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Abstract 

As brown plant hopper (BPH) is one of the most dangerous kinds of insect for rice plant, in recent years, there has been 
increased concern in counting them in light trap images to control their spread in order to reduce their damage on rice 
plant. This paper proposes an approach to counting BPHs in light trap images based on morphological operations. By 
applying these operations appropriately, combined with some noise removal techniques based on color, BPHs in the light 
trap images can be identified. In addition, it is common that the BPHs in the light-trap images are overlapped due to the 
layout of the light trap. Therefore, an approach to counting the overlapped BPHs based on their size is also introduced 
while the sequential region labeling algorithm is used to count the number of the separate BPHs. The experimental results 
show that our proposed approach is suited to identifying and counting the BPHs in images which are overlapped. 
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1. Introduction

Brown plant hopper (BPH) is one of the most dangerous 
insects for rice plants. It harms rice plants by directly 
feeding on them and transmitting many serious diseases 
such as ragged stunt virus and grassy stunt virus. This leads 
to serious losses of rice fields. As a result, BPH is causing 
serious damage on Vietnamese agriculture as well as other 
rice-growing countries [7, 8, 13, 14]. For example, in the 
Mekong Delta of Vietnam, the BPH outbreak caused the 
loss of approximately 1 million tons of rice in 2007, which 
resulted in a government freeze on the export of rice. The 
Office of Agricultural Economics in the Ministry of 
Agriculture and Cooperatives of Thailand reported that the 
outbreaks caused losses worth $52 million during the dry 
season of 2010 [8]. In early 2012, the PRC’s southwestern 
provinces lost about 10 million tons of rice due to heavy 
BPH outbreaks [8]. 

Therefore, reducing damage of BPH is a critical problem 
for these regions to maintain the food supply safety, not only 
for these regions but also for our whole world as they are the 
main rice suppliers for the world. Much research has been 
conducted to introduce several approaches focusing on 
different perspectives, including engineering or bio 
technologies. In this paper, we will propose an approach to 
counting BPH in light-trap images, which is able to deal 
with the overlapped BPHs in the images. 

Section 2 discusses related studies, which is followed by 
the introduction of the BPH morphology and morphological 
operations in Section 3. Then, the proposed approach to 
identifying and counting BPH in images based in 
morphological operations is described in Section 4.2 and 4.3 
respectively. Section 4.4 describes our method to tackle with 
noises in images. Section 4.5 presents the complete 
proposed algorithm. Finally, Sections 5 and 6 provide the 
experimental results, conclusions and future works. 
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2. Related Works

Monitoring BPHs can help to identify the appropriate time 
for starting the crop to reduce their damage on rice plant, 
which is the main focus of this research line. In fact, several 
approaches have been proposed to eliminate the damage of 
BPH on rice plants. One of them is to create new rice 
varieties that have the BPH resistance capability. Many rice 
varieties that are resistant to the brown plant hopper are 
representative their long history of breeding and successful 
application in the field [11-13]. More than 20 resistance 
genes to BPH have been identified and they have been used 
to create rice varieties resistant to BPH such as Mugdo, 
ASD 7, etc. [11, 13]. However, adaptation of BPH to 
resistance limits the effectiveness of resistant rice varieties. 
In addition, changing the genes of rice plant may effect on 
its quality. Therefore, it is needed to find out more 
approaches to dealing with this problem. 

Another approach to detecting BPH infestation is based 
on SPAD (Special Products Analysis Division) reading and 
reflectance of the rice. The results in [9, 21] show that 
SPAD reading and reflectance from rice are significantly 
effected by BPH infestation. The spectral reflectance from 
rice canopy significantly decreased in the near-infrared 
wavelength range as BPH infestations increased. The ratio 
indices of SPAD readings are also significantly related to 
BPH infestations. The main effects of BPH infestations on 
SPAD reading and reflectance are consistent regardless of 
nitrogen application rates. Therefore, the factors have 
potential to detect BPH infestation in rice fields. The results 
of these researches show a potential approach to detecting 
BPH infestation in rice fields. However, reflection and 
SPAD values from the leaves are not only affected by BPH 
infestation but also many other factors such as nitrogen-
fertilizer and the kind of leaves. 

