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ABSTRACT

In this paper, we consider a heterogeneous integrated net-
work scenario where a number of heterogeneous radio access
technologies are integrated to offer data transmission service
to user equipments (UEs). We assume that wireless network
virtualization is applied to the networks and the physical
base stations (PBSs) of the access networks are virtualized
into a number of virtual base stations (VBSs). We jointly
study VBS association and resource allocation problem in
the networks. To achieve joint performance optimization of
all the UEs within the network, we formulate thejoint VBS
association and resource allocation problem as an optimiza-
tion problem which aims at achieving the maximumenergy
efficiency of the networks. As the formulated optimization
problem is aNP hard problem, which cannot be solved di-
rectly, we propose a heuristic algorithm, which starts from a
complete matching between user pairs and VBSs, and then-
for each matching pair, the original power allocation and VB-
S association and resource allocation problemcan be trans-
formed into resource allocation subproblem and VBS asso-
ciation subproblemequivalently. The two subproblems are
solved, respectively, through applying Lagrange dual method
and the Kuhn-Munkres (K-M) algorithm. Numerical results
demonstrate the efficiency of the proposed algorithm.
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1 INTRODUCTION

In recent years, various types of wireless access technolo-
gies have experienced rapid development and have gradually
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achieved effective coordination and integration, resulting in
heterogeneous integrated networks (HetNets). In addition,
the exploding popularity of smart wireless devices and the
dramatic increase in the amount of data traffic have pose
great challenges on the transmission performance the ra-
dio access networks (RANs). To enhance the transmission
performance of the RANs and to improve the utilization
of network resources, the concept of wireless network vir-
tualization (WNV) has been proposed, which is considered
as an emerging architectural choice to support concurrent
heterogeneous services with various quality of service (QoS)
requirements [1]. By applying WNV technology in HetNets,
physical network architectures of the network can be mapped
into virtual architectures which are allowed to share the net-
work resources of physical network. Compared to traditional
networking paradigms, the network resource utilization can
be improved and network resources can be managed flexi-
bly by constructing the optimal mapping and virtualization
schemes [2, 3].

Despite the potential advantages of WNV to improve wire-
less resource utilization, it brings many new challenges [3].
One such research challenge is how to efficiently allocate
the wireless resources of physical networks to the users of
multiple virtual networks. Many previous works have been
conducted on the resource allocation of wireless networks
enabling WNV. The authors in [4] introduce wireless virtu-
alization into small cell networks and propose a virtual re-
source allocation problem in virtualized small cell networks
with full-duplex self-backhaul in the downlink transmission
and formulate the optimization problem to maximize the to-
tal utility of mobile virtual network operators (MVNOs). In
[5], the authors propose a virtualization framework for LTE
systems, where the physical resources of the eNodeB are al-
located to the service providers by a central entity called
hypervisor.

Reference [6] solves resource allocation problems in wire-
less networks based on game theoretic approach. In particu-
lar, the authors apply stochastic game framework to model
the interactions between network operator (NO) and service
providers (SPs), where the NO determines the conjectural
prices of network resources and SPs dynamically bid the re-
sources on behalf of their users. The authors in [7] consider
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resource allocation in a multi-cell virtualized wireless net-
works and propose a joint base station (BS) assignment, sub-
carrier, and power allocation algorithm which aim at maxi-
mizing the network sum rate. In [8], the authors consider two-
way relay networks and study the training-based channel esti-
mation schemes. They derive the maximum-likelihood (ML)-
based estimator for deterministic channel and a new type
of estimator that aims at maximizing the effective receive
signal-to-noise ratio (SNR) for stochastic channel model.

In previous research works [4–8], to maximize the network
throughput or the formulated utility function, the maximum
transmit power should be applied in general. However, this
may result in large power consumption and low energy ef-
ficiency, which are highly undesired. To stress the tradeoff
between user transmission performance and power consump-
tion, the energy consumption and the energy efficiency of
wireless networks are considered in designing resource allo-
cation schemes.

In the works of [9 -11], the authors mainly focus on the en-
ergy efficiency performance matric which is of particular im-
portance in future cellular systems. The authors in [9] design
an iterative algorithm to maximize system energy efficiency
in device-to-device (D2D) communications. In [10], the au-
thors consider an energy efficiency maximization scheme of
resource assignment and power allocation and design a low-
complexity and sub-optimal algorithm. The authors in [11]
transform the energy efficient resource allocation problem
in wireless multicell OFDMA networks into a proportional
fairness optimization problem.

