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order to store it in the entire distributed database to
make it consistent.

b) Competitors download the problem and (eventu-
ally) the algorithm provided by the proponent and try
to resolve it. They can set up their own algorithms,
or use existing ones, regardless of the type (i.e., exact
methods, heuristics, metaheuristics etc.), store them
into the database and share the obtained solutions on
the marketplace.

c) Competitors post their solutions: (i) the one who
posts the best solution for the problem up to that
moment get rewarded; (ii) those who post solutions as
open-source – regardless whether they are the best ones
– get rewarded for having shared them with everyone.
The reward is bounded by the gamified rewarding rules
in section 2.3; (iii) those who want to post solutions with
the intent of selling it – and are not the best ones for the
problem up to that moment – must pay an amount of
tokens to do it.

d) When nodes perform actions on the network or on
the database, e.g., they post, sell or buy a solution or
transfer their ownership, those are validated by other
peers to guarantee the integrity and the ownership of
each operation.

Figure 2 represents the ideal workflow previously
outlined using a simple UML sequence diagram. The
diagram outlines the scenario in which a proponent
posts a problem and a competitor resolves it and posts
the solution as open-source (or the solution result is the
best one for the problem). If the solution is not the best
one for the problem and it is not open-source, arrow
at step 7 must be reversed and labelled "pay to public
solution as private".

3. Example: Competing for the Knapsack Problem
The Knapsack Problem (KP) is a well-known NP-hard
problem: given a set of items, each with a weight and a
value, determine which item to include in a collection
so that the total weight is less than or equal to a
given limit and the total value is as large as possible.
The problem often arises in resource allocation where
there are financial constraints and is studied in fields
such as combinatorics, computer science, complexity
theory, cryptography, applied mathematics, and daily
fantasy sports. In this section we show an example
of the application of Genetic Algorithm (GA) to the
Knapsack Problem [6] and how competitors can take
advantage from the properties of techniques such as GA
and compete to find the "best so far" solution for such a
problem.

Genetic Algorithm is a metaheuristic inspired by
the process of natural selection that belongs to
the larger class of evolutionary algorithms (EA).
GAs are commonly used to generate high-quality
solutions to optimization and search problems by

relying on bio-inspired operators such as mutation,
crossover and selection. During the course of evolution,
natural populations evolve according to the principles
of natural selection and "survival of the fittest".
Individuals which are more successful in adapting to
their environment will have a better chance of surviving
and reproducing, whilst individuals which are less fit
will be eliminated. This means that the genesfrom
the highly fit individuals will spread to an increasing
number of individuals in each successive generation.
The combination of good characteristics from highly
adapted ancestors may produce even more fit offspring.
In this way, species evolve to become more and more
well adapted to their environment. A GA simulates
these processes by taking an initial population of
individuals and applying genetic operators in each
reproduction. In optimisation terms, each individual in
the population is encoded into a string or chromosome
which represents a possible solution to a given problem.
The fitness of an individual is evaluated with respect
to a given objective function. Highly fit individuals
or solutions are given opportunities to reproduce by
exchanging pieces of their genetic information, in a
crossover procedure, with other highly fit individuals.
This produces new "offspring" solutions (i.e., children),
which share some characteristics taken from both
parents. Mutation is often applied after crossover
by altering some genes in the strings. The offspring
can either replace the whole population (generational
approach) or replace less fit individuals (steady-state
approach). The basic steps of a simple GA are: (1)
generate the initial solution; (2) valuate fitness of
individuals in the population; (3) select parents from
population; (4) recombine parents to produce children;
(5) evaluate fitness of the children; (6) replace some or
all of the population by the children. The evaluation-
selection-reproduction cycle (steps 3 to 6) is repeated
until a satisfactory solution is found or a stop criterion
is reached.

3.1. Problem representation and objective function
The one-dimensional Knapsack Problem can be formu-
lated as follows:

maximise
n∑
i=1

cixi (1)

subject to
n∑
i=1

wixi ≤ W (2)

wherein n is the number of items; ci and wi are the
value and the weight of the i-th item, respectively; W
is the maximum capacity; and x is a integer variable
that indicates the possibility that an item is included
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Figure 2. Gamified blockchain-based marketplaces: a workflow - notation loosely based on UML sequence diagrams.

Figure 3. Binary representation of a KP solution.

in the collection. In this example we consider the 0-
1 Knapsack problem, therefore xi ∈ {0, 1} is a binary
value, meaning that each item can be included zero or
one times in the collection.

