of the costs
of the two portions: τS (s1, s3) + τS (s3, s2). The minimum

cost edit sequence to transform s1 to s2 must therefore
be no greater than τS (s1, s3) + τS (s3, s2), a contradiction.

3.3. Two O(n lgn) algorithms to compute τS

In this section, we present two O(n lgn) algorithms for
computing τS . Both rely on an observation related to
the optimal sequence of adjacent swaps for editing one
sequence s1 to the other s2, and specifically concerning
duplicate elements. If a mapping between the elements
of s1 and s2 is defined, such that an element is mapped
to its corresponding position if the optimal sequence
of adjacent swaps is performed, then an element that
appears only once in s1 will be mapped to the only
occurrence in s2. Furthermore, in such a mapping,
if an element appears multiple times, then the k-th
occurrence in s1 will be mapped to the k-th occurrence
in s2. For example, consider s1 = [a, b, a, c, a, d, a] and
s2 = [b, c, a, a, a, a, d]. The elements that appear only
once obviously map to their corresponding element in
the other sequence, in this case: s1[1] to s2[0], s1[3]
to s2[1], and s1[5] to s2[6]. In this example, however,
there are also four copies of the element a. The optimal
edit sequence of adjacent swaps must map them as
follows: s1[0] to s2[2], s1[2] to s2[3], s1[4] to s2[4], and
s1[6] to s2[5]. Any other mapping would result in extra
adjacent swaps that cause two copies of element a to
pass each other. For example, consider this sequence,
s = [b, c, a, a, d, e]. Swapping the two copies of element
a results in the same sequence. In general, a swap of
adjacent identical copies of the same element does not
change the sequence, but accrues a cost of 1.
The two algorithms both generate a mapping of

the indices of one sequence that correspond to the
elements of the other, as described above. The two
algorithms differ in how they generate the mapping.
The mapping, once generated, is a permutation of the
integers in {0, 1, . . . , n − 1}. And the τS is the number of
permutation inversions in that mapping.

Algorithm 1. The first of two algorithms for computing
τS is found in Figure 1. Line 4 generates a sorted
copy, S, of one of the two sequences. This step can
be implemented with mergesort or another O(n lgn)
sorting algorithm for a cost of O(fc(m) n lg n), where
fc(m) is the cost of comparing sequence elements of size
m. If the sequences contain primitive values, such as
ASCII or Unicode characters, then fc(m) = O(1). I have
included the fc(m) term to cover the more general case
of sequences of objects of any type. Lines 5–11 uses
S to generate a mapping M between unique sequence
elements to the integers in {0, 1, . . . , k − 1}, where there
are k unique characters appearing in the sequences. The
cost to generate this mapping is O(fc(m) n).
Lines 12–19 performs bucket sorts of s1 and s2

as follows. It places index i of s1 into the bucket
corresponding to the integer from the mapping M that

5

Kendall tau sequence distance: Extending Kendall tau from ranks to sequences

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

τS (s1, s2)
1. if |s1| , |s2|
2. return error: unequal length sequences
3. Let n = |s1|
4. Let S be a sorted copy of s1
5. Let M be a new array of length n
6. M[0]← 0
7. for i = 1 to n − 1 do
8. if S[i] = S[i − 1]
9. M[i]←M[i − 1]
10. else
11. M[i]←M[i − 1] + 1
12. Let B1 and B2 be arrays of length M[n − 1] + 1 of initially empty queues
13. for i = 0 to n − 1 do
14. Let j be an index into S, such that S[j] = s1[i].
15. Let k be an index into S, such that S[k] = s2[i].
16. if k is undefined
17. return error: sequences contain different elements
18. Add i to the tail of queue B1[M[j]].
19. Add i to the tail of queue B2[M[k]].
20. Let P be an array of length n
21. for i = 0 toM[n − 1] do
22. if lengths of queues B1[i] and B2[i] are different
23. return error: sequences contain different number of copies of an element
24. while queue B1[i] is not empty do
25. Remove the head of queue B1[i] storing it in h1.
26. Remove the head of queue B2[i] storing it in h2.
27. P[h1]← h2
28. Let I be the number of inversions in P .
29. return I

Figure 1. Algorithm for computing τS

represents character s1[i]. This requires a search of S in
step 14, which can be implemented with binary search
in O(fc(m) lgn) time since S is in sorted order. The
buckets are represented with queues to easily maintain
the order that duplicate copies of an element appear
in the original sequence. Adding to the tail of a queue
is a constant time operation. B1 is an array of the
buckets for s1. In a similar manner, a bucket sort of s2
is performed, and B2 is an array of the corresponding
buckets. The block in lines 12–19 has a total cost of
O(fc(m) n lg n) since the loop of line 13 iterates n times
and the binary searches in lines 14 and 15 have a
runtime of O(fc(m) lg n).

