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ABSTRACT

Modern social networks bring people together and help facilitate
the organization of various group activities. The rapid develop-
ment of smart wearable devices has also made feasible the extrapo-
lation of their owners’ activity habits. Inspired by the recent work
by Ai et al. [2], we design a smart and private social activity invi-
tation framework based on historical data from smart devices. Our
paradigm aims at helping users organize group activities in a smart
and efficient waywhile finding compromises to satisfy all involved
parties. Compared with Ai et al.’s work [2], our framework is more
realistic, whereby users report their personal information to the
app server, which is used to provide organizing services to reg-
istered members. The app server, however, is untrustworthy and
could be motivated by factors such as advertising revenue. There-
fore, the app may advertise itself by providing aggregate statistical
information about current users to attract new users. This creates
a dilemma between the existing users’ concerns about personal pri-
vacy and the app developers’ agenda. Our framework ameliorates
this conflict by securing existing users’ information under a state-
of-the-art privacy concept – differential privacy – guaranteeing
quality services to existing users, while also allowing the server to
give informative answers to new potential users. In addition, the
proposed framework encourages less active or isolated users via
a new method based on perturbed graphs. Our simulation results
demonstrate that the proposed framework performs well.
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1 INTRODUCTION

Theworld is becoming increasingly interconnected, both economi-
cally and socially. There has been a noticeable rise over the past few
years in the percentage of people in the U.S. who say that they use
the internet, own a smartphone, and access social media. For ex-
ample, roughly three-quarters of Americans (77%) owned a smart-
phone in early 2017. This number is more than double the level of
2011, when merely 35% reported using smartphones [6]. Similarly,
in 2005, only 5% of U.S. adults used social media services, and this
share rose to 50% by 2011 and to about 69% in early 2017 [7]. Nowa-
days, social networks are integrating into our lives in nearly every
possible form and corner [1, 9, 22, 23, 27, 36, 39], as people use
them to connect, interact, and share with their peers. In particu-
lar, more and more people are using social network applications
on smart devices, and they tend to use them to help plan, promote,
and build excitement for any public events they are hosting.

However, most social network services offer only rudimentary
functions for organizing group activities. Facebook, for example, al-
lows users to create public or private events, but the organizer can



MOBIMEDIA 2017, July 2017, Chongqing, China W. Tong et al.

only choose to send invitations one-by-one or to everyone. The ser-
vice is incapable of automatically sending invitations based on one
or more qualifying attributes, and, in the case that there is a party
limit, it is filled strictly on a first-come, first-served basis. These
services are ill-suited for frequent, small events such as exercise
groups: inviting every possible candidate increases the likelihood
of a group where no one knows anybody except for the host, yet
it is tedious to manually search for a well-acquainted social group
that does the same kinds of exercise, at the same time and place.
Furthermore, isolated persons with similar interests but no quali-
fied friends would rarely be invited to such groups.

These services also pose problems from the invitees’ perspec-
tive. Users might receive lots of invitations to events that they are
not willing to attend, since the invitations are usually broadcast
based on the friendships of the organizer; the ability of each in-
vitee is not considered. But as the saying goes, birds of a feather
flock together. Invitees should accept invitations only when they
have the ability to attend. Take group hiking as an example – dif-
ferent hikers have different habits and physical capacities. Some
can hike at a fast pace and do not need to take breaks; others move
more slowly and take frequent rests. It is not hard to imagine an
inferior experience for both these hikers should they be placed in
the same hiking trip. To avoid such situations, the organizer needs
to selectively send invitations to people with similar habits and ac-
tivity levels. Our project will design an efficient activity invitation
framework which can encourage similar people to attend group
activities and thus enhance every attender’s satisfaction.

Smart wearable devices (a.k.a. wearable technology and wear-
able computing) have become one of the fastest-growing consumer
sectors of the Internet of Things (IoT) [8]. In recent years espe-
cially, the number of smart wearable owners has increased rapidly:
eMarketer [18] shows that even though penetration among U.S.
adults was just 16.0% in 2015, it was a jump of 57.7% over that
of 2014. What’s more, eMarketer expects the percentage to dou-
ble by 2018. Similarly, IDC Research [35] forecasts that the annual
worldwide shipment of smart wearable devices will experience a
staggering growth of 250% over the period from 2015 to 2019. Since
most smart wearable devices are equipped with an array of differ-
ent sensors such as compasses, proximity sensors, accelerometers,
gyroscopes, altimeters, barometers, and GPS [34], their users are
involved in a movement toward data and fitness tracking. A GPS
sports watch, for instance, can collect various data such as location,
route, distance, pace/speed, duration, and elevation changes for dif-
ferent sports activities that the owner attends. These personal data
can then be saved and synchronized to authorized mobile devices
or laptops. From there, the habits of the device owners, such as
their preferred activities, schedule, and location can be easily de-
rived by analyzing the historical data with state-of-the-art mining
or learning algorithms. This information can then be used to help
the owners find group activities appropriate for them. We propose
a framework to use historical data gathered from smart devices
to choose invitees for an activity. Furthermore, since information
such as habits, age, etc. is sensitive, our framework will also take
steps to secure the participants’ privacy.

Our project aims at designing a smart and secure social activity
invitation framework based on historical data gathered from smart

devices. In particular, we will consider the following scenario. Sup-
pose there is an activity organizer app for different kinds of out-
door events. After registering on this app, users can either orga-
nize activities by submitting a request to the server, which will be
distributed to the other users, or receive invitations from the app
server. Users can also add each other as friends. In order to receive
more interesting invitations, app users need to divulge personal
information such as age, sex, locational preferences, and historical
data from their wearable devices. On the other hand, we assume
the server is untrustworthy for several reasons.