The first step in designing a genetic algorithm for a
particular problem is to devise a suitable representation
scheme, i.e., a way to represent individuals in the GA
population. The standard GA 0-1 binary representation
is an obvious choice for the one-dimensional Knapsack
Problem since it represents the underlying 0-1 integer
variables. Hence, in this representation, we used a n-
bit binary string, where n is the number of variables
in the KP. A value of 0 or 1 at the i-th bit implies
that xi = 0 or 1 in the solution, respectively. This
binary representation of an individual’s chromosome
(solution) for the KP is illustrated in Figure 3. Note
that a bit string S ∈ {0, 1}n might represent an infeasible
solution. An infeasible solution is one for which the

constraint (2) is violated, i.e.,
n∑
i=1

wixi > W .

3.2. Initial Population
To achieve sufficient diversification one can randomly
generate an initial population with a high size being
fixed (e.g. n = 100) and construct each of the initial
feasible solutions by a primitive primal heuristic that

repeatedly randomly selects a variable and sets it to
one if the solution is feasible. Another competitor
can generate the initial population changing its size
and using a simple constructive greedy or a clever
heuristic to construct initial solutions rather than
randomly generate them. Competitors can initialize
their population as they want as long as the final posted
solution is feasible for the problem.

3.3. Parent Selection
Parent selection is the task of assigning reproductive
opportunities to each individual in the population.
Typically in a GA we need to generate two parents
who will have (one or more) children. The tournament
selection method works by forming two pools of
individuals, each consisting of t individuals drawn
from the population randomly. Using a larger value
for t has the effect of increasing selection pressure on
the more fit individuals. A competitor can adopt the
standard binary tournament selection method (i.e., t =
2) as the method for parent selection because it can
be implemented very efficiently. Another competitor
can base its selection on other criteria such as Roulette
Wheel Selection where the probability for an individual
to be selected is proportioned to its fintess; Rank
Selection; Random Selection, etc.

3.4. Crossover and Mutation
The binary, problem-independent, representation
adopted for the KP in this example allows a wide range
of the standard GA crossover and mutation operators
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to be adopted. Competitors can choose among several
crossover operators. In a one-point crossover, a random
crossover point is selected and the tails of its two
parents are swapped to get new off-springs. Multi-point
crossover is a generalization of the one-point crossover
wherein alternating segments are swapped to get new
off-springs. In uniform crossover the chromosome is
not divided into segments, rather it treats each gene
separately. Two parents have a single child. Each
bit in the child solution is created by copying the
corresponding bit from one or the other parent, chosen
according to a binary random number generator [0,
1]. If the random number is a 0, the bit is copied from
the first parent, if it is a 1, the bit is copied from the
second parent. There exist a lot of other crossovers
like Partially Mapped Crossover (PMX), Order based
crossover (OX2), Shuffle Crossover, Ring Crossover, etc.
Once a child solution has been generated through
crossover, a mutation procedure is performed that
mutates some randomly selected bits in the child
solution, i.e., causes these chosen bits to change from
0 to 1 or vice versa. The rate of mutation is generally
set to be a small value (in the order of 1 or 2 bits
per string). However, each competitor can define the
mutation value she desires.

3.5. Repair operator
Clearly, the child solution generated by the crossover
and mutation procedures may not be feasible because
the Knapsack constraints may not all be satisfied. In
order to guarantee feasibility, competitors can apply
several heuristics, such as a simple greedy algorithm.

3.6. Stopping Criterion
The following three kinds of termination conditions
have been traditionally employed for GAs [16]: (i) an
upper limit on the number of generations is reached;
(ii) an upper limit on the number of evaluations of
the fitness function is reached; or (iii) the chance of
achieving significant changes in the next generations
is excessively low. However, there are a lot of other
criteria defined in the literature, all with their pros
and cons. Competitors can choose among them or
define their own stopping criteria. A simple stopping
criterion could be based simply on the execution time a
competitor is willing to spent.

3.7. Algorithmic outline
Settings of the GA heuristic a competitor can use for the
KP are:

• the binary tournament selection method;

• the uniform crossover operator;

• a mutation rate equal to 2 bits per child string;

• to discard any duplicate children (i.e., discard
any child which is the same as a member of the
population);

• the steady-state replacement method based on
eliminating the individual with the lowest fitness
value.