Lines 20–27 iterates over the buckets, mapping the
elements of s2 to the corresponding elements of s1.
The resulting mapping is a permutation P of the
integers in {0, 1, . . . , n − 1}. Where there are duplicates
of a specific character of the alphabet Σ, they are
mapped in the order of appearance. For example, if
character c appears in positions 2, 5, 18 of s1 and
in positions 4, 7, 22 of s2, then the permutation P
will have the following corresponding entries: P[2] =

4, P[5] = 7, P[18] = 22. The nested loops in lines 21 and
24 iterate exactly one time for each sequence index, i.e.,
a total of n executions of the body (lines 25–27) of the
nested loops. The body of which contains only constant
time operations. Thus, the runtime of lines 20–27 is
O(n).
Counting permutation inversions (line 28) is done in

O(n lgn) time with a modified mergesort.
The runtime of this first algorithm is therefore

O(fc(m) n lg n) due to the sort in line 4, and the block
of lines 12–19. This is worst case as well as average
case. If the sequences contain values of a primitive
type, such as ASCII or Unicode characters, primitive
integers, primitive floating-point numbers, etc, then
fc(m) = O(1), and thus the runtime of the algorithm
simplifies to O(n lgn).

Algorithm 2. Our second algorithm for computing τS
is found in Figure 2. It is similar in function to the
first algorithm, but generates the mapping from unique
sequence elements to integers differently. Specifically,
it uses a hash table, H (initialized in line 4). Lines 5–9
populates that hash table. The loop in that block iterates

6

Vincent A. Cicirello

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

τS (s1, s2)
1. if |s1| , |s2|
2. return error: unequal length sequences
3. Let n = |s1|
4. Let H be an initially empty hash table mapping sequence elements to integers.
5. q ← 0
6. for i = 0 to n − 1 do
7. if s1[i] < keys(H)
8. Put the mapping (s1[i], q) in H .
9. q ← q + 1
10. Let B1 and B2 be arrays of length q of initially empty queues
11. for i = 0 to n − 1 do
12. j ← H[s1[i]]
13. k ← H[s2[i]]
14. if k is undefined
15. return error: sequences contain different elements
16. Add i to the tail of queue B1[j].
17. Add i to the tail of queue B2[k].
18. Let P be an array of length n
19. for i = 0 to q − 1 do
20. if lengths of queues B1[i] and B2[i] are different
21. return error: sequences contain different number of copies of an element
22. while queue B1[i] is not empty do
23. Remove the head of queue B1[i] storing it in h1.
24. Remove the head of queue B2[i] storing it in h2.
25. P[h1]← h2
26. Let I be the number of inversions in P .
27. return I

Figure 2. A second algorithm for computing τS

n times, and assuming the sequences contain elements
of a primitive type then all operations in its body can
be implemented in constant time (e.g., the key check
in line 7, and the put in line 8 can be implemented in
O(1) time with a sufficiently large hash table size). Our
implementation ensures that the load factor of the hash
table never exceeds 0.75 in order to achieve the constant
number of hashes. Thus, the runtime of this block is
O(n) for sequences of primitive elements. Otherwise, in
general, it is O(fh(m) n) where fh(m) is the cost to hash
an object of size m.

Lines 10–17 is the bucket sort described in the
previous algorithm. However, unlike Algorithm 1
which requires binary searches of a sorted array,
Algorithm 2 instead relies on hash table lookups (lines
12–13) which can be implemented in O(1) time for
primitive elements, or O(fh(m)) time more generally.
Thus, this block’s runtime is O(fh(m) n), or O(n) for
sequences of primitive elements.

