
Kernel-Space Intrusion Detection Using
Software-Defined Networking
Tommy Chin1, Kaiqi Xiong2,*, and Mohamed Rahouti2

1Rochester Institute of Technology, Rochester, New York, 14623, USA
2University of South Florida, Tampa, Florida 33620, USA

Abstract

Software-Defined Networking (SDN) has encountered serious Denial of Service (DoS) attacks. However,
existing approaches cannot sufficiently address the serious attacks in the real world because they often
present significant overhead and they require long detection and mitigation time. In this paper, we propose a
lightweight kernel-level intrusion detection and prevention framework called KernelDetect, which leverages
modular string searching and filtering mechanisms with SDN techniques. In KernelDetect, we sufficiently
utilize the strengths of the Aho-Corasick and Bloom filter to design KernelDetect by using SDN. We further
experimentally compare it with SNORT and BROS, two conventional and popular Intrusion Detection and
Prevention System (IDPS) on the Global Environment for Networking Innovations (GENI), a real-world
testbed. Our comprehensive studies through experimental data and analysis show that KernelDetect is more
efficient and effective than SNORT and BROS.

Received on 01 May 2018; accepted on 02 June 2018; published on 09 October 2018
Keywords: Intrusion Detection and Prevention Systems (IDPS), Software-Defined Networking (SDN), Bloom Filter, Aho-
Corasick, Security

Copyright © 2018 Tommy Chin et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.13-7-2018.155168

1. Introduction
Software-Defined Networking (SDN) has become an
emerging technology in computer science and engineer-
ing. It has been applied to solve a variety of real-world
problems such as cloud resource managements, net-
work provisioning, storage management, network intel-
ligence and monitoring, distributed service control and
cloud integration, high performance computing, and
an Intrusion Detection and Prevention System (IDPS).
For example, a network administrator may leverage
multiple options in optimizing and securing a com-
puter network by implementing a De-Militarized Zone
(DMZ), integrating a Quality-of-Service (QoS) rule set,
or installing an in-line IDPS. SDN can effectively help
solve these real-world problems due to the two key fea-
tures of SDN including its programmability and global-
view of an environment. Researchers have leveraged
these two features to minimize end-to-end delay [5],
control network traffic [17], and security attacks [8].

∗Corresponding author. Email: xiongk@usf.edu

However, it has been proved that SDN itself is vul-
nerable to various adverse attacks. Hong, et al. [23]
identified threats including Denial of Service (DoS) in
SDN and examined DoS attacks under the environ-
ment of eight different SDN controllers, but there still
remain grand challenges to detect and mitigate them.
Traditional approaches to conquering DoS attacks is
through the use of Intrusion Detection Systems (IDS)
and Intrusion Prevention Systems (IPS). However, exist-
ing IDPS solutions present serious concerns including
system performance [14], network communication con-
straints [15], and detection validity [35]. Additionally,
IDS detection methods present a critical flaw to identify
new or unknown network attacks due to limiting threat
signatures and comparison approaches. Recent studies
have suggested a variety of threat mitigation and detec-
tion solutions including FloodGuard [14], SPHINX [15],
and an entropy-based solution [35], but none of them,
to the best of our knowledge, has studied a modular
kernel-level IDPS approach within SDN environments.
Moreover, existing IPDPS solutions such as SNORT [19]

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<xiongk@usf.edu>

T. Chin, K. Xiong, and M. Rahouti

and BRO [20] suffer from threat detection and mit-
igation time so as to cause significant performance
overhead.

In this paper, we consider an environment like Sci-
ence DMZ where there is a need to high-speed net-
work access to computation and storage for science
research. We propose a lightweight modular-based fil-
tering approach inspired by Amann et al. [16] and
Mekky et al. [17], called KernelDetect, to detect and mit-
igate security attacks in an SDN environment. Specifi-
cally, KernelDetect is an independent application-plane
network Test Access Point (TAP) approach using Switch
Port Analyzer (SPAN) interfaces [12] on SDN switch-
ing devices. Moreover, in KernelDetect, we consider
the fact that the Aho-Corasick and Bloom filter are
exact string matching and partial matching techniques,
respectively. We sufficiently utilize the strengths of
these techniques to design KernelDetect by using SDN.
By using a modular approach as a key component,
KernelDetect can interchange the technique for string
matching in addition to updating its signatures while
providing threat mitigation capabilities within a kernel
space. As we know, IDS signature methods are to com-
pare a list of given strings or a set of rules with incom-
ing network traffic signatures. In this paper, the pro-
posed KernelDetect provides the ability to dynamically
update the rule set in SDN environments in which we
can optimize traffic inspection when detecting network
threats.

To understand the efficiency and effectiveness of
KernelDetect, we experimentally compare it with
SNORT [19] and BRO [20], two conventional and
popular IPDPS on a real-world testbed - Global
Environment for Network Innovations (GENI) [18]
to conduct our real-world experimental evaluation.
In this comparison, KernelDetect leverages the Aho-
Corasick [39] algorithm and Bloom filter [40] with
SDN. To provide hybrid network communications,
we utilize D-ITG [21] and iPerf [22] as traffic
generation software for normal user data in the
SDN experiments. To mix normal user traffic with
malicious ones, we implement DoS attacks [35] in
our threat detection and mitigation experiments. We
further implement KernelDetect in an environment
driven by Floodlight [24] using Representational State
Transfer (REST) Application Program Interface (API)
as our method of communication for KernelDetect to
mitigate adverse threats and attacks. To be precise,
we focus on DoS attacks in this research. That is, we
comparatively examine KernelDetect over traditional
IDPS technologies, SNORT and BRO, for the detection
and mitigation of DoS attacks in a real-world testbed
environment where we test various numbers of packets
ranging from 100K to 500K and examine SYN flooding
attack with different packet sizes and sampling times.
In our extensive experiments, we measure the average

load of system resources, inspection time, mitigation
time, true positive, false positive, and false negative.
Our comprehensive studies through experimental
results and analysis show that KernelDetect is more
efficient and effective than SNORT and BROS. That
is, KernelDetect has great performance in intrusion
detection and prevention.

In this research, we have made the following main
contributions.

1. DoS has been identified as a serious attack in
an SDN environment [23]. We present KernelDe-
tect, a lightweight kernel-level IDPS approach to
thwarting DoS threats with the ability to inter-
change string matching detection mechanisms
between the Aho-Corasick algorithm [39] and the
Bloom filter algorithm.

2. Existing IDPS tools such as SNORT and BRO
utilize a culmination of user and kernel space
due to the necessary user interaction needed to
configure both solutions. Contrary to existing
conventional studies, KernelDetect is a pure
kernel-space solution. Furthermore, the default
installations of SNORT and BRO provide many
detection rules for their respective systems.
The more number of rules we use, the more
performance overhead is added. KernelDetect has
a much less overhead compared to SNORT and
BRO.

3. We leverage the common architecture of Science
DMZ with SDN technologies to develop Ker-
nelDetect. Thus, KernelDetect applies to Science
DMZ, and it can enhance data-driven research
in academia and national laboratories, and other
related applications in industry and government
agencies.