While energy efficiency optimization has been considered
in [9–11], user association and resource allocation issues have
not been studied extensively. In [12], the authors consider the
joint optimization of BS association and power allocation in
a wireless downlink HetNet under the proportional fairness
criterion and propose a utility function maximization based
BS association and power allocation strategy. However, ener-
gy efficiency failed to be stressed in their work. In this paper,
we consider a WNV-enabled HetNet where physical BSs (PB-
Ss) are virtualized into virtual BSs (VBSs) and study joint
VBS association and resource allocation problem. The rest of
paper is organized as follows. The system model is described
in Section 2. The proposed energy efficient resource alloca-
tion problem is formulated in Section 3. In Section 4, we
describe the solution to the formulated optimization prob-
lem. Simulation results are discussed in Section 5. Finally,
we conclude this study in Section 6.

2 SYSTEM MODEL

In this work, we consider a HetNet framework consisting of
multiple heterogeneous RANs and a number of user equip-
ments (UEs). Applying WNV technology, the PBSs in the
networks are virtualized into multiple VBSs, which share the
spectrum resource of the corresponding PBSs. We assume
that orthogonal spectrum sharing scheme is applied for var-
ious PBSs in the network, hence no inter-cell interference
exists.

We denote the number of PBSs as M, the number of VBSs
belonging to the ith PBS as Ni and the number of UEs as
K. We assume UEs located within the geographic area of
the network may access the VBS of one PBS for information
interaction. For convenience, we further assume that each
UE can only select one VBS and each VBS can only serve one
UE at certain time-frequency resource block. In this paper,
we assume that the bandwidth resource of the PBSs is given
constants and jointly study VBS association and resource
allocation problem, in particular, we stress the bandwidth
and power allocation problem of the UEs. Fig. 1 shows the
system model considered in this paper.

Figure 1: System Model

3 PROPOSED VBS ASSOCIATION

AND RESOURCE ALLOCATION

PROBLEM FORMULATION

In this section, we design the optimal joint VBS association
and resource allocation scheme for the UEs in the HetNet. In
particular, to stress the importance of the transmission rate
and power consumption of users, and to achieve the tradeoff
between the two metrics, the energy efficiency of all the UEs
is examined and optimized in terms of the VBS association,
bandwidth and transmit power allocation strategy.

3.1 Optimization Objective Function

Let η denote the energy efficiency of the UEs, we obtain

η =
M∑
i=1

ηi (1)

where ηi denotes the energy efficiency of the UEs accessing
the ith PBS, which can be expressed as

ηi =

Ni∑
j=1

K∑
k=1

xijkηijk (2)

where xijk ∈ {0, 1} denotes the VBS association variable of
the kth UE when accessing the j th VBS belonging to the
ith PBS, we set xijk = 1 if the kth user accessing the j th
VBS of the ith PBS; otherwise, xijk = 0, ηijk denotes the
energy efficiency of the kth UE when accessing the j th VBS
of the ith PBS. ηijk can be expressed as

ηijk =
Rijk

Pijk + Pcir
(3)
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where Rijk and Pijk denote respectively the achievable data
rate and the transmit power of the kth UE when access-
ing the j th VBS of the ith PBS, Pcir denotes the circuit
consumption power of the UEs. We assume that the circuit
consumption power of the UEs is a constant in this work.
Rijk in (3) can be expressed as

Rijk = αijkBi log

(
1 +

Pijkhik

σ2

)
(4)

where αijk denotes the fraction of the bandwidth allocated to
the j th VBS of the ith PBS when accessing the kth UE, Bi

denotes the available bandwidth of the ith PBS, hik denotes
the channel gain of the transmission link from the kth UE
to the ith PBS, and σ2 denotes the power of the additive
white Gaussian noise (AWGN) of the link from the kth UE
to the ith PBS. Without loss of generality, the power of the
AWGN for all the links is assumed to be a constant in this
work.

3.2 Optimization Constraints

In this subsection, we describe the optimization constraints
which should be satisfied when designing the optimal VBS
association and resource allocation scheme.