Similarly, Prasannakumar N.R. and Chander Subhash 
also proposed a regression pest-weather model to describe 
the relation between BPH light trap catches and weather 
parameters [16]. The empirical results show that weather 
parameters such as maximum/minimum temperature, 
rainfall, humidity and sunshine hours are closely correlated 
with BPH light trap catches. Although empirical pest-
weather model had significantly contributed in 
understanding pests population dynamics, it is influenced by 
local conditions and thus behaves in a location-specific 
manner. The pest population is thus shown to be affected by 
different factors at various locations. 

Another approach to this problem is to apply the 
information techniques such as image processing [10, 17] 
and digital signal processor [22]. In these studies, the 
authors proposed several approaches to detecting BPH in 
images based on machine learning (e.g. AdaBoots, SVN, 
etc.) and image processing techniques (e.g. single-threshold 
segmentation, wavelet transform) to detect BPH. In 
addition, in [22], the mathematical morphology de-noising 
operations were also used to remove noises from the images. 
Basically, these studies can detect the BPH in the image 
automatically. However, they still have limitation: i) some 
of them have not been well-investigated [22]; ii) the pre-

processing and de-noising steps are still simple and 
ineffective, this leads to the detection accuracy was only 
about 70% - 85% [15, 17]; iii) some of them cannot count 
the BPH in images [10]. In addition, the morphological 
operations have not been used effectively. They were mainly 
used for de-noising and removing the redundant details in 
the images while their capability is beyond this task. 

An approach to removing BPHs in light-trap images was 
proposed [1]. In this research, the authors used the 
morphological operations to identify and combined some 
other algorithms to count BPHs. The authors also introduced 
some techniques to remove noise in the images based on 
colour and size of the BPHs. These techniques are able to 
reduce the true negative counting in case there exists other 
insect in the images. However, their approach may produce 
false positive counting when the BPHs are overlapped in the 
images, which is very popular in practice due to the layout 
of light traps. 

Therefore, in this paper, we propose an approach to 
counting BPH in images based on the morphological 
operations. These operations are used to identify the 
morphological characteristics of the BPH in images. The 
result of this task will be combined with the well-studied 
morphological characteristic of the BPH to detect and count 
them. In addition, we also use these operations in 
conjunction with the colour of the BPH in the pre-
processing step to remove noises in the images to increase 
the accuracy of the detection. In addition, we also introduce 
a technique to deal with the overlapped BPHs in images 
based on their size. 

3. BPH Morphology & Morphological
Operations

To detect and count BPHs based on the morphological 
operations, we identify their morphological characteristics 
and examine the possible morphological operations. These 
two aspects are the basics for our approach. 

3.1. Brown Plant Hopper Morphology 

BPHs have yellowish brown body and their head over- 
hangs towards the front. Their wings are transparent and the 
front wings have a black spot at the back side. The 
morphological characteristics of the BPH depend upon their 
stage. The BPH egg has crescent shape (about 0.3 to 0.4 
mm) and whitish. In this stage, the BPH is not damage the
rice. The BPH nymphs are small, have creamy white with
pale brown tinge. Their colour gradually turns into light
brown when growing. The length of adult BPHs body
depends on their sex and stage of life. Adult male BPH body
length is about 3.6mm to 4.0mm while female BPH body
length is longer, about 4.0mm to 5.0mm. The whole body of
the long-wing BPHs are covered by their wings while only a
part of the short-wings BPHs body are covered by their
wings. The BPH are most damaged at the nymph and adult
stage. In our system, the detection is mainly based on the
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shape and size of the BPHs. Their colour will be used to 
remove the insects other than BPHs. Figure 1 describe 
figure of some stages of BPH life. 