4. As SNORT [19] and BRO [20] are traditional
IDS solutions, we experimentally evaluate Ker-
nelDetect against the two well-known kernel-
space and user-space detection tools in a real-
world testbed, whereas many existing studies are
evaluated either through a simulator such as
Mininet [13] or in a lab environment whose results
are often away from realistic.

The rest of this paper is organized as follows.
Section 2 gives our research background with the
discussion of our challenges in the research. Section 3
presents related work and Section 4 describes threat
models with an attack vector, Section 5 presents the
architectural design to address our research challenges.
In Section 6, we state the methodology of our
experimental evaluation with the experimental setup
of KernelDetect and experimental results. To the end,

2 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

Kernel-Space Intrusion Detection Using Software-Defined Networking

Section 7 summarizes our research results and provides
future work.

2. Research Background and Challenges
This research aims to design and develop an efficient
IDS solution on a kernel space. In this section, we
present a brief background of kernel-space detection
techniques and discuss the main challenges of our
research studied in this paper.

2.1. Kernel-Space Detection Background
Although system applications and services and a
traditional IDS exploits both user and kernel-spaces of
computing [15], existing kernel-space solutions present
limited visibility. The majority of them are based on a
culmination of kernel and user spaces to characterize
their network threats and anomalies. Furthermore, in
an SDN environment, SDN switches (e.g., Open vSwitch
(OVS)) are linked to both user and kernel-spaces and
they inquire network data packets from raw sockets
on their corresponding operating system to carry the
proper packet data to the SDN switching service. Using
a kernel space guarantees full knowledge of threads,
high-performance, and low overhead. However, it
preserves an instability concern due to kernel panic,
and therefore introduces the following challenges.

2.2. Research Challenges and Assumption
Common approaches to detect and mitigate adverse
threats is through the use of an IDPS. One major issue
of such a technique is through user-space utilization.
Moreover, numerous IDS solutions rely on user-space
interfaces to allow administrators to manage and
maintain the various services that are implemented to
identify and thwart malicious attacks.

1. Kernel Panic: The first challenge through the use
of a kernel space is when a system is panic.
Commonly, when a kernel module or a kernel-
space application generates an erroneous issue
such as a programming bug or a buffer overflow,
a panic occurs such that the operating system is
no longer function to provide service to the end
user. When such an event occurs, a sequence of
recovery mechanisms is executed such as memory
dumping and a total system restart. We identify
this challenge as a significant area to address as
KernelDetect resides purely on a kernel-space.
We identify this challenge as a significant area to
address as the operation of KernelDetect resides
purely in kernel-space and that if KernelDetect
malfunctions or generates a programmatic error,
a kernel panic would occur.

2. Root Access and System Vulnerability: Using
kernel-space detection requires a significant level
of system access to identify such malicious
traffic. This level of access is known as root-
access and proposes a serious challenge if the
IDPS solution [11] were to be compromised or
exploited.

Moreover, to both inspect traffic and determine adverse
behaviors, elevated access is required on such service
to gain a control of raw sockets on an operating
system. Using traditional IDS solutions such as BRO
and SNORT, service accounts are created to secure the
system from exploitation through techniques such as
chroot and jailing. These concerns present the second
challenge.

The first challenge is that IDPS solutions [37], unar-
guably, need to provide robustness against buffer over-
flow, resiliency to exploitation schemes and attacks [27],
and ability to manage and inspect large quantities of
network traffic in an efficient manner, which depends
on the use of a operating system’s raw socket feature.
Moreover, under a scenario of a DoS attack, excessive
packet drops would occur as the system is incapable
of dealing with the quantity of network packets prop-
erly [1], and therefore the overhead and congestion
caused by the DoS attack results in a significant delay
as the inspection system places network packets into
a queue waiting for their evaluation. This temporary
queue would significantly increase overtime, which
might result in a buffer overflow. The simplest resolu-
tion to alleviate the overflow would be firmly dropping
packets in order to limit resource exhaustion of the
inspection system. However, this procedure would be
problematic if the network traffic has a certain level of
urgency or priority (i.e., QoS) [5, 9, 41, 45]. Another
serious concern regarding the utilization of kernel space
detection is that the application configuration requires
root-level privileges on the IDPS solution and therefore,
introduces security concerns if the system becomes
compromised.

In the second challenge, kernel-space IDPS solutions
demand an elevated user to have the root-access
to acquire accessibility to a variety of raw socket
communication in order to deeply inspect and evaluate
incoming packets [38]. Although such access privileges
are indispensable for traffic inspection, they presents
a serious concern for an emerging anomaly vector.
Furthermore, compromised SDN-enabled switches is
greatly concerning as the visibility in SDN environment
renders large, which might lead to a threat actor to gain
a large attack surface to distinguish potential entities
for targeting. One way to gain such an access privilege is
through an exposure in the inspection procedure of our
IDPS solution, KernelDetect, where a malicious payload
could be misinterpreted [10].

3 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

In this work, we presume that the implementation of
our KernelDetect is on secure kernel and it does not
introduce any software or hardware bugs.

3. Related Work
String searching (a.k.a. string matching) is an appli-
cable technique widely used in a variety of network
security applications, such as IDS. The threat filter-
ing and detection engine used in many popular IDS
solutions such as Snort [19] and BRO [20] depend on
early string searching algorithms like Bloom filter [40],
Aho-Corasick [39], and Boyer-Moore algorithm [44] to
identify network anomalies and threats. Up to today,
there have been many studies to identify and examine
each string matching approach [39, 40] for efficiency
and robustness. However, these studies fall short in the
efficiency of kernel-space detection. Furthermore, the
study of IDS has been an important aspect of network
security. There have been numerous developments of
IDS solutions to deter malicious traffic [7, 8, 14, 15,
30, 33, 37, 42], but they heavily rely on user-space
detection.

SDN boosts network traffic management and security
as a security conflict can be feasibly resolved from
the logically centralized control plane of SDN infras-
tructures. In this paper, we deploy SDN aspects to
address a particular security challenge. Scott-Hayward,
et al. [38] and Ahmad, et al. [48] summarized recent
studies on the vulnerabilities of existing approaches
in an SDN environment and security techniques that
can strengthen the network-wide security in SDNs.
Although some solutions such as FloodGuard [14],
SPHINX [15], [46], and FortNOX [33] leveraged the
SDN capabilities to provide anomaly detection and mit-
igation, they performance overheads are so significant
that their applications are hindered.