Lines 18–25 iterates over the buckets, as in Algorithm
1, to generate the permutation mapping elements
between the two sequences. It is unchanged from
Algorithm 1, and thus has a runtime of O(n).

Line 26 counts permutation inversions, just like in
Algorithm 1, and thus has a runtime of O(n lgn).
The runtime of Algorithm 2 is thus O(fh(m) n +

n lg n). For sequences of primitive elements, this again
simplifies to O(n lg n), but where the only O(n lgn)
step is the inversion count of line 26. Therefore, for
sequences of primitive elements, such as ASCII or
Unicode characters, or primitive integers or floating-
point numbers, Algorithm 2 will likely run faster than
Algorithm 1.
In this analysis, we assumed that the hash table

operations are O(1), which in practice should be
achievable with sufficiently large table size and a
well-designed hash function for the type of elements
contained in the sequences.

Notes on the Runtimes. In addition to likely running
faster for sequences of primitive elements, in many
cases we should expect Algorithm 2 to run faster than
Algorithm 1 for sequences of elements of an object type.
Under any normal circumstances, the cost, fh(m), to
compute a hash of an object of sizem should be no more
than linear in the size of the object. Thus, the runtime
of Algorithm 2 should be no worse than O(mn + n lg n).
Similarly, the cost fc(m) to compare objects of size m

7

Kendall tau sequence distance: Extending Kendall tau from ranks to sequences

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

should be no worse than linear in the size of the objects.
Thus, the runtime for Algorithm 1 is no worse than
O(mn lgn), which is higher order than the runtime of
Algorithm 2. However, it is possible that a comparison
of objects of size m may run faster than a hash of
an object of size m since a comparison may short
circuit on an object attribute difference found early in
the comparison. Therefore, Algorithm 1 may be the
preferred algorithm for sequences of large objects. We
explore this experimentally in the next section.
Furthermore, the runtime, O(fh(m) n + n lg n),

of Algorithm 2 is no worse than the runtime,
O(fc(m) n lg n), of Algorithm 1 provided that
fh(m)
fc(m)

= O(lgn). So any advantage Algorithm 1 may

have on sequences of large objects diminishes for large
sequence lengths.

4. Experiments

In this section, we experimentally explore the relative
performance of the two algorithms for computing
Kendall tau sequence distance. In Section 4.1 we
describe our reference implementations of the two
algorithms, and explain our experimental setup in
Section 4.2. Then, in Section 4.3, we experimentally
compare the two algorithms on sequences of primitive
values, such as strings of Unicode characters, arrays of
integers, and arrays of floating-point values. Section 4.4
compares the performance of the algorithms on arrays
of objects of varying sizes..

4.1. Reference Implementations in Java

We provide reference implementations of both algo-
rithms from the previous section in an open source
Java library available at: https://jpt.cicirello.org.
Specifically, the class KendallTauSequenceDistance, in
the package org.cicirello.sequences.distance, imple-
ments both algorithms. The implementations support
computing the Kendall tau sequence distance between
Java String objects, arrays of any of Java’s primitive
types (i.e., char, byte, short, int, long, float, double,
boolean), as well as computing the distance between
arrays of any object type.
For arrays of objects, the implementation of Algo-

rithm 1 requires the objects to be of a class that imple-
ments Java’s Comparable interface, since the sort step
requires comparing pairs of elements for relative order;
while Algorithm 2 requires the objects to be of a class
that overrides the hashCode and equals methods of
Java’s Object class since it relies on a hash table.
To compute the distance between arrays of objects,

our implementation of Algorithm 2 uses Java’s
HashMap class for the hash table, and the default maxi-
mum load factor of 0.75. To eliminate the need to rehash
to maintain that load factor, we initialize the HashMap’s

size to ⌈ n
0.75 ⌉, where n is the sequence length. In this

way, even if every element is unique, no rehashing will
be needed.
For computing the distance between arrays of