3.2.1 Data Rate Constraint. UEs with various types of ser-
vices may pose different QoS requirements on the accessing
VBSs. In this paper, we assume that UEs may have differ-
ent data rate requirements, more specifically, each UE has
a minimum data rate requirement. The data rate of the kth
UE can be calculated as

Rk =
M∑
i=1

Ni∑
j=1

xijkRijk. (5)

Denoting Rmin
k as the minimum data rate requirement of

the kth UE, we can obtain the data rate constraint:

Rk ≥ R
min
k . (6)

3.2.2 Maximum Transmit Power Constraint. The transmit
power of the kth UE can be calculated as:

Pk =
M∑
i=1

Ni∑
j=1

xijkPijk. (7)

Let Pmax
k denote the maximum allowable transmit power of

the kth UE, the transmit power of the UE should be less
than Pmax

k , hence the maximum power constraint can be
expressed as

Pk ≤ P
max
k . (8)

3.2.3 VBS Association Variable Constraint. We assume that
UEs can at most access one VBS and vice versa, hence the
VBS association constraint can be expressed as

M∑
i=1

Ni∑
j=1

xijk ≤ 1, (9)

K∑
k=1

xijk ≤ 1. (10)

3.2.4 Bandwidth Allocation Constraint. As the VBSs be-
longing to one PBS share the bandwidth resource of the
PBS, we obtain

Ni∑
j=1

K∑
k=1

αijk ≤ 1, (11)

0 ≤ αijk ≤ 1. (12)

3.3 Optimization Problem Formulation

Based on the optimization objective and constraints, the
problem of VBS association and resource allocation in the
HetNet can be formulated as the following optimization prob-
lem

max
xijk,αijk,Pijk

η (13)

s.t. C1 : Rk ≥ R
min
k

C2 : Pk ≤ P
max
k

C3 :

M∑
i=1

Ni∑
j=1

xijk ≤ 1

C4 :
K∑

k=1

xijk ≤ 1

C5 : 0 ≤ αijk1
≤ 1

C6 :

Ni∑
j=1

K∑
k=1

αijk ≤ 1

4 SOLUTION TO THE OPTIMIZATION

PROBLEM

The optimization problem formulated in (13) is a non-convex
nonlinear fractional program [14] which cannot be solved
conveniently using traditional optimization tools. In this sec-
tion, we consider a relatively simple case, that is each PBS
is virtualized into two VBSs, and transform the original op-
timization problem into two sub-problems, i.e., bandwidth
and power allocation sub-problem and VBS association sub-
problem.

4.1 Bandwidth and Power Allocation

Subproblem

We assume that the ith PBS is virtualized into two VBSs,
i.e., the j1th and the j2th VBS and the k1th UE accesses
the j1th VBS and the k2th UE accesses the j2th VBS of
the ith PBS, thus we obtain xij1k1

= 1 and xij2k2
= 1. As

the two VBSs share the bandwidth resource of the ith PBS,
we obtain αij2k1

= 1 − αij1k2
, we can then formulate the
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bandwidth and power allocation sub-problem as follows

max
αij1k1

,Pij1k1
,Pij2k2

ηij1k1
+ ηij2k2

(14)

s.t. C1 : Rk1
≥ R

min
k1

C2 : Rk2
≥ R

min
k2

C3 : Pk1
≤ P

max
k1

C4 : Pk2
≤ P

max
k2

C5 : 0 ≤ αij1k1
≤ 1

The fractional objective function in (14) is a non-convex
nonlinear fractional program, which is very difficult to be
solved using conventional optimization methods. Therefore,
we transformed it into a convex problem and then solved by
the usage of Dinkelbach iterative algorithm [14].

