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ABSTRACT

For the conventional generalized side-lobe canceller (GSC), least
square (LS) type adaptive filters have poor convergence
performance when the speech enhancement system is corrupted
by impulsive noise. In this paper, a robust GSC algorithm based
on Fast-LMM/Newton algorithm is proposed. Experiments on
dual-microphone system proved the proposed algorithm can
achieve better robustness performance under the impulsive noise.
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1 INTRODUCTION

With many years’ development, speech enhancement has
become an indispensable technique in various applications
ranging from speech communication to speech recognition.
Compared with the single-microphone based enhancement
scheme, the dual-microphone technology [1] reveals its
advantage by making full use of signal spatial information.
When compared with the multi-microphone array, the dual-
microphone solution is relatively simple and easy to be
integrated into portable devices.

Speech enhancement technique based on dual-microphone is
widely used due to its low complexity and high implementability.
multi-microphone  based speech enhancement
techniques have been proposed, like
beamforming, minimum variance distortionless response (MVDR)
beamforming, adaptive beamforming, and so on. MVDR
beamforming retains the signal in the desired direction and
minimizing the variance of the output noise [2]. The generalized
side-lobe canceller (GSC) using adaptive filter proposed in [3]
has been widely used due to its simple structure. It transforms
the constraint problem of the linear constraint minimum
variance (LCMV) beamformer into none constraint problem to eliminate

the noise and interference. It is well known conventional LS-type
adaptiveare algorithms will be severely
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interference scenario. In this paper, a new GSC adaptive robust
algorithm based on [9] is proposed, which improves the robust
performance under the non-stationary condition with impulsive
interference. Compared with the traditional NLMS and Fast-
LMS/Newton algorithms, the proposed algorithm has better
robustness performance under the impulsive noise, and
significantly improves the robustness of the GSC algorithm. The
rest of the paper is organized as follows. In section 2, the GSC
and conventional algorithms are introduced. Section 3 derives
the proposed robust algorithm. Simulation results are given in
section 4 and conclusions are drawn in section 5.

2 GSC Based on Fast-LMS/Newton Algorithm

The block diagram of GSC is shown in Fig.1. It has two distinct
substructures which are shown as the upper and lower
processing paths, and consists of three parts which are fixed
beamformer (FBF), blocking matrix (BM), and adaptive noise
canceller (ANC) [3]. The basic idea of GSC is to obtain the
enhanced signal by using the output of the FBF in the upper path
to subtract the signal filtered by the BM in the lower path
adaptively with the ANC.

The fixed beamformer is typically delay-and-sum or filter-
and-sum beamformer. The former is used in this paper. After the
beam direction of the fixed beamformer is steered to the desired
direction, the delay-and-sum signal. The signal received by the
two microphones can be expressed as

(1)
where x;(n) is the noisy speech signal, s(n) denotes the pure

speech signal from the direction 8, v(n) is the additive noise
from the direction 8, 1 is the distance between the microphone,

xi(n) =s(n—r1;) +v(n)

7; denotes the time delay of the i_th microphone signal.
Applying short time Fourier transform (STFT) as a fixed
beamformer, x(n) can be weighted as follows

d(k) = x (k)wg; (k) @)

i) = 3 11,6795 ©)

&(n) represents the phase shift of the signal at the frequency bin

£(k) = ZEW gin ) @)
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Figure 1: Block diagram of GSC.

where F(k) is the center frequency and ¢ = 340m/s.

The role of the blocking matrix is to block the desired signal
in the lower path and let output only contains the interfering
noise. It is possible to ensure that the output signal does not
contain the desired direction signal as long as the matrix have
N — 1 linearly independent rows which sum up to zero, where N
denotes the number of the microphones. When the incident
angle is 90 degrees, it can be concluded that the blocking matrix
can be chosen as

B=[1 -1] ©)

ysm(n) = Bx(n) (6)
In the conventional GSC scheme, the ANC module usually
adopts the normalized least mean square (NLMS) algorithm.
However, its convergence rate is too slow to suit for practical
application. LMS/Newton type algorithms [5] bear improved
convergence performance, which are formulated as

w(n +1) = w(n) + 2ue(m)Rzix(n) (7)

Where Ry, is the covariance matrix for the input signal,uis the
step-size. For the above LMS/Newton algorithm, R, is usually

assumed known or can be approximated by its linear expectation.

In [6] Boroujeny employed the linear prediction (LP) technique
Defining the vector b(n) = Lx(n) as the

reverse prediction error so its covariance matrix Ry, is a

to approximate R,y .

diagonal matrix, which is reversible can be further written as
Rpp = E{Lx(n)(Lx(n))T} = LR, LT 8)
Defining u(n) = Rp}x(n) and using (8) yields
u(n) = L"Ry}b(n) 9)
Substituting (9) into (7), the Fast-LMS/Newton algorithm can be
obtained as
w(n+1) = wn) + 2ue(m)L" Ry b(n) (10)

The Fast-LMS/Newton algorithm based on LP technique shows a
significantly faster convergence performance over the NLMS
algorithm [6] and thus is a promising solution to speech
applications.