primitive values, as well as for computing the
distance between String objects, our implementation of
Algorithm 2 uses a set of custom hash table classes (one
for each primitive type). All of these hash tables (except
the one for bytes) use chaining with single-linked lists
for the buckets. The size of the hash table is set, as
above, based on the length of the array to ensure that
the load factor is no higher than 0.75. Additionally, we
use a table size that is a power of two to enable using
a bitwise-and operation rather than a mod to compute
indexes. However, we limit the table size to no greater
than 216 for the two 16-bit primitive types (char and
short), and to no greater than 230 for all other types. The
integer primitive types are hashed in the obvious way
for each of the three such types that use 16 to 32 bits
(char, short, int). Specifically, char and short values are
cast to 32-bit int values. We hash long values with an xor
of the right and left 32-bit halves. We hash a float using
its 32 bits as an int. We hash a double with an xor of its
left and right 32-bit halves, using the result as a 32-bit
int. Java’s Float and Double classes provide methods for
converting the bits of float and double values to int and
long values, respectively. We otherwise do not use Java’s
wrapper classes for the primitive types.

In the case of arrays of bytes, our implementation of
Algorithm 2 uses a simple array of length 256 as the
hash table, one cell for each of the possible byte values,
regardless of byte sequence length. In this way, there are
never any hash collisions when computing the distance
between arrays of byte values.

For arrays of booleans, we handle the mapping to
integers differently regardless of algorithm choice, since
it is straightforward to map all false values to 0 and all
true values to 1 in linear time.

The KendallTauSequenceDistance class can be con-
figured to use either of the two algorithms. The default
is Algorithm 2, since as we will see in Sections 4.3
and 4.4, it is always faster for sequences of primitives
and nearly always faster for arrays of objects.

4.2. Experimental Setup

Our experiments are implemented in Java 1.8, and we
use the Java HotSpot 64-Bit Server VM, on a Windows
10 PC. Our test system has 8GB RAM, with a quad-
core AMDA10-5700 APU processor with 3.4 GHz clock
speed.

4.3. Results on Sequences of Primitives

Strings. Our first set of results is on computing Kendall
tau sequence distance between Java String objects.

8

Vincent A. Cicirello

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

https://jpt.cicirello.org

0

0.02

0.04

0.06

0.08

0.1

0 20000 40000 60000 80000 100000 120000 140000

cp
u

 t
im

e
(s

ec
o

n
d

s)

sequence length

Algorithm 1 Algorithm 2

(a) |Σ| = 256

0

0.02

0.04

0.06

0.08

0.1

0 20000 40000 60000 80000 100000 120000 140000

cp
u
 t

im
e

(s
ec

o
n

d
s)

sequence length

Algorithm 1 Algorithm 2

(b) |Σ| = 65536

Figure 3. Average CPU time for Strings of characters from

varying size alphabets.

Strings in Java are sequences of 16-bit char values, that
encode characters in Unicode.

In our experiments, we consider String lengths L ∈
{28, 29, . . . , 217}, and alphabet size |Σ| ∈ {40, 41, . . . , 48}.
Note that |Σ| = 48 = 216 is the entire Unicode character
set, and that |Σ| = 28 is the ASCII subset of Unicode. The
alphabet Σ is just the first |Σ| characters of the Unicode
set. For each combination of L and |Σ|, we generate
100 pairs of Strings as follows. The first String in each
pair is generated randomly, such that each character
in the String is selected uniformly at random from
the alphabet Σ. The second String is then a randomly
shuffled copy of the first String.We compute the average
CPU time to calculate Kendall tau sequence distance
averaged over the 100 random pairs of Strings.

Figure 3 shows the results for two of the alphabet
sizes: 256 and 65536. String length is on the horizontal
axis, and average CPU time is on the vertical axis.
Algorithm 2 is consistently faster than Algorithm 1,
independent of alphabet size. This is also true of the
other alphabet sizes, thus we have excluded graphs in
the interest of brevity. The interested reader can use
the code provided in the JPT repository to replicate our
experimental data.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20000 40000 60000 80000 100000 120000 140000

cp
u

 t
im

e
(s

ec
o

n
d

s)

sequence length

Algorithm 1 Algorithm 2

(a) |Σ| = 256

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20000 40000 60000 80000 100000 120000 140000

cp
u
 t

im
e

(s
ec

o
n

d
s)

sequence length

Algorithm 1 Algorithm 2

(b) |Σ| = 65536

Figure 4. Average CPU time for sequences of 32-bit integers

from varying size alphabets.