4.1.1 Dinkelbach iterative algorithm-based Resource Allo-

cation Algorithm. In (14), the optimization variable αij1k1
is

coupled with Pij1k1
and Pij2k2

, thus it is difficult to separate
and solve them individually. Notice that αijk1

varies within
a relatively small region, i.e., 1 ≤ αij1k1

≤ 1, for simplici-
ty, we can obtain the optimal value of αi1k1

numerically, for
instance, by exhaustive search, then for each fixed value of
αij1k1

, we further solve Pij1k1
and Pij2k2

.
To obtain the optimal solution of Pij1k1

and Pij2k2
, we

introduce variable q1 and q2, which are defined as

q1 =
αij1k1

Bi log
(
1 +

Pij1k1
hik1

σ2

)
Pij1k1

+ Pcir
, (15)

q2 =
(1− αij1k1

)Bi log
(
1 +

Pij2k2
hik2

σ2

)
Pij2k2

+ Pcir
. (16)

We can prove that the maximum energy efficiency is obtained
when the following condition holds [14].

max
Pij1k1

,Pij2k2

αij1k1
Bi log

(
1 +

Pij1k1
hik1

σ2

)
− q1 (Pi1k1

+ Pcir)

+ (1− αij1k1
)Bi log

(
1 +

Pij2k2
hik2

σ2

)
− q2 (Pi2k2

+ Pcir)

= 0

(17)
Hence, solving the optimization formulated in (14) is equiv-
alent to solving the following optimization problem

max
q1,q2,Pij1k1

,Pij2k2

αij1k1
Bi log

(
1 +

Pij1k1
hik1

σ2

)
− q1 (Pij1k1

+ Pcir)

+ (1− αij1k1
)Bi log

(
1 +

Pij2k2
hik2

σ2

)

− q2 (Pij2k2
+ Pcir) (18)

s.t. C1 : Rk1
≥ R

min
k1

C2 : Rk2
≥ R

min
k2

C3 : Pk1
≤ P

max
k1

C4 : Pk2
≤ P

max
k2

C5 : 0 ≤ αijk1
≤ 1.

In order to obtain the optimal energy efficiency and the pow-
er allocation strategy of (18), we apply Dinkelbach iterative
algorithm [14]. The proposed algorithm is summarized as:

Algorithm 1 Dinkelbach iterative algorithm-based Resource
Allocation Algorithm

(1) Initialize the maximum number of iterations Lmax

and the maximum tolerance δ

(2) Set q1 = 0, q2 = 0 and the iteration index l = 0
(3) Repeat main loop

(4) For given q1, q2, αij1k1
, solve for P

′

ij1k1
, P

′

ij2k2

(5) if Rij1k1
− q1(P

′

ij1k1
+ Pcir) + Rij2k2

− q2(P
′

ij2k2
+

Pcir) ≤ δ then
(6) Convergence = true

(7) return {P ∗
ij1k1

, P ∗
ij2k2

} = {P
′

ij1k1
, P

′

ij2k2
} and

(8) q∗1 =
Rij1k1

P∗
ij1k1

+Pcir

, q∗2 =
Rij2k2

P∗
ij2k2

+Pcir

(9) else

(10) Set q1 =
Rij1k1

P
′

ij1k1
+Pcir

, q2 =
Rij2k2

P
′

ij2k2
+Pcir

and

l = l + 1
(11) Convergence = false
(12) end if
(13) until convergence = true or l = Lmax

4.1.2 Lagrange Method for Solving Locally Optimal Power

Allocation Strategy. For given q1 and q2, we use the Lagrange
approach to solve the optimization problem in (18). Upon
rearranging terms, the Lagrange function can be expressed
as

L (Pij1k1
, Pij2k2

, β1, β2, λ1, λ2) = Rij1k1
− q1 (Pij1k1

+ Pcir)

+Rij2k2
− q2 (Pij2k2

+ Pcir) + β1

(
Rk1

−R
min
k1

)

+ β2

(
Rk2

−R
min
k2

)
+ λ1 (P

max
k1

− Pk1
) + λ2 (P

max
k2

− Pk2
)

(19)
where β1, β2, λ1, λ2 ≥ 0 are Lagrange multipliers. The La-
grange dual problem of (17) can be formulated as follows

min
β1,β2,λ1,λ2

max
Pij1k1

,Pij2k2

L (Pij1k1
, Pij2k2

, β1, β2, λ1, λ2) (20)

s.t. β1, β2, λ1, λ2 ≥ 0
The above dual problem can be solved by iteratively de-

composing it into two subproblems, i.e., optimizing the trans-
mit power for a fixed set of Lagrange multipliers, and updat-
ing the Lagrange multipliers iteratively. For a given set of
Lagrange multipliers β1, β2, λ1, λ2, using standard opti-
mization techniques, we can find the locally optimal pow-
er allocation strategy through calculating the derivative of
L (Pij1k1