SnortFlow [49] is a Snort-based [19] IDPS that lever-
ages the strengths of Snort for pattern matching and
content analysis to detect network intrusions in the
cloud and deploy countermeasures in run-time. Fort-
Nox [33] is a security enforcement kernel deploying the
NOX OpenFlow controller to address SDN tunneling
attack and also check flow rule conflicts using a syn-
chronous detection engine. Furthermore, Mahout [28]
introduced a novel low-overhead framework for net-
work traffic management that checks socket buffers
to detect elephant flows and improve the prevention
mechanism for flooding attacks in the SDN environ-
ment. SPHINX [15] proposes a flow graph-based pro-
totype in an attempt to identify various threats in SDN
traffic flows. RAID [16] is a SNORT-based IDS prototype
that leverages the computational power of graphics
cards and Aho-Corasick approach to offloading pattern
matching computation, passively monitor the network,
and to targeting operational exploitation in a large-scale

environment. However, the effectiveness of this proto-
type was assessed only through OpenFlow backed con-
necting to three hardware switches. Moreover, Wang, et
al. [35] proposed an entropy-based solution to address
the problem of DoS attacks and monitor the detection
accuracy of such a network threat. FRESCO [29] is a
prototype developed within the application layer and
the control layer of SDN. Its design facilitates the imple-
mentations of new security features in addition to pre-
built security modules that could be easily integrated in
any SDN controller.

TopoGuard [23] is introduced to address the
topological poisoning vulnerabilities and threats in
SDN environments based on security omission’s
fixation. By introducing a practical approach based on
an extension of NOS design, Rosemary [36] addressed
the issue of control layer resilience that affects the
control plane. However, these solutions have mainly
focused on protecting the data plane of SDN controller
from malicious applications, our lightweight kernel-
level solution is capable to dynamically update the
rule set in SDN environments and optimize traffic
inspection while detecting network anomalies through
dynamic switching between two string matching and
filtering mechanisms.

Furthermore, VeriFlow [31] is a layer-based solution
residing between SDN controller and network devices
that dynamically checks for network-wide invariant
violations during the insertion of forwarding rules.
But, the proposed prototype is only examined through
Mininet emulator [13]. NetPlumber [32] is a real-
time policy verification framework that incrementally
checks for compliance of state changes, using the
Header Space Analysis (HSA) aspect. NICE [37] is
a distributed multiphase-based framework deploying
OpenFlow APIs to implement a monitoring module for
network bugs and collaborative attack detection and
mitigation in a cloud virtual networking environment.
While FAST [6] identifies areas in conducting a forensic
study on switching devices.

Most of existing studies deals with withstanding
a single type of network anomalies using SDN
capabilities and techniques, e.g., Wang, et al. [35].
SDNScanner [34] and AVANT-GUARD [30] introduces
a practical solution based on connection migration
techniques to solve the problem of scalable control
plane saturation attack, by altering flow management
at a switch level, but their approaches exposed only
the flows that complete a TCP handshake based on
a SYN proxy implementation and are limited to TCP
saturation attacks only.

To the best of our knowledge, KernelDetect gives
the first kernel-level solution instead of traditional
user-space IDPS ones. It is a lightweight kernel-
level detection mechanism. Contrary to the existing
conventional work, we investigate IDPS on a kernel

4 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

space that overcomes the implementation difficulty of
a kernel space (e.g., SoftFlow [4]). As Snort and Bro
are popular tools in this area, we choose them in our
comparison study.

The majority of existing solutions to building
network security applications on top of SDNs are either
not practical or limit performance and or deployability.
While most existing evaluation methods deploying
SDN for detection and mitigation are based on
Mininet [13], a network emulator whose results might
not be practical and far from real-world scenarios.

4. Threat Models and Attack Vectors
As stated before, SDN infrastructures are vulnerable
to a variety of security attacks While SDN is widely
used in different applications such as network traffic
management. These various serious attacks include
DoS [35], LDS [23], and man-in-the-middle attack
(MITM) [23]. They have been found in an SDN
environment. That is, launching these three types of
attacks on SDN can be found in [23, 35]. Without loss of
generality, we concentrate on DoS attacks in this paper,
where we examine adverse users who may launch
DoS attacks and normal users (or called clients) who
launch a series of normal network traffic within an SDN
environment. That is, the attack vector of this research
is DoS and DoS [35] demonstrates its threat model in
SDN. In this research, we will study the implementation
method of DoS attacks in an SDN environment and
periodically launch such attacks on GENI as described
in Section 6, where we will examine the effectiveness of
KernelDetect in terms of detection and mitigation time
as well as its accuracy.

In this research, we assume that all SDN controllers
and switching devices are safe from a threat actor, but
leave end devices vulnerable to attacks. Mitigation is
a critical way to thwart an attack and to prevent false
positive events carefully; whitelisting will be required.

Whitelisting is a common approach to safeguarding
mitigation faults such as disabling the WAN interface
at an edge router and a network link to a known trusted
computing device. In our threat detection approach,
we do not implement any whitelisting for end devices
attached to SDN switches as all users can be adverse at
some point of time. Moreover, using KernelDetect, we
implement detection on each suitable switching device
for inspection purposes that will be further described
in our experimental evaluation. Inter-switch links,
commonly identified as a shared network link between
two switching devices, contain a variety of network
traffic intent from malicious to a normal user. Moreover,
if these links were to be disabled through mitigation
techniques, network operations would potentially fail.
We inter-switch links to prevent mitigation faults
from occurring. Although safeguarding inter-switch

links provides reassurance from mitigation faults, a
compromised end device has a greater potential to
establish a significant threat to an SDN environment.

Lastly, we treat KernelDetect trustworthy even
though adverse users can potentially obfuscate, exploit
or overfill buffers specific to IDS solutions in addition
to our string matching methods, Bloom filter, and the
Aho-Corasick algorithm. We will identify an attack
method in our experimental evaluation of Section 6.
Following our evaluation, we have also investigated an
IDS solution for other threats. However, we only present
our study for DoS in this paper due to the page limit.

5. Design of KernelDetect
This section presents the architectural design of
KernelDetect with discussions. We further discuss a
threat signature structure for our proposed detection
solution.

5.1. KernelDetect Placement and Architecture
The placement of KernelDetect is critical to detection
and mitigation timings of an emerging threat. Before
we present the architectural design of KernelDetect,
Figure 1 shows the location and functionality of
KernelDetect whose implementation is done in a
configuration that operates in tandem with an SDN
switching device.

Traffic duplication occurs within KernelDetect as
both KernelDetect and OVS utilize raw socket com-
munications in the back-end of the software system.
The SDN Controller receives REST API calls from
each switch when identifying a threat for mitigation.
In this research, we use Floodlight as the controller
software due to its REST API features. Figure 2 pro-
vides an architectural design of KernelDetect for both
traffic inspection and signature matching with decision-
making processes.

Let kds be a KernelDetect score, a an administrative-
set incremental value for adverse traffic, b a decre-
mental value for trustworthy traffic, and kdt a thresh-
old value to determine whether such traffic should
be placed in an inspection through either the Aho-
Corasick algorithm or Bloom filter, called Aho-Corasick
inspection or Bloom filter inspection, respectively. M sim-
ply denotes the matching scheme for KernelDetect.

When traffic enters an interface on a respective
switch, the value is temporarily stored, and the
information is forwarded to OVS and KernelDetect
for their appropriate purposes of forwarding and
inspecting traffic, respectively. During the initial state
of KernelDetect, that is, when the service begins, an
administrative configuration is examined to verify if a
secure mode is enabled. We define the secure mode as a
parameter such that if the placement of the switching
device is in a critical data region, KernelDetect will

5

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Figure 1. The placement and functionality of KernelDetect for network traffic flows.