The explanation for why alphabet size affects the
runtime of the algorithms is straightforward. First,
note that larger alphabet size lead to longer runtime
(Figure 3(b) vs Figure 3(a)). A smaller alphabet size
means more duplicate characters in the strings. For
Algorithm 1 that means that the sort has fewer elements
to move. In the case of Algorithm 2, the hash table
contains one entry for each unique character in the
strings, so the smaller alphabet size leads to fewer hash
table entries, which translates to lower load factor and
thus faster hash table lookups.

Arrays of Integers. This next set of results is on
computing Kendall tau sequence distance between
arrays of int values, where an int in Java is a 32-bit
integer. The array lengths L are the same as the String
lengths used in Section 4.3, as are the alphabet sizes |Σ|,
where the alphabet Σ is just the first |Σ| non-negative
integers. We again average CPU times over 100 pairs
of randomly generated arrays, where the first array
contains integers generated uniformly at random from
the alphabet, and the second array in each pair is a
randomly shuffled copy of the first.

Figure 4 shows the results for two of the alphabet
sizes: 256 and 65536. Just as with Strings of characters,

9

Kendall tau sequence distance: Extending Kendall tau from ranks to sequences

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

Algorithm 2 is consistently faster than Algorithm 1
for computing Kendall tau sequence distance between
arrays of 32-bit integers, independent of alphabet size
and array length.
Just as in the case of Strings, both algorithms run

faster with the smaller alphabet size than with a larger
alphabet size. The explanation is the same: smaller
alphabet means more duplicate copies of elements,
which means sorting is faster (Algorithm 1) and hash
table lookups are faster due to reduced load factor
(Algorithm 2).

Arrays of Floating-Point Numbers. In this last case of
sequences of primitives, we consider arrays of 64-bit
double-precision floating point numbers, Java’s double
type. We consider the same array lengths and alphabet
sizes as the previous cases, but now the alphabet is a
set of floating-point values. Specifically, the alphabet
Σ contains 1.0x where x is the first |Σ| non-negative
integers.
Figure 5 shows the results for two of the alphabet

sizes: 256 and 65536. Just as in the previous two
cases, Algorithm 2 is consistently faster than Algorithm
1 for computing Kendall tau sequence distance
between arrays of 64-bit double-precision floating-
point numbers, independent of alphabet size and array
length. And again, runtime is longer for both algorithms
with larger alphabet size for the same reasons as before.

4.4. Results on Sequences of Objects

In this section, we explore the performance of the
algorithms on computing distance between sequences
of objects. Specifically, we use arrays of Java String
objects. For example, consider sequences s1 and s2 as
follows:

s1 = [“hello′′, “world ′′ , “hello′′, “blue′′ , “sky′′], (12)

s2 = [“hello′′, “blue′′ , “sky′′, “hello′′ , “world ′′]. (13)

These sequences are a Kendall tau sequence distance of
5 from each other. One sequence of adjacent swaps of
length five that transforms s1 into s2, starts by swapping
“blue” to the left twice, then swaps “sky” twice to the
left, and finally swaps “world” with the right most of
the two copies of “hello.”
We use String objects for this set of experiments

because it is easy to vary the size of a String object; and it
is also relatively easy to create a case where both a hash
and a comparison have cost O(m) where m is object size
(in this case length) as well as a case where a comparison
costs significantly less than a hash.
We consider array lengths L ∈ {28, 29, . . . , 214}, and

alphabet size |Σ| = 256, where the alphabet is a set of
String objects. We consider the following object sizes
m ∈ {20, 21, . . . , 211}. Computing a hash of a String of
length m has cost O(m) regardless of String content.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20000 40000 60000 80000 100000 120000 140000

cp
u

 t
im

e
(s

ec
o

n
d

s)

sequence length

Algorithm 1 Algorithm 2

(a) |Σ| = 256

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20000 40000 60000 80000 100000 120000 140000

cp
u
 t

im
e

(s
ec

o
n

d
s)

sequence length

Algorithm 1 Algorithm 2

(b) |Σ| = 65536

Figure 5. Average CPU time for sequences of 64-bit doubles

from varying size alphabets.