, Pij2k2
, β1, β2, λ1, λ2) over Pij1k1

, Pij2k2
and set-

ting to 0. The Karush-Kuhn-Tucker (KKT) specifies:

∂L (Pij1k1
, Pij2k2

, β1, β2, λ1, λ2)

∂Pij1k1

= 0 (21)
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∂L (Pij1k1
, Pij2k2

, β1, β2, λ1, λ2)

∂Pij2k2

= 0 (22)

Therefore if β1, β2, λ1 and λ2 are given, then we can obtain
the optimal Pijk1

and Pijk2
as follows:

P
∗
ij1k1

=

[
(αij1k1

+ β1)Bi

ln2.(q1 + λ1)
−

σ2

hik1

]+

(23)

P
∗
ij2k2

=

[
(1− αij1k1

+ β2)Bi

ln2.(λ2 + (1− αij1k1
)q2)

−
σ2

hik2

]+

(24)

where [z]+ = max {0, z}. For a differentiable dual function, a
subgradient based method can be applied to calculate the op-
timum values for β1, β2, λ1 and λ2. The subgradient method
is to design a step update β1, β2, λ1 and λ2 in the subgradient
direction; the update can be performed as follows

β
(t+1)
1 =

[
β
(t)
1 − a1(Rk1

−R
min
k1

)
]+

(25)

β
(t+1)
2 =

[
β
(t)
2 − a2(Rk2

−R
min
k2

)
]+

(26)

λ
(t+1)
1 =

[
λ
(t)
1 − a3(P

max
k1

− Pk1
)
]+

(27)

λ
(t+1)
2 =

[
λ
(t)
2 − a4(P

max
k2

− Pk2
)
]+

(28)

where t is the iteration index and a1, a2, a3, a4 are small
positive step sizes. The process of computing the optimal
power allocation strategy P ∗

ij1k1
and P ∗

ij2k2
and updating

β1, β2, λ1 and λ2 is repeated until convergence, indicating
that the dual optimal point has been reached.

4.2 Optimal VBS Association Subproblem

Through assuming xij1k1
= 1, xij2k2

= 1, we can obtain the
locally optimal power allocation strategy, denoted as P ∗

ij1k1

and P ∗
ij2k2

. Substituting the optimal solutions in (1) and (2),
we obtain

η =

M∑
i=1

K∑
k1=1

K∑
k2=1,k2 �=k1

(
xij1k1

η
∗
ij1k1

+ xij2k2
η
∗
ij2k2

)
(29)

where η∗
ij1k1

and η∗
ij2k2

can be expressed respectively as

η
∗
ij1k1

=

αij1k1
Bi log

(
1 +

P∗
ij1k1

hik1

σ2

)

P ∗
ij1k1

, (30)

η
∗
i2k2

=

αijkBi log

(
1 +

P∗
i,j,k2

hi,k

σ2

)

P ∗
i,j,k2

. (31)

For given P ∗
ij1k1

and P ∗
ij2k2

, η∗
ij1k1

and η∗
ij2k2

are constants.
Therefore, the problem of maximizing (29) is equivalently
simplified as selecting the optimal xij1k1

and xij2k2
subject

to VBS association constraints, which can be expressed as

the following optimal VBS association subproblem

max
xij1k1

,xij2k2

M∑
i=1

K∑
k1=1

K∑
k2=1,

k2 �=k1

(
xij1k1

η
∗
ij1k1

+ xij2k2
η
∗
ij2k2

)

(32)

s.t. C1 :

M∑
i=1

xij1k1
≤ 1

C2 :
M∑
i=1

xij2k2
≤ 1

C3 :
K∑

k1=1

K∑
k2=1,k2 �=k1

xij1k1
+ xij2k2

≤ 2

The optimization model formulated in (32) is a nonlinear
integer optimization problem, which is in general very diffi-
cult to solve. However, under the assumption that each PBS
is virtualized into two VBSs and each VBS can only access
one user, we can first partition K users into K

2
groups and

design the optimal VBS association strategy for each group.
It can be observed that given the constraints on VBS associ-
ation and user grouping strategy, the optimization problem
can be described by a bipartite graph and the problem of op-
timal group-VBS association can be regarded as an optimal
matching problem in the bipartite graph, which can then be
solved based on the typical algorithm such as Kuhn-Munkres
(K-M) algorithm to obtain the optimal energy efficiency. For
various user grouping strategies, we repeat above procedure
to calculate the locally optimal VBS association strategy and
obtain the corresponding optimal energy efficiency. Finally,
we compare the obtained energy efficiency corresponding to
different user grouping results and select the grouping and
VBS association strategy corresponding to the maximum en-
ergy efficiency.