This settings can be included as solution information
when a competitor posts the solution generated by
this algorithm set up. Of course, competitors can use
simpler heuristics than GAs and also obtain better
results, depending on the problem instance and search
technique used.

Let’s consider the data in Table 1 and a weight
limit of 20. In this case there exist two optimal
solutions that can be found with different algorithms.
The optimal solutions consist of selecting the 2nd and
7th item or the 7th and 8th item, and are generated
following the binary representation showed before:
(0,1,0,0,0,0,1,0) and (0,0,0,0,0,0,1,1) both with a weight
of 19 and a total value of 8. The solutions are then
evaluated by the validation algorithm provided by the
proponent, with the purpose to check their feasibility
and execute the objective function to measure their
quality. Once accepted the system provides to insert
them into the database, together with the algorithm
information, and register them on the blockchain
whose transactions are validated by other peers to
guarantee the integrity and the ownership of those
operations as mentioned in section 2.5. At this point,
people on the network can buy, sell or exchange those
solutions and the algorithm set up through smart
contracts that establish and guarantee the conditions
to be respected for their use, payment and their
eventual ownership transfer. For example, competitors
could have generated intermediate solutions such
as (0,1,1,0,0,0,0,0) or (0,0,0,0,0,1,1,0) of value 7
and weight 18 and 20, respectively. Those solutions
could be acquired, through smart contracts, by other
peers to solve similar problems or, for example, to
use them as part of the initial population in a
evolutionary algorithm. Finally, instead of competing,
competitors could also cooperate starting from a initial
population and share computational efforts to create
new generations (i.e., children) in a distributed fashion
and split the rewards. Smart contracts guarantee that
each competitor will be rewarded by the effort spent to
find the final solution and all the information will be
stored on the blockchain.

4. Discussion
The problems we want people to solve on our
marketplace often apply in areas where there is no
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item 1 2 3 4 5 6 7 8
value 5 3 4 6 3 1 5 3
weight 15 8 10 14 11 9 11 8

Table 1. Example of data for the KP.

existing best solution. This is particularly true in
the engineering. It is natural in the resolution of
new problems of engineering fields that there are,
at first, moments characterized by enthusiasm, early
important results and the excitement that goes with
them. However, this excitement is often struck down
by the fact that no optimum solution is known, and
the actual results could be not the best ones. Clearly,
this is the case of search-based optimization problems,
that involve search techniques to find the best solution
in a huge space of possible solutions. There are three
key ingredients for the application of search-based
optimization to a widely number of applications: (i)
the choice of the representation of the problem; (ii)
the definition of the objective function; and (iii) a set
of manipulation operators. Typically, a proponent will
have a suitable representation for her problem, so the
first of the pre-requisites is easily satisfied. Even the
objective function is defined by the proponent, which
is posted together with the problem representation
and its description. However, the objective function
can be proposed by competitors and eventually
accepted by the proponent, for example through a
stacking mechanism. Competitors, for their parts, can
define manipulation operators or using existing ones.
Different search techniques use different operators.
As a minimum requirement, it will be necessary to
mutate an individual representation of a candidate
solution to produce a representation of a different
candidate solution. It will make it possible to apply hill
climbing approaches and certain forms of evolutionary
computation. If it is possible to determine the set of
"near neighbors" of a candidate solution (in term of
its representation) then simulated annealing and tabu
search can be applied. If, instead (or in addition), it
is possible to sensibly cross-over two individuals (to
produce a "child" which retain characteristics of both
"parents") then genetic algorithms will be applicable.
With these three ingredients it becomes possible to
implement search algorithms. The results of the search
algorithms can be compared, for example using random
search or other algorithms provided by the competitors
or by the proponent itself, to provide as baseline data.
Naturally, the aim is to beat them, though in some areas
even a purely simple, unsophisticated algorithm, such
as random search, has been found to be not without
value, even beating human-directed search in some
cases. This fact is supported by the "no free lunch"
(NFL) theorems that establish that for any algorithms

any elevated performance over one class of problems is
exactly paid for in performance over another class [20].
Of course, the goal is to find the best solution for a given
problem, regardless from the used algorithm. However,
having different algorithms to compare – and solutions
generated by these algorithms – allows researchers and
people to understand and balance the results with
performance, with the possibility to create an ontology
of problems and related algorithms together with their
best solutions and information.