Figure 2. The architecture of KernelDetect consisting of four states: “Initialize," the beginning state of the SDN switch operations,
“Inspection," a real-time inspection of traffic obtained from the raw socket of the operating system, “Mitigation," a critical step to thwart
an attack and to prevent false positive events carefully, and “Evaluation," the examination of incoming traffic through ‘Aho-Corasick’ or
‘Bloom filter’ with a global view of the network.

enforce a detailed inspection using Aho-Corasick.
If the placement does not have severe inspection
approaches, then KernelDetect may use Bloom filter for
detection. During the inspection process, we identify
and examine to see whether the traffic has malicious
intent through signature matching. If the intent is
considered trustworthy, then we simply forward the
traffic and decrease kds by a value of b, and add a
when the intent is not trustworthy. Using a threshold
condition of comparing kds to kdt, we examine whether

future traffic should remain in Aho-Corasick or Bloom
filter inspection. If the traffic has a malicious intent, we
simply drop the packet from the raw socket and inform
the SDN controller using REST API calls to block the
adverse threat.

5.2. Threat Signature Structure
Identifying adverse network traffic could be challeng-
ing as it depends on IDS signatures and threat identifi-
cation markings. Particularly, two common approaches

6 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

are considered to identify traffic threat through string-
based matching, and traffic over time where an obser-
vation of a pattern of network packets occurs in a given
period. As mentioned before, although KernelDetect
applies to various attacks, this paper focuses on a DoS
attack vector due to the page limit.

DoS: The identification of a DoS attack can be a
challenge in an at-scale network. There are multiple
methods to create a DoS attack from TCP SYN-flooding
to other detailed approaches such as OSI Layer 7-based
flooding. Like [35], we can identify a traffic pattern
over an interval of time to determine if there is a
DoS attack. That is, if the quantity of traffic exceeds
a given threshold, KernelDetect considers that a DoS
attack occurs, and it raises an alert. This threshold
is a fixed value among all the approaches studied in
our experiments later. The correlation with signature
matching relates towards the frequency of alerts that
is, KernelDetect raises an alert when a match occurs.
The observation of a threat can originate from one
or multiple sources where the attacker may spoof
the source address of the DoS. Based on this given
knowledge, KernelDetect accounts for such threats.

Signature-based matching may not be the appropri-
ate tool to detect DoS attacks where the adversary can
often insert arbitrary data into a packet payload. This
approach renders signature-based detection ineffective.
In some cases, DoS attacks may not have any form of
data for its payload, such as a low-profile TCP SYN
flood attack. However, KernelDetect, considers match-
ing the header information of a network packet rather
than its packet payload, which increases the perfor-
mance of threat detection. Below is the algorithm for
KernelDetect where TH and THP are threshold values
for time and packet intervals, respectively.

P = PACKET_IN

while P do

TS = TIMESTAMP

if P.TYPE == ICMP then

Q{P.SRC_ADDR}++

if P.SRC_ADDR NOT IN S then

S{P.SRC_ADDR} = TS

else

if TS - S{P.SRC_ADDR} > TH then

if Q{P.SRC_ADDR} > THP then

REST API Call to SDN Controller

else

S{P.SRC_ADDR} = TS

end if

end if

end if

end if

end while

6. Experimental Evaluation
This section presents our experimental design and
evaluation of KernelDetect. In order to conduct
a comprehensive examination of KernelDetect, we
manipulate different experimental parameters such as
the varying number of transmitted packets, threshold
time, and the duration of experiments.

6.1. Experimental Topology Design
To measure the effectiveness of KernelDetect, we utilize
GENI [18] for experimental evaluation. GENI is a real-
world heterogeneous virtual testbed with networking
capabilities including SDN. To evaluate KernelDetect,
we construct a topology with the following three
constraints: (1) An adverse user attached to a single
network link identifying major areas of mitigation. (2)
A shared network link used by both a normal user and
an attacker. (3) An edge network link that carries both
normal and attack traffic. This edge link has limited
SDN controller management. Figure 3 gives a visual
view of the experimental topology that considers the
previous research challenges where the locations of
adverse users are explicitly labeled. For presentation
purpose in this paper, we give a relatively simple
topology for our evaluation as shown in Figure 3.
However, KernelDetect is applicable to any complex
network topology.

At a certain point of time, clients may be adverse
or potentially compromised. However, we do not take
into account this particular scenario in our evaluation
experiments as we do not implement any whitelisting
technique for end devices attached to SDN switches in
our threat detection approach. For this reason, normal
users could have the potential to be prone to mitigation
techniques depending on IDS signatures and rule sets.

6.2. Detection Rules in BRO and SNORT
As SNORT and BRO are rule-based detection
approaches, they are involved in an attempt to
define a set of rules for the understanding of network
traffic behaviors to determine whether or not the
network traffic is adverse, SYN flood detection and
mitigation rules needs to be manually downloaded and
added to the rule set files in both BRO and SNORT
accordingly, unless they were by default installed
along with the detection systems. The following figure
depicts the detection rule of SYN flood attacks (i.g.
DoS) for SNORT IDS. In this rule definition, an alert is
raised whenever 70 or more packets are sent within a
10 second interval that is TCP-SYN flagged.

alert tcp any any -> $HOME_NET 80(flags:S;

msg:"Possible TCP DoS is Detected !!";

flow: stateless; detection_filter: track by_dist, count 70,

seconds 10; sid 10001;rev:1;)

%\label{SYN-flood}

7

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Figure 3. GENI experimental topology for evaluation where KernelDetect is only implemented in switches B and D as depicted in
the diagram. Moreover, CTRL links are the communication medium between each SDN switch and their respective controller. Lastly,
our experimental evaluation interchanges KernelDetect-enabled switches with SNORT and BRO for our comprehensive study.

6.3. Traffic Generation Techniques
Network traffic is comprised of two intent-types:
normal and adverse. While adverse traffic is transmitted
into our proposed solution, normal traffic will be
mixed into our experiments to simulate a real-world
environment. In order to provide hybrid network
communication and mix normal traffic into the grand
scheme of our experiments, we utilize D-ITG [21] and
IPerf [22] as traffic generation software. Specifically, we
utilize a culmination of both tools and increase the
quantity of traffic for our experiments. Although we
cannot fully emulate a normal user, we believe that
iPerf tool should provide a fundamental approach to
measuring our solution as it provides the ability to
saturate a network link in addition to real-time network
throughput analysis. To be concise, we configure iPerf
with the default parameters for operational use.

6.4. Experimental Results
The performance of an IDS/IPS solution is critical
to counter adverse network threats and, specifically,
threat actors. As traffic flows from one host to
another, congestion, computational bottlenecks and
system’s resource draining can occur within a network
environment and in regards to an IDS solution,
packet inspection and the level of detail can produce
resource strain on a computing device. In this section,
we evaluate the performance of our KernelDetect
in term of its inspection time, mitigation time,
detection accuracy, and system resource consumption
comparatively compared to SNORT and BRO.