Figure 1. Eggs, nymphs and adult BPHs 

3.2. Morphological Operations 

Mathematical morphology is a theory and technique for 
analysing and processing geometrical structures, based on 
set theory, lattice theory, topology and random functions [6, 
18, 19]. It contributes a wide range of operators to image 
processing that is particularly useful for the analysis of 
binary images. The common usages of these operators 
include edge detection, noise removal, image enhancement 
and segmentation. 

Morphological operators often take a binary image and a 
structuring element as input and combine them using a set 
operator. They process objects in the input image based on 
characteristics of its shape, which are encoded in the 
structuring element (also known as kernel). The two most 
basic operations in mathematical morphology are erosion 
and dilation. Other morphological operators are defined 
based on these operators including the opening and closing 
operators. In this section, we will introduce these operators 
applying to binary images only. A binary image I is 
generally considered as an array of values I(x, y) such that 
I(x, y) = 1 | 0 for the pixel location (x, y). Alternatively, a 
binary image can be represented as a set of all the 
foreground pixels, i.e. pixels that have the 1-value [2]. 

Structuring element. The structuring element consists of a 
pattern specified as the coordinates of a number of discrete 
points relative to some origin. For the binary image, a 
structuring element H is a small image in which each pixel 
has a value of 0 or 1: H(i, j) ∈ {0, 1}. Some basic structuring 
elements are square, diamond, cross, diagonal cross, 
horizontal line, vertical line. 

Figure 2 shows some structuring elements that are widely 
used for binary image processing with the origins are 
circled. 

Figure 2. Basic structuring elements for binary 
image processing 

Erosion. The erosion of a binary image B by a structuring 
element S, denoted by B ⊖ S, is a set of points x such that H 
is included in B when its origin is placed at x: B ⊖ S = {x | 
Hx ⊆ B}. The basic effect of the operator on a binary image 
is to erode away the boundaries of regions of foreground 
pixels (i.e. white pixels, typically). Thus, area of foreground 
pixels shrinks in size, and holes within those areas become 
larger. 

The erosion removes small-scale details from the binary 
image but also reduce the size of region of interest. This 
operator can be used to find the boundaries of each region in 
the images by subtracting the eroded image from the 
original one. 

Dilation. The dilation of a binary image B by a structuring 
element S, denoted by B ⊕ S, is a set of points x such that H 
hits B when its origin coincides with x: B ⊕ S = {x | Sx ∩ B 
≠ ∅}. The basic effect of the operator on a binary image is to 
gradually enlarge the boundaries of regions of foreground 
pixels (i.e. white pixels, typically). Thus, areas of 
foreground pixels grow in size while holes within those 
regions become smaller. 

Opening. The opening operators of a binary image B by a 
structuring element S, denoted by B ◦ S, is defined as the 
erosion of B by S followed by the dilation by S: B ◦ S = (B 
⊖ S) ⊕ S. This operator makes stray foreground structures 
that are smaller than the S structure element will disappear 
while larger structures will remain. The structures that are 
survived after the erosion are restored to their original size 
by the dilation. This is an idempotent operator: once the 
image has been opened, subsequence openings with the 
same structure have no further effect. 

Closing. This operator is also derived by the erosion and 
dilation operators. The closing operator of a binary image B 
by a structuring element S, denoted by B • S, is defined as 
the dilation followed by the erosion operators: B • S = (B ⊕ 
S) ⊖ S. This operator preserves background regions that
have a similar shape to the structuring element, or that can
completely contain the structuring element, while
eliminating all other regions of background pixels. Like
opening, this is also an idempotent operator.

Effect of the above operations is demonstrated in Figure 
3. We also borrow an example from Wolfram2 to
demonstrate the application of these operators, which is
shown in Figure 4.