5 NUMERICAL RESULTS

In this section, the performance of the proposed algorithm is
evaluated via numerical simulations based on Matlab. In the
simulation, we consider a virtualized HetNet scenario consist-
ing VBS and UEs, respectively. The numbers of PBSs and
UEs are respectively chosen to be 2 and 4. We assume that al-
l PBSs and UEs are located in a rectangular region with the
size being 100m× 100m. We consider that the position of all
BSs is fixed whiles we randomize that of the UEs. We assume
the system bandwidth of two PBSs is respectively set to be
1MHz and 2MHz, and the power of noise is σ2 = −136dBm.

The minimum data rate requirement of UEs is set as 1M-
bits/s, 1.5Mbits/s, 1.5bits/s and 2Mbits/s. We average the
simulation results over 2000 independent adaptation process-
es where different realizations of the positions of the UEs is
performed in each adaptation process.

Figure 2 shows the energy efficiency versus the number of
iterations obtained from the proposed algorithm. The maxi-
mum transmit power, i.e., Pmax is chosen as 1W in plotting
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the figure. From the figure, it can be observed that the ener-
gy efficiency monotonically increases and converges within a
small number of iteration.
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Figure 2: Energy efficiency versus the number of it-
eration
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Figure 3: Energy efficiency versus Pmax (different cir-
cuit power)

Figure 3 shows the energy efficiency versus the maximum
transmit power of UEs, i.e., Pmax for different circuit pow-
er consumption. For comparison, for a given Pmax, we plot
the energy efficiency obtained from our proposed algorithm
and the algorithm proposed in [12].From the figure, it can be
seen that for small Pmax, the energy efficiency increases with
the increase of Pmax for both algorithms, indicating that a
higher maximum power threshold is desired for achieving the
maximum energy efficiency. However, as Pmax increases, the
energy efficiency obtained from our proposed algorithm be-
comes a constant which no longer varies with the increase of

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Pmax (W)

6

6.5

7

7.5

8

8.5

9

9.5

10

En
er

gy
 e

ffi
ci

en
cy

 (b
it/

Jo
ul

e)

×106

Proposed scheme, σ2=10-13.5

Scheme in [12], σ2=10-13.5

Proposed scheme, σ2=10-14

Scheme in [12], σ2=10-14

Proposed scheme, σ2=10-14.5

Scheme in [12], σ2=10-14.5

Figure 4: Energy efficiency versus Pmax (different
noise power)

Pmax. However, the energy efficiency obtained from the algo-
rithm proposed in [12] begins to decrease after reaching the
maximum value. Comparing the energy efficiency obtained
for different circuit power consumption, we can see that the
energy efficiency decreases with the increase of circuit power.

In Figure 4, we examine the impact of link characteristics
on the energy efficiency of the UEs. Different noise power is
considered in examining the performance. From the figure,
we can see that as σ2 increases, the energy efficiency de-
creases. This is because larger noise power results in worse
transmission performance of the UEs and lower energy ef-
ficiency in turn. Comparing the results obtained from the
proposed scheme and the scheme proposed in [12], it can
be seen that our proposed scheme outperforms previously
proposed scheme.

6 CONCLUSION

In this paper, we jointly study VBS association and power
allocation problem of UEs in a WNV-enabled HetNet com-
prised of multiple PBSs and a number of UEs. To achieve
energy efficient data transmission, the problem of joint VBS
association and resource allocation is formulated as an ener-
gy efficiency maximization problem. We equivalently trans-
form the optimization problem into two subproblems, i.e., re-
source allocation subproblem and VBS association subprob-
lem, and apply iterative method and the K-M algorithm to
solve the two subproblems respectively, the optimal VBS
association and resource allocation strategies are obtained.
Numerical results demonstrate that the proposed algorith-
m offers higher energy efficiency compared with previously
proposed algorithm.
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