We consider two cases of String formation. In the first
case, each of the 256 Strings in Σ begin with m − 1
copies of Unicode character 0, and only differ in the
last character. In this case, all comparisons also cost
O(m) since linear iteration over the entire String object
is required to determine how they differ. We will refer
to this case as high cost comparisons (HCC). In the second
case, each of the 256 Strings in Σ ism copies of the same
character, but each of the 256 Strings use a different
character. Comparisons in this case either immediately
short circuit on the first character (if they are different)
or require linear iteration if they are identical. We will
refer to this case as low cost comparisons (LCC). For each
combination of L, m, and HCC vs LCC, we generate 10
pairs of sequences. Each pair contains the same set of
objects, but in different random orders. We compute
average CPU time across the 10 pairs of sequences.

In Figures 6 and 7, we show average CPU time
as a function of sequence length for arrays of String
objects 32 characters and 2048 characters in length,
respectively. Part (a) of each figure is the HCC case,
and part (b) is the LCC case. For the small objects
(Figure 6), Algorithm 2 is consistently faster for all
sequence lengths in both the HCC and LCC cases,

10

Vincent A. Cicirello

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

0

0.005

0.01

0.015

0.02

0.025

0 5000 10000 15000 20000

cp
u

 t
im

e
(s

ec
o

n
d

s)

sequence length

Algorithm 1 Algorithm 2

(a) HCC

0

0.005

0.01

0.015

0.02

0.025

0 5000 10000 15000 20000

cp
u
 t

im
e

(s
ec

o
n

d
s)

sequence length

Algorithm 1 Algorithm 2

(b) LCC

Figure 6. Average CPU time for sequences of 32 character long

String objects.

although the performance gap is much narrower in the
LCC case.
For the large object case (Figure 7), Algorithm 2

is faster for all sequence lengths in the HCC case
(Figure 7(a)). For the LCC case (Figure 7(b)), when
the sequence length is long, performance of the two
algorithms appears to converge; but for shorter length
sequences, Algorithm 1 is faster. To see this clearer, we
zoom in on the left side of the graph in Figure 8, where
you can clearly see that Algorithm 1 is faster.

5. Conclusion

In this paper, we presented a new extension of Kendall
tau distance that we call Kendall tau sequence distance.
The original Kendall tau distance is a distance metric on
permutations. We have adapted it to be applicable for
computing distance between general sequences. Both
sequences must be of the same length and contain
the same set of elements, otherwise the Kendall tau
sequence distance is undefined.
We introduced two algorithms for computing Kendall

tau sequence distance. If the sequences contain
primitive values, such as a string of characters, or an
array of primitive integers, etc, then the runtime of

0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000 20000

cp
u

 t
im

e
(s

ec
o

n
d

s)

sequence length

Algorithm 1 Algorithm 2

(a) HCC

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5000 10000 15000 20000

cp
u
 t

im
e

(s
ec

o
n

d
s)

sequence length

Algorithm 1 Algorithm 2

(b) LCC

Figure 7. Average CPU time for sequences of 2048 character

long String objects.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1000 2000 3000 4000 5000

cp
u
 t

im
e

(s
ec

o
n
d
s)

sequence length

Algorithm 1 Algorithm 2

Figure 8. Average CPU time for LCC case with sequences of
2048 character long String objects.

both algorithms is O(n lgn). However, the only O(n lgn)
step of Algorithm 2 is a permutation inversion count
that is shared with Algorithm 1; and thus, Algorithm
2 should be preferred for sequences of primitives. If
one is computing the distance between sequences of
objects of some more complex type, then the size of
the objects in the sequences also impacts the runtime
of the algorithms. However, unless the cost of a hash
of an object is significantly greater than the cost of an

11

Kendall tau sequence distance: Extending Kendall tau from ranks to sequences

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

object comparison, Algorithm 2 is still the preferred
algorithm.
We provide reference implementations of both

algorithms in the Java language. These implementations
have been made available in an open source library.
Our experiments confirm that Algorithm 2 is the
faster algorithm under most circumstances. The code to
replicate our experimental data is also available as open
source.

References

Campos, V., Laguna, M. and Martí, R. (2005) Context-
independent scatter and tabu search for permutation
problems. INFORMS Journal on Computing 17(1): 111–122.
doi:10.1287/ijoc.1030.0057.