Figure 3. Effect of the morphological operations

2 http://www.wolfram.com/
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Figure 4. Demonstration of the morphological applications (Source: Wolfram) 

Figure 5. A model for detecting and counting BPH in images 

4. Counting BPHs Based on
Morphological Operations & Sequential
Region Algorithm

In this section, we will propose a model for detecting and 
counting BPHs in images based on morphological 
operations and the sequential region labelling algorithm. 
The model is shown in Figure 5 which includes three 
steps: i) pre-processing, ii) identifying BPHs in image, 
and iii) counting number of BPHs. 

4.1. Pre-processing 

The objective of this step is to increase the input image 
quality and convert it into binary image. Images taken by 
the light trap usually have unbalanced brightness and 
noise. Therefore, it is necessary to take the pre-processing 
step to reduce noise and increase quality of the input 
image to improve the accuracy of the proposed system. In 
addition, the input image will be converted into binary 
form so that we can use binary morphological operations 
in the image to improve performance of the system. This 
step includes 3 tasks: 

1. Convert the input RGB image into gray image
using the approach proposed in [5] as follow:

 (1)

in which, R(x, y), G(x, y), and B(x, y) are the red, 
green and blue level of the pixel at (x, y) in the 
RGB image; I(x, y) is the gray level of the pixel at 
(x, y) in the output gray image. 

2. Increase image contrast using the linear transform
histogram algorithm [5]:

 (2) 

in which, I′(x, y) is the grey level of the pixel at (x, 
y) in the output image; I(x, y) is the grey level of
the pixel at (x, y) in the input image; max and min
are the maximum and minimum gray level of the
input image respectively.

3. Convert grey image into binary image using
adaptive threshold method [3]:

 (3) 

in which, B(x, y) is the binary value of the pixel at 
(x, y); I′(x, y) is the grey value of the input image 
at (x, y); T(x, y) is the local threshold value of I′(x, 
y). 

4.2. Identifying Brown Plant Hoppers 

The objective of this step is to identify BPHs in image 
based on their morphological characteristics using the 
morphological operations. The input image, after pre-
processed in the first step, will be applied the 
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morphological two times to highlight the BPHs appearing 
in the image based on their size. 

First, we use the opening operation on the input pre-
processed image by the 3 × 3 diamond structuring element 
to reduce the small noisy pixel in the image. The 
structuring element used in this step was selected based 
on the size morphology of BPH and our experimental 
result on different type of structuring elements and BPH 
images. 

Next, we apply the opening operation again on the 
image produced by the above step to remove the objects 
other than BPHs based on the BPH shape morphology. 
Several experiments had been conducted to find out an 
appropriate structuring element for the opening operation 
in this step. Due to the limitation on the paper’s length, 
detail of the experiments is not presented. Our 
experimental result suggests the most suited structuring 
element is the square one. It was produced by combining 
the different shapes of the BPHs observed in the images 
as described in Figure 6. The opening operation in this 
step not only helps to remove the object other than BPHs 
but also helps to separate the remained BPHs in the 
image. 

Result of this step is demonstrated in Figure 7. 

Figure 6. Finding structuring element for 
identifying BPHs 

Figure 7. Identifying BPHs using the opening 
operation 

4.3. Counting Brown Plant Hoppers 

To count BPHs in the processed image, we use the 
sequential region labelling algorithm with the 4- 
connected neighbourhood. The number of BPHs is the 
number of labelled areas. Figure 8 demonstrates the result 
of applying the sequential region labelling algorithm on 
the image produced by the BPHs identifying steps in 
Figure 7. 

Figure 8. Counting BPHs based on sequential region 
labelling algorithm 

4.4. Dealing with overlapping BPHs 

Due to the light trap layout, BPHs tends to be overlapped 
in some regions of the trap. Therefore, to increase the 
accuracy of our counting algorithm, we introduce a 
further step in our algorithm based on the size 
morphology of BPH. 

From our investigation into BPH morphological 
characteristics, adult and nymph BPH size is often from 
3.6mm to 5.0mm. Support that the distance between 
camera and the base of light trap is 20cm (a typical 
distance), size of the BPH in images will be about 9 to 40 
pixels. Therefore, the regions whose area are greater than 
40 pixels are likely invalid areas of normal BPHs. In our 
research, these regions are supposed the overlapped 
BPHs. 