3 Improved GSC Algorithm
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Figure 2: Modified Huber estimation function.

As introduced in the previous section, the Fast-LMS/Newton
algorithm can be used in GSC to speed up convergence.
However, like other LMS-type adaptive algorithms which are
based on the LS estimation, when the noise is of impulsive
nature, its convergence performance will be seriously affected. In
this section, a robust GSC scheme based on Fast-LMM/Newton
algorithm is proposed, which has improved stability in face of
impulsive interference.

The commonly used robust statistical methods include the
Order Statistic Least Mean Square (OSLMS) [8] algorithm, the
LMS/Newton algorithm based on M-estimation (Least Mean M-
estimate, LMM) [9] and the recursive M-estimate (RLM)
algorithm [10]. The LMM and RLM algorithms are based on the
M-estimation principle, which shows improved robustness to
impulsive interference. Performance comparison of these two
algorithms and other related algorithms can be referred to [9]
and [10]. As shown in Fig.2, the cost function of LMM algorithm
with  M-estimation J, = E{p[e(n)]} that  of
conventional LMS-type algorithm J; 3 = E[e?(n)], in which
ple(n)] is a modified Huber (MH) function with the evaluation
functiony(e) = dp(e)/de. More specifically,

e? /2 0<|e|<é
§2/2 §<|el

where ¢ is a threshold parameter that is used to compare with

replaces

pun(®) = | (1)

the real value of e(n). When the latter becomes greater than the
threshold, Y (e(n)) is set to zero to halt the coefficient update so
as to protect the algorithm from being divergent. When the e(n)
is smaller than the threshold, the algorithm is equivalent to the
conventional Fast-LMS/Newton algorithm. When p(e) = e2/2,
the MH function will reduce to the traditional MSE cost function.
It can be seen from Fig.2 that the smaller ¢ is, the stronger
suppression will be imposed on the impulsive interference.

Due to the time-varying nature of the processed signals, the
value of & needs to be adaptively estimated. The optimal vector
equation for the M-estimation equation is:

R,w;, =P, (12)
= E[q(e(m)x(m)x" ()], P, = E[q(e(m)d(m)x(n)]

are respectwely the M-estimation auto- correlatlon matrix and
the cross-correlation vector q(e) = (dp(e)/dp) /e =P (e)/e.
Recalling the optimal LS solution

where
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wis = R71P (13)
The gradient vector can be expressed as
V= 2R,,w — 2P (14)
Multiplying the both sides of eqn. (14) by %R;,} yields
. 1
Wis =W — ER;)}VW (15)
Incorporating a step size factor in (15) generates the
LMS/Newton algorithm
1
w(n +1) = w(n) == uRx! Vi) (16)
where V)~ V,{e?(n)} = —e(n)x(n) is similar to its

instantaneous gradient value. In the M-estimation, the Ry}
estimate in eqn. (16) is replaced by R,?, and V., is replaced by
the M-estimated instantaneous gradient vector:

Y, = Vu,{p(e(m)} = qle(m))e(m)x(n) (17)
o=t [0Sl

The threshold parameters are adjusted by the Adaptive
Threshold Selection (ATS) [11] method. By introducing the
formula (17) into the Fast-LMS/Newton algorithm, a new Fast-
LMM/Newton robust algorithm can be obtained:

e(n) =d(n) — x"(n)x(n) (19)
w(n + 1) = w(n) + uq(e(n))e(m)u, (n) (20)
u,(n) = LR, b(n) (21)

The Fast-LMM/Newton algorithm can thus be introduced into
the ANC module of GSC algorithm. In order to dynamically
estimate the threshold parameter ¢, the algorithm needs to
estimate the variance:

62(n) = 1;,62(n — 1) + c(n — A,)med (4. (n)) (22)
where A,(n) = [e?(n),--,e?(n—N,, + 1)] , med(:) is the

median filter,A; is the forgetting factor, c;is the finite length
correction factor, N, is the median filter window length, £ =
kg6,(n) where kg is the constant controlling algorithm
convergence and the degree of impulse interference suppression.