Cicirello, V.A. (2016) The permutation in a haystack
problem and the calculus of search landscapes. IEEE
Transactions on Evolutionary Computation 20(3): 434–446.
doi:10.1109/TEVC.2015.2477284.

Cicirello, V.A. (2018) JavaPermutationTools: A java library
of permutation distance metrics. Journal of Open Source
Software 3(31): 950. doi:10.21105/joss.00950.

Cicirello, V.A. (2019) Classification of permutation distance
metrics for fitness landscape analysis. In Proceedings
of the 11th International Conference on Bio-inspired
Information and Communications Technologies (ICST).
doi:10.1007/978-3-030-24202-2_7.

Cicirello, V.A. and Cernera, R. (2013) Profiling the distance
characteristics of mutation operators for permutation-
based genetic algorithms. In Proceedings of the 26th
International Conference of the Florida Artificial Intelligence
Research Society (AAAI Press): 46–51.

Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D. and Vee,

E. (2006) Comparing partial rankings. SIAM Journal on

Discrete Math 20(3): 628–648.
Fagin, R., Kumar, R. and Sivakumar, D. (2003) Comparing top

k lists. SIAM Journal on Discrete Mathematics 17(1): 134–
160.

Kendall, M.G. (1938) A new measure of rank correlation.
Biometrika 30(1/2): 81–93.

Knight, W.R. (1966) A computer method for calculating
kendall’s tau with ungrouped data. Journal of the American
Statistical Association 61(314): 436–439.

Martí, R., Laguna, M. and Campos, V. (2005) Scatter search
vs. genetic algorithms: An experimental evaluation with
permutation problems. In Metaheuristic Optimization via
Memory and Evolution (Springer), 263–282.

Meilă, M. and Bao, L. (2010) An exponential model for
infinite rankings. Journal of Machine Learning Research 11:
3481–3518.

Ronald, S. (1995) Finding multiple solutions with an
evolutionary algorithm. In Proceedings of the IEEE Congress
on Evolutionary Computation (IEEE Press): 641–646.

Ronald, S. (1997) Distance functions for order-based encod-
ings. In Proceedings of the IEEE Congress on Evolutionary
Computation (IEEE Press): 49–54.

Ronald, S. (1998) More distance functions for order-
based encodings. In Proceedings of the IEEE Congress on
Evolutionary Computation (IEEE Press): 558–563.

Sevaux, M. and Sörensen, K. (2005) Permutation distance
measures for memetic algorithms with population man-
agement. In Proceedings of the Metaheuristics International
Conference (MIC2005): 832–838.

Sörensen, K. (2007) Distance measures based on the edit
distance for permutation-type representations. Journal of
Heuristics 13(1): 35–47. doi:10.1007/s10732-006-9001-3.

Wagner, R.A. and Fischer, M.J. (1974) The string-to-string
correction problem. Journal of the ACM 21(1): 168–173.

12

Vincent A. Cicirello

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

01 2020 - 05 2020 | Volume 7 | Issue 23 | e1

https://doi.org/10.1287/ijoc.1030.0057
https://doi.org/10.1109/TEVC.2015.2477284
https://doi.org/10.21105/joss.00950
https://doi.org/10.1007/978-3-030-24202-2_7
https://doi.org/10.1007/s10732-006-9001-3

	1 Introduction
	2 Kendall tau distance for permutations
	2.1 Notation and Assumptions
	2.2 Kendall tau rank correlation
	2.3 Kendall tau distance
	2.4 Partial ranking Kendall tau distance
	2.5 Partial ranking Kendall tau distance is not adjacent swap edit distance
	2.6 Positions of elements in a sequence are not ranks

	3 Kendall tau sequence distance
	3.1 Notation and Assumptions
	3.2 Kendall tau sequence distance equals adjacent swap edit distance
	3.3 Two algorithms to compute Kendall tau sequence distance
	Algorithm 1
	Algorithm 2
	Notes on the Runtimes

	4 Experiments
	4.1 Reference Implementations in Java
	4.2 Experimental Setup
	4.3 Results on Sequences of Primitives
	Strings
	Arrays of Integers
	Arrays of Floating-Point Numbers

	4.4 Results on Sequences of Objects

	5 Conclusion