Inspection Time. To combat network anomalies, it
is important to consider run-time filters as an
independent threat detector able to detect attacks
against itself. Such threat detection, together with

judicious rate-limiting of traffic forwarded to full
packet inspection, allows the detection and mitigation
of threats while preserving the overall improvements
in NIDS performance, including but not limited to,
the average inspection time. For this reason, a full
packet inspection procedure that is critical to the
mitigation of threat actors and adverse network traffic
need to be performed whenever an IDS/IPS is placed
in service. Specifically, as packets arrive at an IDS,
the information is placed in a buffer and waits for
inspection. This waiting time increases the time needed
to mitigate the adverse threat if the packet has
malicious intent. To measure such inspection time, we
established a near-equal configuration for each IDS
solution with similar parameters of threat signatures
in each respective database for measurement fairness
purposes. We establish this approach to examining the
effectiveness of each solution to have near mirror-like
configurations and to examine the performance of each
IDS solution closely.

To measure inspection time, we establish the
communication between two devices using hping3
where we transmit small-size packets with the large
quantity of traffic at one nanosecond interval of time,
achieving a link saturation. We evaluate three threshold
values of 5, 10, and 15 seconds for detection. In this
evaluation, we run all the experiments 10 times and
then average their results. Figures 4, 5, and 6 show
the average inspection time for the threshold of 5-
seconds, 10-seconds and 15-seconds, respectively. Our
experimental results demonstrate that KernelDetect has
the overall lowest average inspection time compared to
SNORT and BRO.

Table 1 demonstrates that KernelDetect has lower
inspection time average comparatively to BRO and
SNORT while Table 2 describes a 95% confidence

8 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

Figure 4. A comparative analysis of the inspection time for each IDS under 100K, 200K and 500K SYN flagged packet DoS attack
using a 5 second threshold signature.

interval statistic. In Table 2, we only compare
KernelDetect with SNORT because BRO has much
higher inspection time than KernelDetect and SNORT
as shown in Table 1 so that it would not be helpful even
if we included a 95% confidence interval statistic for
BRO in the table. Furthermore, although KernelDetect
has some confidence interval overlap with SNORT, it
is demonstrated in Table 2 that KernelDetect is still a
clear winner in comparison to SNORT under various
traffic loads with different signature threshold values
regarding inspection time.

Mitigation Time:. In an IDS/IPS solution, mitigation
time (a.k.a. time to mitigation) is the interval of time
from when the first alert is raised once malignant
network packets are captured at IDS/IPS doorstep
to the time when an action is taken to combat
them or until the threat is stopped. This time to
mitigate is likewise when the infrastructure of an SDN
environment is at its most vulnerable as the longer the
delay, the more likely the attack will be successful.
As this mitigation delay relies on the processing
abilities of the IDS/IPS and its filtering mechanisms,
it is key to ensuring the safety and well-being of a

9

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Figure 5. A comparative analysis of the inspection time for each IDS under 100K, 200K and 500K SYN flagged packet DoS attack
using a 10 second threshold signature.

network at scale. Although each IDS has its unique
attributes to capture an adverse attacks and mitigate
them, we comprehensively examine the efficiency and
robustness of KernelDetect solution by measuring its
threat mitigation.

To measure the mitigation time, we examine the
time between the initiation of each network attack and
compared it to the time needed to rectify the threat as
shown in Figures 7, 8, and 9, which is also represented
in Table 3 as an average mitigation delay, and expressed
using a 95% confidence interval in Table 4. Although

Table 3 demonstrates that KernelDetect has a nearly-
similar mitigation time as SNORT, it is still slightly
better than SNORT in term of average, and significantly
superior than BRO. Furthermore, similar to Table 2,
we excluded BRO from Table 4 for the same reason
discussed in inspection time section. As expressed in
Table 4, KernelDetect solution shows better mitigation
performance than SNORT when comparing their
corresponding confidence intervals. Figures 7, 8, and 9
depict series of DoS attacks executed in the SDN
environment using 5-seconds, 10-seconds and, 15-
seconds threshold respectively where each solution

10 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

Figure 6. comparative analysis of the inspection time for each IDS under 100K, 200K and 500K SYN flagged packet DoS attack
using a 15 second threshold signature.

provided necessary alerting and mitigation procedures.
The mitigation technique for each solution utilizes
the same function such that when an alarm is raised,
the message presented will be used to block the
respective address. Figure 10 presents the clearness of
mitigation time using 10-seconds threshold value, and
therefore proves that KernelDetect is a better solution
to guarantee small mitigation delay.

False Negative and False Positive. False positive state is
when the IDS characterizes a normal network traffic
as a security threat. False negative state is when the

IDS characterizes a threatening network traffic as an
acceptable behavior. That is, a false negative is when
the IDS fails to detect an attack and raise the threat
alarm. Hence, a false positive and false negative can
lead to significant downfalls in security of network
communication. Figure 11 depicts the use of Receiver
Operating Characteristic (ROC) curve methods to
demonstrate the false positive rates for KernelDetect,
SNORT, and BRO. Notably, the curve demonstrates
our detection matching sensitivity for our experimental
evaluation where we identify the accuracy of each
system. BRO demonstrated to have the poorest accuracy

11

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Figure 7. Threat mitigation time for each IDS under 100K, 200K and 500K SYN flagged packet DoS attack using a 5 second
threshold.

rate in comparison to KernelDetect and SNORT where
KernelDetect presented the most accurate results based
on the analysis of the experimental results.

System Resource Utilization. The performance of an
IDS/IPS solution is critical to counter adverse network
threats and specifically—threat actors. As traffic flows
from one host to another, congestion and computational
bottlenecks can occur within a network environment
in addition to an IDS solution. Inspection and the
level of detail in examining the content of the packet
can produce resource strain on a computing device.
As network packets traverse between two devices, the

information is stored in a buffer, waiting for inspection
and forwarding purposes. Hence, memory resource
consumption is vital in the operation of an SDN
device and a critical segment for resource examination.
Figure 13 depicts the performance of resources usage
in term of average memory consumption for each
IDS under 500K SYN flagged packet DoS attack
using a 10-seconds threshold signature. In comparison
with SNORT and BRO IDSs, the obtained results
demonstrate that KernelDetect consumes less system
resources when idle and under attack. Memory
utilization increases during the events of a DoS attack

12 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

Figure 8. Threat mitigation time for each IDS under 100K, 200K and 500K SYN flagged packet DoS attack using a 10 second
threshold.

where KernelDetect is more efficient than SNORT
and BRO in the events of a post-DoS scenario. To
be concise, once the DoS attack ends, both BRO and
SNORT maintain constant memory resource utilization
while KernelDetect’s usage reduces to the lowest
percentage rate. Moreover, to measure averaging CPU
utilization in a kernel space, samples of system resource
utilization are used where each IDS is under 500K SYN
flagged packet DoS attack using a 10-seconds threshold
signature. Figure 12 demonstrates that BRO has a
higher-level system resource utilization in comparison

to KernelDetect and Snort and KernelDetect shows
significantly less average load in term of CPU usage.