To count the overlapped BPHs, we will recognise such 
regions in the image and compute their area. The average 
size of BPHs is used to estimate the number of overlapped 
BPHs in those regions. This step is combined in the BPH 
counting algorithm presented in Section 4.3. 

4.5. The Algorithm 

Algorithm 1 implements our proposed approach for 
counting BPHs in images described in Section 4. This 
algorithm takes an RGB image as the input and returns a 
region-labelled image and the number of BPHs in the 
image. 

Algorithm 1. Morphological-Based BPH Detection Agl. 
Input: An RGB-image I. 
Output: A region-labelled image L and the number of 

BPHs in the image L. 
1 begin 
2 MAX_SIZE = 40 pixels //BPH max size 
3 MIN_SIZE = 9 pixels //BPH min size 

/*---------------------------------------- */ 
/* 1. pre-processing step   */ 
/*---------------------------------------- */ 
//convert I to gray using Eq. 1 

4 G = convertToGray(I)  
//increase contrast of G using Eq. 2 

5 GL =  linearTransform(B) 
//convert GL to binary using Eq. 3 

6 B = toBinary(GL) 

/*---------------------------------------- */ 
/* 2. Analysing BPH structure  */ 
/*---------------------------------------- */ 
//get the invert image of B 
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7 BI = invert of B 
8 S1 = diamond structuring element size 3x3 
9 S2 = square structuring element size 3x3 
10 O1 = BI ° S1  //opening BI by S1 
11 O2 = O1 ° S2 //opening O1 by S2 

/*---------------------------------------- */ 
/* 3. Identifying & counting BPHs  */ 
/*---------------------------------------- */ 
//L: region-labelled image 

12 L = seqRegionLabelling(O2) 
13 n = 0    //number of BPHs 

/*---------------------------------------- */ 
/* 4. BPH average size is currently used */ 
/*---------------------------------------- */ 

14 AVG_SIZE = (MAX_SIZE + MIN_SIZE) / 2  
15 foreach region r in L do 
16 if size of r < MAX_SIZE then 
17  n = n + 1 
18 else 
19 n = n + (n / AVG_SIZE) 
20 endfor 
21 return (LR, n) 
22 end 

The algorithm includes 4 steps as described above. To 
count the number of BPHs in overlapping region, the 
BPH average size currently used is the average value of 
the smallest (3.6mm) and the biggest (5mm) BPH size [4]. 
Projection of this size from the distance about 20cm from 
the light trap to the trap-base will be 9 and 40 pixels 
correspondingly. This may not be the only choice for 
identifying this value. However, in the scope of this 
paper, we have not taken further investigation and leave it 
for future work. 

5. Evaluation

To evaluate the proposed approach, we chose 10 images 
in our light trap BPH dataset that contain totally 907 
BPHs. Four of the 10 images (numbered 1 to 4) do not 
contain overlapping BPHs while the remaining ones 
(numbered 6 to 10) contain different level of overlapping. 
This dataset had been created by a light trap simulated 
system in which the BPHs were intentionally dropped into 
the light trap base. This method enables us to count the 
number of BPHs in each image so that we can calculate 
the accuracy of the proposed algorithms. The camera used 
in the light trap is Pixy1 with the resolution is 320 x 
200px. Figure 9 demonstrates two images in our dataset. 

Figure 9. Example of the images in the dataset 

We employed three measurements to evaluate the 
proposed approach, which are the precision, recall and F1 
score. These evaluation metrics are defined as follows: 

(4) 

 (5) 

(6) 

in which, true positive is number of BPHs correctly 
detected, false positive is the numbers of wrong 
detections, and false negative is the number of BPHs 
missed detection. 