4 Simulation Results

In this section, the NOISEX-92 database [12] is used for
experimental testing. The spacing between the two microphones
of the dual- microphone is 2.26 cm. It is assumed that the desired
and interference sources are both located in the far field. The
direction of arrival of the speech signal and the interference
signal are 90 and 30 degrees. The test uttered speech is "blue sky,
white clouds and green sea". The background noises are white,
pink, and babble noise and speaker interference with various
SNR being 0dB, 5dB and 10dB respectively. The impulsive
interference are imposed to the desired signal respectively at the
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Figure 3: MSE learning curve of two algorithms.

beginning of the speech segment, in the speech active period and
in the noise-only period. The sampling rate is 8 kHz. The order
of adaptive FIR filter in GSC is L = 256. Other parameters of
Fast-LMM/Newton algorithm are set as: pyppy = 0.8, apyy =
0.9, Buym = 0.95, N,, = 64, ¢; = 2.13, 2, = 0.99, ks = 1.96.

In order to verify the robustness of the GSC based on Fast-
LMM/Newton algorithm, three algorithms, the conventional
GSC algorithm based on NLMS algorithm, the LMS/Newton
method proposed in [2], and the proposed algorithm are
compared.

Fig.3 depicts the MSE learning curves for the Fast-
LMS/Newton and the Fast-LMM/Newton algorithms
identifying an L = 256 FIR system. The signals used are
randomly generated with SNR being 30dB. The probability of the
impulsive noise occurrence P, = 0.005. The position of the

in

impulsive noises are respectively at the time instants Pj,; =
1648, Py = 1841, Pyyyz = 2253, Py = 2620. A, and A, are
0.99. ¢ = 1.966,(n).

As can be seen from Fig.3, the two algorithms reach the same
steady state after about 1000 iterations. When the impulse
interference occurs, the Fast-LMS/Newton algorithm experiences
a divergence and re-convergence state whereas the Fast-
LMM/Newton algorithm remains stable, which shows improved
robustness. Fig.4 depicts the results when interference source is
the white noise plus impulse noise. Figures (b)-(d) are the
waveforms of the enhanced speech with the NLMS, Fast-
LMS/Newton and Fast-LMM/Newton algorithms in the GSC
algorithm. It is clear that the convergence performance of NLMS
algorithm is weaker than that of the other fast algorithms. The
NLMS and Fast-LMS/Newton algorithms diverge immediately
after being disturbed by the impulse interference. However, the
Fast-LMM/Newton algorithm shows significantly improved
robustness.

The Global Signal-to-Noise Ratio (Global SNR) [10] is
calculated as follows

Ynzo xf[n]

n=o n¢[n]

SNR; = 10log (23)
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Figure 4: Time domain waveform of the enhanced

speeches by three different algorithms.

where x;(n) is the enhanced speech of the i_th frame. n;(n)
denotes the noise signal of the i_th frame, M denotes the speech
signal frame index. Higher global SNR value indicates that the
enhanced speech is closer to the pure speech and the speech
enhancement algorithm is better. Table 1 shows the average SNR
of the improved Fast-LMM/Newton algorithm is higher than that
of the NLMS and the Fast-LMS/Newton algorithms, especially in
the case of low SNR. The improved speech SNR increases for
about 0.1dB. And under the low SNR condition, the speech SNR
is improved for about 1dB, which indicates that the proposed
algorithm has better anti-impulsive noise ability.

Then we will evaluate the speech quality based on the
perceptual evaluation of speech quality (PESQ) of ITU-TP.862
scores. Fig.5 shows the objective quality measurements of
enhanced speech for the NLMS, the Fast-LMS/Newton and the
proposed algorithms in the GSC algorithm under three different
SNRs and four different background noise types, respectively.
Under the condition of high SNR, the PESQ values of the three
algorithms are only slightly different. However, when the SNR is
low, the PESQ value of the proposed algorithm under the white,
pink and babble noises has increased at average of 0.3, while
under the speaker interference condition, the PESQ value is
slightly lower, which obtains improvement for about 0.2. The
proposed algorithm is superior in impulsive interference
suppression under the low SNR environment.
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Table 1: The comparison of Global SNR

Noise type Algorithm SNR/dB
0 5 10
White NLMS 4.87 8.63 13.2
Fast-LMS 6.44 10.1 14.8
Fast-LMM 7.3 104 14.9
Pink NLMS 3.15 7.48 12.2
Fast-LMS 5.27 9.25 13.3
Fast-LMM 6.63 9.82 13.5
Babble NLMS 4.53 8.59 13.1
Fast-LMS 7.12 9.92 14.6
Fast-LMM 7.81 11.0 14.7
Speaker NLMS 4.69 | 9.01 13.6
interference Fast-LMS 5.47 10.1 14.1
Fast-LMM 6.61 10.4 14.2
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Figure 5: The objective quality measures of enhanced
speech by three different algorithms.

CONCLUSIONS

In this paper, a Fast-LMM/Newton robust speech enhancement
algorithm for GSC 1is proposed by incorporating the M-
estimation function in the conventional Fast-LMS/Newton
algorithm. Used in dual-microphone GSC scenario, the proposed
algorithm shows superior the impulsive
interference when compared with its non-robust counterpart
algorithms.

robustness to
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