Discussions. A kernel panic is one serious challenge
in the use of kernel-space detection for a security
apparatus such as KernelDetect. Moreover, if a kernel
panic would occur to an SDN device, practical and
operational usage would be lost. Additionally, the
library functions that are implemented and imported
into the design of KernelDetect may propose a
vulnerability that could be haphazardous to the SDN
environment. In the design of KernelDetect, this
research treats all utilized libraries as trusted modules

13

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Figure 9. Threat mitigation time for each IDS under 100K, 200K and 500K SYN flagged packet DoS attack using a 15 second
threshold.

in the implementation such that the discovery of
a serious vulnerability would be well-known and
urgent for patching purposes. One configuration that
may be sub-optimal for an SDN environment is to
implement KernelDetect on an independent computing
system that is attached to a port mirroring interface
using a SPAN/TAP configuration such that if kernel
panic would occur, SDN switching operations would
continue to function. Lastly, KernelDetect utilizes raw
socket information to read incoming packets. This
read procedure could be insufficient for the switching
operation such that OVS could process the raw socket

information at a faster rate than KernelDetect.We
experimented by creating a small packet size (i.e. 70
bytes as packet body size) full link saturation scenario,
but we were unable to emulate the concern. Our belief
to such an event would potentially be plausible in a
large network throughput interfaces such as 100Gbps.
However, our evaluation was limited to only 1 Gbps
speeds. Performance modeling like [43] is helpful to
such studies.

14 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

Figure 10. Threat mitigation for each IDS under 100K, 200K, and 500K SYN flagged packet flood attack using 10 second threshold
detection technique and represented as a box plot.

Figure 11. ROC Curve for threat detection for each IDS under 100K Packets SYN flood attack using various thresholds of 5, 10 and
15 seconds for threat signatures of a DoS attack.

Table 1. A comparison of the average inspection time in seconds
among KernelDetect, SNORT and BRO under various traffic loads
of 100K, 200K, and 500K SYN flagged packets using detection
thresholds of 5, 10, and 15 seconds.

Traffic Load (K) 100 200 500
Threshold (Sec.) IDS

5
KernelDetect 0.0048 0.0047 0.0109
SNORT 0.0033 0.0186 0.0319
BRO 2.1264 1.5187 2.3996

10
KernelDetect 0.0106 0.0111 0.0112
SNORT 0.0128 0.2686 0.0643
BRO 2.2656 1.1270 4.3337

15
KernelDetect 0.0067 0.0070 0.0069
SNORT 0.0067 0.0243 0.0172
BRO 1.9113 1.3433 2.5786

7. Conclusions and Future Work
In this paper, we have introduced KernelDetect,
a lightweight kernel-level intrusion detection and
prevention framework. KernelDetect is a modular

countermeasure framework in an SDN environment.
It leverages modular string searching and filtering
mechanisms along with SDN techniques and features.
KernelDetect is designed in a way that leverages the
strengths of both Aho-Corasick and Bloom filter with
SDN controller techniques. Although KernelDetect
approach can be applicable to handle and thwart
different types of network anomalies and adverse
threats, in this paper, we only explore and focus on the
events of a DoS attack in an SDN environment.

We have exploited and dynamically integrated
modular detection mechanisms that are an exact string
matching and a partial matching algorithms together
to thwart the above network threats that reside in the
application plane of an SDN environment.

In order to test the validity of our KernelDetect
IDPS and evaluate its performance, we conducted
comprehensive evaluation experiments on GENI, a real-
world testbed infrastructure where we manipulated
the experimental parameters of SYN flood attacks,

15

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Table 2. 95% confidence interval statistic for inspection time (seconds) between KernelDetect and SNORT where L and U represent
their lower and upper bound, respectively.

Traffic Load (K) 100 200 500

Threshold (Sec.) IDS Stdev L U Stdev L U Stdev L U

5 KernelDetect 0.0142 0.0024 0.0031 0.0025 0.0037 0.0056 0.2009 0.0066 0.0150
SNORT 0.0229 0.0027 0.0039 0.0624 0.0162 0.0211 0.3644 0.0170 0.0470

10 KernelDetect 0.1711 0.0038 0.0174 0.0183 0.0103 0.0119 0.0186 0.0104 0.0120
SNORT 0.2309 0.0082 0.0173 0.2217 0.2549 0.2824 0.2566 0.0592 0.0690

15 KernelDetect 0.0522 0.0037 0.0068 0.0602 0.0051 0.0088 0.0654 0.0055 0.0080
SNORT 0.0558 0.0050 0.0083 0.0984 0.0195 0.0253 0.1205 0.0137 0.0210

Figure 12. System usage at 100K, 200K, and 500K packets (Pkt.) loads of SYN flood attack (Atk.)

16 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

Figure 13. Memory utilization for each IDS under the scenario of a single attack with 100K SYN flagged packets (Pkt.) using a 10
second threshold detection rate. Additionally, a full-link saturation is achieved during the attack in this evaluation.

Table 3. The average mitigation time in seconds for
KernelDetect, SNORT and BRO under various traffic loads of
100K, 200K, and 500K SYN flagged packets using detection
thresholds of 5, 10, and 15 seconds.

Traffic Load (K) 100 200 500
Threshold (Sec.) IDS

5
KernelDetect 0.0036 0.0074 0.0123
SNORT 0.0056 0.0012 0.0130
BRO 0.0060 0.0100 0.0108

10
KernelDetect 0.0060 0.0054 0.0044
SNORT 0.0055 0.0065 0.0078
BRO 0.0074 0.0080 0.0118

15
KernelDetect 0.0042 0.0049 0.0086
SNORT 0.0071 0.0101 0.0200
BRO 0.0096 0.0635 0.1254

including but not limited to, the number and
length of network packets (the number of network
packets ranges from 100K to 500K and launched
SYN flooding attacks with different packet sizes) and
sampling times. In order to compare the effectiveness
and validity of KernelDetect with traditional IDSs,
SNORT [19] and BRO [20], we have measured the
performance constraints and overhead, utilization of
system resources, average inspection and mitigation
time, true positive, false positive, and false negative for
each IDS among 10-run experiments in order to identify

and address network scalability where traffic quantity
can be saturated for an SDN environment.

Through our extensive evaluation for each IDS
performance, We have shown that our KernelDetect
solution is an effective and efficient approach to detect
and thwart the DoS threats within the data plane of an
SDN environment.

In our future work, we plan to extend and adjust
the implementation of our KernelDetect solution to
deal with different types of network anomalies and
adverse threats such as man-in-the-middle (MITM)
attacks and Link Discovery Service Exploitation (LDS).
Moreover, we plan to identify the potential areas of
threat detection in control plane communications.

Acknowledgement. We acknowledge National Science
Foundation (NSF) to partially sponsor the work under
grants #1633978, #1620871, #1620862, and #1636622, and
BBN/GPO project #1936 through NSF/CNS grant. We also
thank the Florida Center for Cybersecurity for a seed grant.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied
of NSF.