Only 10 images are chosen for the evaluation because 
counting the true positive, false positive and false 
negative values to calculate F1 score must be performed 
manually and this is a complex and time consumed task. 
For examples, we have to compare each region, which is 
detected containing BPHs, with the corresponding region 
in the original images to check whether the detection is 
correct (true positive) or not (true negative). In addition, 
for regions that contain overlapping BPHs, the task is 
more complicated. Therefore, in this case, the number of 
images chosen for this evaluation is sufficient to evaluate 
the proposed approach. 

Our proposed algorithm is compared with another 
algorithm introduced in [20]. The algorithm in [20] is 
chosen to compare with our algorithm as it is also based 
on morphological operations but it does not concern the 
overlapping BPHs. Therefore, a t-test rejected the null 
hypothesis at the 95% confidence level is used to test the 
statistically significant difference between experimental 
results. 

The experimental result is shown in Table 1. The 
average F1 score of our algorithm on the 10 evaluated 
images is 90.16% ± 3.48% (average value ± standard 
deviation) while the F1 score achieved by the algorithm 
proposed in [20] is only 82.61% ± 2.68%. The paired t-
test on this result shows that the F1 score achieved by our 
algorithm is statistically significantly better than that of 
the compared algorithm. This means that in general case, 
on the dataset that contains both overlapped and non-
overlapped BPHs, our algorithm improves the accuracy 
significantly. 

A further investigation on each group of the evaluated 
images shows that on the images without overlapping 
BPHs (image 1 to 4), our algorithm produces smaller F1 
score than that of the compared algorithm. A deeper 
analysis on the evaluation result indicates that the 
reduction of F1 score is caused by an exception in the 1st 
image. This image contains a big BPH whose size is 
bigger than 40px, which is considered as the biggest size 
of a typical BPH. Therefore, our algorithm miscounts this 
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as overlapping BPHs. This is a true negative case and thus 
it causes reduction of both precision and recall. As the 
result, F1 score also reduces. However, the t-test shows 
that the results on this group are not statistically 
significantly different at 95% confidence level (the two-
tailed p-value is around 0.391). This means that the 
reduction of F1 score for this group of images is not 
significant. 

On the other hand, our algorithm achieves 88.4% ± 
3.08% of F1 score on the second group of images (images 

with overlapping BPHs) while the compared algorithm 
achieves only 75.33% ± 9.58%. This result shows that our 
approach to deal with overlapping BPH helps to increase 
the accuracy about 13.1% in which the precision increases 
about 9.9% and the recall increases about 25.7%. The t-
test shows that all F1 score, precision and recall achieved 
by our results are statistically significantly better than that 
of the compared algorithm at more than 99% confidence 
level.

Table 1. Experimental result (The numbers after ± sign: standard deviations). Bold values: statistically significantly 
better than the corresponding unformatted values at 95% confidence level 

6. Conclusion and Future Work

Our approach to counting BPHs in light trap images
containing overlapping individuals shows a promising 
result on the dataset used in the evaluation. By taking the 
BPH size morphology into the consideration, our 
approach significantly improved the counting accuracy, 
particularly on the images that contain overlapping BPHs. 
However, our investigation also reveals that this approach 
can also work well on the images that do not contain the 
overlapping individuals. Results of our experiment were 
found statistically significant in comparison with the 
compared algorithm at at-least 95% confidence level. 

To avoid the distraction from noise, we did not use the 
noisy images, which contain other insects or images with 
bad lighting condition, in the evaluation. Thus, more 
experiments on this algorithm may be needed to have a 
more thoughtful investigation on this approach. 
Techniques to deal with noise data may need to be 
employed to the current implementation to make the 
algorithm more durable. In addition, as described in 
Section 4, we used the average size of the smallest and the 
biggest BPH to computer the number of BPHs in 
overlapping regions. However, this may not be an optimal 

strategy as the average size of BPHs may depend upon a 
particular circumstance such as the time, the area, and the 
like. There may be some other strategies such as using the 
average size of the BPHs in the image, which can be 
computed from the size of separated BPHs. We leave 
those problems for the future work. 
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