There exist a lot of search-based optimization
algorithms and techniques. Although competitors can
use precise optimization algorithms such as linear
programming6 to solve problems – and we encourage
them to do so, whenever possible –, those are
straightforward deterministic algorithms. Even though
modern solvers can deal with thousand of variable and
millions of clauses, these deterministic optimization
algorithms are often inapplicable because the problems
have objectives that cannot be characterized by a
set of linear equations. Often there are multiple
criteria and complex objective functions. Many of
the optimization problems are augmented versions of
known NP-complete problems and, as such, they are
well suited to the application of metaheuristic search
techniques. A metaheuristic is a high-level problem-
independent algorithmic framework that provides a
set of guidelines of strategies to develop heuristic
optimization algorithms. The term is also used to refer
to a problem-specific implementation of a heuristic
optimization algorithm according to the guidelines
expressed in such a framework [18]. A metaheuristic
is not an algorithm. Rather, it is a consistent set
of ideas, concepts, and operators that can be used
to design heuristic optimization algorithms. This
acknowledgment brings with it all of issues that are
associated with the application of metaheuristic search
techniques: (i) global optimum; (ii) predictability; and
(iii) computational expense.

Global Optimum. There is no guarantee that the global
optimum will be found. In many applications, there is a
threshold, above which a solution will be "good enough"
for purpose. Furthermore, optimization may not seek to
find an optimal solution to a problem, but rather, it may
seek to improve upon the current situation.

Predictability. Each execution will potentially yield
different results. It is true that each execution of
a metaheuristic search algorithm can yield different
results, but all search algorithms are formulated in such
a way that repeated executions can only improve on a

6Linear programming is a mathematical optimization technique that
is guaranteed to locate the global optimum solution subject to some
linear expression in the decision variables given as input to the linear
programming model.
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"best so far" result, rather than overturning a previous
result. The algorithms may be terminated at any time
and also after any number of executions to yield results
which are the "best so far".

Computational Expense. Many individual candidate
solutions may need to be considered before an
acceptable quality solution is found. The kinds of
problems to which search techniques seem to be readily
applicable, are those where the solution is highly
complex. While speedy answers may be attractive, they
are not essential in many applications. To overcome
computational expense, competitors can solve problems
in a distributed fashion, sharing their computational
power and split the rewards, as nowadays happen with
the famous "mining pools". Several techniques can be
used that involve parallelism (e.g., Multiple Threads,
Island Models, Master-Slave Fitness Assessment) [12]
and different reward approaches exist (e.g., slush’s
pool, pay-per-share, p2pools, etc.).

An attractive field to which search-based optimiza-
tion techniques have been widely applied is software
engineering [8, 9]. Many of the problems faced by soft-
ware engineers turn out to have natural counterparts
as "standard" optimization problems. Indeed, from its
formal definition to this date a huge number of software
engineering problems have been mathematically for-
mulated as optimization problems and tackled with a
considerable variety of search-based techniques. Often,
of course, there are some modifications and enhance-
ments that are required and suitable representations
and objective functions must be formulated for each
problem; therein lies interesting and exciting research.

5. Conclusions and Future Work
The role of blockchain technology to structure effective,
trust-based and cooperative software engineering
solutions is not clear yet but offers ample potential
and great opportunity. The solution we outlined in the
previous pages combines state of the art blockchain
technologies in a new way and includes in the midst all
the elements of gamification in a purposeful way such
that a business-savvy software-based solution can be
structured. Although a proof-of-concept of our proposal
is currently under way of prototyping, we are looking
to formalize our proposal using more structured
approaches to software and requirements engineering,
properly exploring the solution space defined by
our proposed design pattern and understanding its
factual feasibility beyond the theoretical illustration
and discussion we currently offered. In the future we
plan to carry out such formalization, addressing in
particular the business benefits behind the solution
possibly by means of industrial empirical software
engineering research. From a technical perspective, we

aim at eliciting the different technical implementation
options currently existing to support blockchains (e.g.,
Ethereum, Hyperledger) and comparatively analyze
their fitness for purpose towards designing for,
implementing, and operating prototypes for the
proposed idea. We plan to propose a software-centric
business model behind the proposed solution such
that the proposed design pattern may be accompanied
by a sound and well-thought business plan template
around which companies and practitioners interested in
blockchain technology may base their own solutions.

Finally, although this framework promotes sharing
open-source solutions, others rules can apply. We also
aim at creating a platform that allows proponents
to create contests and define their own rules, in
accordance with the design pattern presented, defining
a distributed ledger model that marks the progress of
problem solving as intellectual capital.
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