References
[1] Xiong K., Wang R., Du W and Ning P. (2012)

Containing bogus packet insertion attacks for broadcast

17

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

T. Chin, K. Xiong, and M. Rahouti

Table 4. 95% confidence interval measurements for mitigation time (seconds) between KernelDetect and SNORT where L and U
represent their lower and upper bound, respectively.

Traffic Load (K) 100 200 500

Threshold (Sec.) IDS Stdev L U Stdev L U Stdev L U

5 KernelDetect 0.0141 0.0032 0.0040 0.0376 0.0063 0.0087 0.0966 0.0097 0.0149
SNORT 0.0424 0.0044 0.0067 0.1137 0.0078 0.0167 0.0820 0.0094 0.0166

10 KernelDetect 0.0302 0.0051 0.0068 0.0355 0.0045 0.0063 0.0230 0.0038 0.0050
SNORT 0.0542 0.0027 0.0037 0.0530 0.0026 0.0037 0.0190 0.0081 0.0093

15 KernelDetect 0.0267 0.0035 0.0060 0.0656 0.0030 0.0067 0.0629 0.0068 0.0104
SNORT 0.0494 0.0058 0.0085 0.0921 0.0065 0.0137 0.0932 0.0096 0.0240

authentication in sensor networks. ACM Transactions on
Sensor Networks (TOSN). Vol. 8. P: 20.

[2] Ko C., Fraser T., Badger L. and Kilpatrickv D.

(2000) Detecting and Countering System Intrusions Using
Software Wrappers. USENIX Security Symposium. pp:
1157-1168.

[3] Vasiliadis G., Antonatos S., Polychronakis M.,
Markatos E. and Ioannidis S. (2008) Gnort: High
performance network intrusion detection using graphics
processors. Recent Advances in Intrusion Detection
(RAID). pp: 116-34.

[4] Jackson E. J, Walls M., Panda A., Pettit J., Pfaff B.,
Rajahalme J., Koponen T. and Shenker S. (2016)
SoftFlow: A Middlebox Architecture for Open vSwitch.
USENIX Annual Technical Conference. pp: 15-28.

[5] Chin T., Xiong K. and Rahouti M. (2017) End-to-End
Delay Minimization Approaches Using Software-Defined
Networking. Proceedings of ACM RACS 2017.

[6] Chin T. and Xiong K. (2017) A Forensic Methodology for
Software-Defined Network Switches. Proceedings of IFIP
International Conference on Digital Forensics. pp: 97-
110.

[7] Chin T. and Xiong K. (2016) Dynamic generation contain-
ment systems (DGCS): A Moving Target Defense approach.
Proceedings of 3rd IEEE International Workshop on
Emerging Ideas and Trends in Engineering of Cyber-
Physical Systems (EITEC). pp: 11-16.

[8] Chin T., Mountrouidou X., Li X. and Xiong K. (2015) An
SDN-supported collaborative approach for DDoS flooding
detection and containment. Proceedings of IEEE Military
Communications Conference (MILCOM). pp: 659-664.
Proceedings of 35th IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW).
pp: 95-99.

[9] Akella A. V and Xiong K. (2014) Quality of service
(QoS)-guaranteed network resource allocation via software
defined networking (SDN). Proceedings of IEEE Inter-
national Conference on Dependable, Autonomic and
Secure Computing (DASC). pp: 413-424.

[10] Apache Spam Assassin Public Corpus. https:

//spamassassin.apache.org/publiccorpus/

[11] Pfaff B., Pettit J., Koponen T., Jackson E. J, Zhou A.,
Rajahalme J., Gross J., Wang A., Stringer J., Shelar P.

and others. (2015) The design and implementation of
OpenvSwitch. Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
pp: 117-130.

[12] Ahrenholz J., Danilov C., Henderson T. R and Kim J. H

(2008) CORE: A real-time network emulator Proceedings
of the first IEEE Premier Military Communications
Conference (MILCOM). pp: 1-7.

[13] Mininet: An Instant Virtual Network on your Laptop (or
other PC). http://mininet.org

[14] Wang H., Xu L. and Gu G. (2015) FloodGuard: A DoS
Attack Prevention Extension in Software-Defined Networks.
Proceedings of 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN). pp: 239-250.

[15] DhawanM., Poddar R., Mahajan K. and MannV. (2015)
SPHINX: Detecting Security Attacks in Software-Defined
Networks. Proceedings of the 22th Annual Network and
Distributed System Security Symposium (NDSS).

[16] Amann J. and Sommer R. (2015) Providing Dynamic
Control to Passive Network Security Monitoring. Research
in Attacks, Intrusions, and Defenses. pp: 133-152.

[17] Mekky H., Hao F., Mukherjee S., Zhang Z. and Laksh-

man T. (2014) Application-aware Data Plane Processing in
SDN. Proceedings of the Third ACM Workshop on Hot
Topics in Software Defined Networking. pp: 13-18.

[18] Berman M., Chase J., Landweber L., Nakao A.,
Ott M., Raychaudhuri D., Ricci R. and Seskar I.

(2014) GENI: A Federated Testbed for Innovative Network
Experiments. Computer Networks. Vol. 63 (Special
issue on Future Internet Testbeds-Part I). pp: 5-23.
doihttp://dx.doi.org/10.1016/j.bjp.2013.12.037.

[19] Roesch Martin et all. (1999) SNORT-LIGHTWEIGHT
INTRUSION DETECTION FOR NETWORKS. USENIX
LISA. Vol. 99. pp: 229-238.

[20] Vern Paxson. (1999) BRO: A System for Detecting
Network Intruders in Real-Time. Computer Networks.
Vol. 31. pp: 2435-2463. http://www.icir.org/vern/

papers/bro-CN99.pdf

[21] Avallone S., Guadagno S., Emma D., Pescap A. and
Ventre G. (2004) D-ITG: Distributed Internet Traffic
Generator. Proceedings of First International Conference
on the Quantitative Evaluation of Systems (QEST). pp:
316-317.

[22] Tirumala A., Qin F., Dugan J., Ferguson J. and Gibbs K.

(2014) iPerf: The TCP/UDP Bandwidth Measurement Tool.
http://dast.nlanr.net/Projects,

[23] Hong S., Xu L., Wang H. and GU G. (2015) Poisoning
Network Visibility in Software-Defined Networks: New
Attacks and Countermeasures. Proceedings of the 22th
Annual Network and Distributed System Security
Symposium (NDSS).

18 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

https://spamassassin.apache.org/publiccorpus/
https://spamassassin.apache.org/publiccorpus/
http://mininet.org
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
http://dast.nlanr.net/Projects

[24] Floodlight OpenFlow Controller. Project Floodlight. http:
//www.projectfloodlight.org/floodlight/

[25] The CAIDA UCSD DDoS Attack - 2007 Dataset. https:
//www.caida.org/data/passive/ddos-20070804_

dataset.xml.

[26] Ballard J., Rae I. and Akella A. (2010) Extensible
and Scalable Network Monitoring Using OpenSAFE.
Proceedings of the Internet Network Management
Workshop/ Workshop on Research on Enterprise
Networking (INM/WREN), in conjunction with the 7th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[27] Giotis K., Argyropoulos C., Androulidakis G.,
Kalogeras D. and Maglaris V. (2014) Combining
OpenFlow and sFlow for an effective and scalable
anomaly detection and mitigation mechanism on SDN
environments. The International Journal of Computer
and Telecommunications Networking. Vol. 62. pp:
122-136.

[28] Curtis A., Kim W. and Yalagandula P. (2011) Mahout:
Low-Overhead Datacenter Traffic Management using End-
Host-Based Elephant Detection. In Proceedings of the IEEE
International Conference on Computer Communications
(INFOCOM). pp: 1629-1637.

[29] Shin S., Porras P., Yegneswaran V., Fong M., GU G. and
Tyson M. (2013) FRESCO: Modular Composable Security
Services for Software-Defined Networks. Proceedings of
Network Distributed Security Symposium (NDSS), San
Diego, CA, USA.

[30] Shin S., Yegneswaran V., Porras P. and GU G.

(2013) AVANT-GUARD: Scalable and Vigilant Switch Flow
Management in Software-Defined Networks. Proceedings
of the 20th ACM Conference on Computer and
Communications Security (CCS). pp: 413-424.

[31] Khurshid A., Zou X., Zhou W., Caesar M. and
Godfrey P. B. (2013) VeriFlow: Verifying Network-Wide
Invariants in Real Time. Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI). pp: 15-27

[32] Kazemian P., Chang M., Zeng H., Varghese G.,
Mckeown N. and Whyte S. (2014) Real Time Network
Policy Checking using Header Space Analysis. Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). pp: 99-111.

[33] Porras P., Shin S., Yegneswaran V., Fong M., Tyson M.

and GU G. (2014) A Security Enforcement Kernel for
OpenFlow Networks. Proceedings of the first ACM
SIGCOMM Workshop on Hot Topics in Software Defined
Networking (ACM HotSDN). pp: 121-126.

[34] Shin S. and Gu G. (2013) Attacking Software-Defined
Networks: A First Feasibility Study. Proceedings of the
second ACM SIGCOMM workshop on Hot topics in
software defined networking (ACM HotSDN). pp: 165-
166.

[35] Wang R., Jia Z. and Ju L. (2015) An Entropy-Based Dis-
tributed DDoS Detection Mechanism in Software-Defined
Networking. Proceedings of the IEEE Trustcom/Big-
DataSE/ISPA. Vol. 1. pp: 310-317.

[36] Shin S., Song Y., Lee T., Lee S., Ching J., Porras P.,
Yegneswaran V., Noah J. and Kang B. B. (2014)

Rosemary: A Robust, Secure, and High-Performance
Network Operating System. Proceedings of the 21th ACM
Conference on Computer and Communications Security
(CCS). pp: 87-89.

[37] Chung C-J., Khatkar P., Xing T., Lee J. and Huang D.

(2013) NICE: Network intrusion Detection and Counter-
measure Selection in Virtual Network Systems. IEEE Trans-
actions on Dependable and Secure Computing. Vol. 10.
pp: 198-211.

[38] Scott-Hayward S., Natarajan S. and Sezer S. (2016)
A Survey of Security in Software Defined Networks. IEEE
Communications Surveys Tutorials. Vol. 18. pp: 623-654.
doi=10.1109/COMST.2015.2453114

[39] Alicherry M., Muthuprasanna M. and Kumar V.

(2006) High Speed Pattern Matching for Network IDS/IPS.
Proceedings of the 14th IEEE International Conference
on Network Protocols (ICNP’06). pp: 187-196.

[40] Dharmapurikar S. and Lockwood J. W. (2006) Fast
and Scalable Pattern Matching for Network Intrusion
Detection Systems. IEEE Journal on Selected Areas in
Communications. Vol. 24. pp: 1781-1792.

[41] Xiong K. (2008) Resource optimization and security for
distributed computing, https://repository.lib.ncsu.
edu/handle/1840.16/3581.

[42] Chin T., Mountrouidou X., Li X. and Xiong K.

(2015) Selective packet inspection to detect DoS flooding
using software defined networking SDN. The 35th IEEE
International Conference on Distributed Computing
Systems Workshops (ICDCSW). pp: 95-99.

[43] Xiong K. (2009) Multiple priority customer service guaran-
tees in cluster computing. IEEE International Symposium
on Parallel & Distributed Processing (IPDPS). pp: 1-12.

[44] Boyer R. S and Moore J S. (1977) A fast string searching
algorithm. Communications of the ACM. Vol. 20 pp: 762-
772.

[45] Xiong K. (2014) Resource optimization and security for
cloud services, Wiley-ISTE.

[46] Sonchack J., Smith J., Aviv A. J and Keller E. (2016)
Enabling Practical Software-defined Networking Security
Applications with OFX. Network and Distributed System
Security Symposium (NDSS). Vol. 16. pp: 1-15.

[47] Porras P. A, Cheung S., Fong M. W, Skinner K. and
Yegneswaran V. (2015) Securing the Software Defined
Network Control Layer. Network and Distributed System
Security Symposium (NDSS).

[48] Ahmad I., Namal S., Ylianttila M. and Gurtov A.

(2015) Security in software defined networks: A survey.
IEEE Communications Surveys & Tutorials. Vol. 17. pp:
2317-2346.

[49] Xing T., Huang D., Xu L., Chung C. and Khatkar P.

(2013) Snortflow: A openflow-based intrusion prevention
system in cloud environment. Second IEEE Research and
Educational Experiment Workshop (GREE). pp: 89-92..

[50] Xing T., Xiong Z., Huang D. and Medhi D. (2014)
SDNIPS: Enabling Software-Defined Networking based
intrusion prevention system in clouds. 10th IEEE Interna-
tional Conference on Network and Service Management
(CNSM). pp: 308-311.

19

Kernel-Space Intrusion Detection Using Software-Defined Networking

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e2

http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://www.caida.org/data/passive/ddos-20070804_dataset.xml.
https://www.caida.org/data/passive/ddos-20070804_dataset.xml.
https://www.caida.org/data/passive/ddos-20070804_dataset.xml.
https://repository.lib.ncsu.edu/handle/1840.16/3581
https://repository.lib.ncsu.edu/handle/1840.16/3581

	1 Introduction
	2 Research Background and Challenges
	2.1 Kernel-Space Detection Background
	2.2 Research Challenges and Assumption

	3 Related Work
	4 Threat Models and Attack Vectors
	5 Design of KernelDetect
	5.1 KernelDetect Placement and Architecture
	5.2 Threat Signature Structure

	6 Experimental Evaluation
	6.1 Experimental Topology Design
	6.2 Detection Rules in BRO and SNORT
	6.3 Traffic Generation Techniques
	6.4 Experimental Results
	Inspection Time
	Mitigation Time:
	False Negative and False Positive
	System Resource Utilization
	Discussions

	7 Conclusions and Future Work