• First, server curators have full access to users’ data, and
can thus browse and even leak user data to other parties.

• Second,malicious attackers can breach the server and steal
user data. The server needs to apply many security mea-
sures, such as encrypting data in storage.

• Third, users’ data is vulnerable to “man-in-the-middle" at-
tacks [38] when it travels from device to server, because
attackers can eavesdrop on the transmission channel.

• Fourth, since app developers are incentivized tomakemoney
via advertisements and more users implies more profits,
the app may attempt to attract users by releasing some
histogram-based information about current users or an-
swering queries from potential new users. However, pro-
viding aggregate statistical information about the datamay
cause privacy leakage and de-anonymize current users, as
we have seen from classic examples such as the Netflix
Prize dataset [32], theMassachusetts Group Insurance Com-
mission (GIC) medical encounter database [10], and the
Metadata and Mobility databases [11].

However, designing an efficient and secure activity invitation
framework is quite challenging.

(1) How does the framework make the utmost effort to bene-
fit all three parties (the current users, potential new users,
and app developers), who have different goals? In partic-
ular, current users want to receive the fittest invitations;
potential new users query for useful information to decide
whether to register; and the app developers want to entice
more users and provide the best possible services to main-
tain existing users. Since we know it is impossible to sat-
isfy every party, designing the system to benefit as many
participants as possible becomes a complicated optimiza-
tion problem.

(2) How is the framework to protect existing users’ privacy?
Considering the complicated relationship between exist-
ing users and an untrustworthy server, protecting existing
users’ privacy while allowing the server to provide quality
service is an additional challenge.

(3) Judiciously motivating less active or isolated users to par-
ticipate in more group activities without upsetting exist-
ing users is yet another challenge.

In this paper,we follow a recent work byAi et al. [2] and propose
a novel activity invitation framework to address these issues, pri-
vacy in particular. First, our proposed framework collects sensed
data from smart devices to generate a profile for each device owner.
Then, using a state-of-the-art privacy concept, differential privacy,
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wewill design privacy-preserving algorithms to perturb users’ per-
sonal data before it is reported to the server. When a user submits a
request to organize an activity, the server employs a k-core graph
algorithm [2] to send out invitations such that each receiver has at
least k friends who received invitations as well. In order to encour-
age new and less active or isolated users to participate in group
activities, the server will adopt a novel method to perturb the k-
core graph by fairly includingmore such users. Differential privacy
will also allow the server to offer aggregate statistical information
to attract more users without jeopardizing current users’ privacy.

The main contribution of our work is to solve the trilemma
among existing users’ privacy; quality services to both existing and
potential users; and app developers’ profits. In other words, our
work will protect existing users’ privacy while satisfying all three
parties involved. Lastly, our framework will provide a novel mech-
anism to encourage less active and isolated users. The rest of the
paper is organized as follows. Section 2 reviews related works; the
proposed framework is introduced in Section 3; Section 4 shows
the simulation results; and Section 5 concludes our paper.

2 RELATED WORK
Due to the popularity of smartphones, the internet, and social
media, lots of social media platforms/websites, such as Facebook,
Twitter, Plancast,Meetup, Yahoo! Upcoming, and Eventbrite provide
services for people to organize and distribute social events. There
are also many local outdoor or special activity clubs such as theAt-
lanta Outdoor Club [2]. However, most of these social medias offer
only rudimentary functions for organizing group activities. Face-
book, for instance, allows users to create public or private events,
but the organizer can only choose to send invitations one-by-one
or to everyone. In Plancast, users may follow event calendars of
other members. Usually, an organizer simply broadcasts the invi-
tations to the public or to his/her friends, and potential invitees
either choose to subscribe to events of all or some categories, or
browse events on websites. These invitation-disseminating mech-
anisms are ideal for neither organizers nor invitees, as group expe-
riences can be spoiled by having too many unqualified attendees.
When invitations are indiscriminately broadcast, invitees may also
be overwhelmed by a plethora of different activity invitations. Fur-
thermore, isolated persons with similar interests but no qualified
friends would rarely be invited to events where invitations are sent
according to friendships.

There is plenty of research in the literature on social networks;
the following are the ones most related to our work. Liu et al. [29]
investigated event-based social networks and discovered heavy-
tailed degree distributions and strong locality among social inter-
actions by analyzing data collected from Meetup. The authors also
studied the event recommendation problem, where a simulation
would evaluate users’ response rateswithout considering user event
satisfaction. Kim et al. explored the use of k-core and inverse k-
core graphs to solve the issue of selecting biased survey respon-
dents [26], and deriving an effective decision making group for a
society [25]. Ai et al. [3, 4] presented efficient algorithms to main-
tain as many stable partnerships as possible. Li et al. [28] and Han
et al. [20, 21] proposed propagation models for the influence max-
imization problem in social events.

Most recently, Ai et al. [2] studied the exact same problem as our
paper and proposed an efficient social event invitation framework
based on Historical Data of Smart Devices. Their work, however,
assumes the existence of a trusted and altruistic server and uses an
invitation framework comprised of only two parties – the existing
users and a server. Ai et al. [2] also handle less active or isolated
users by simply assigning them a higher priority,whereas our para-
digm implements a more flexible and fair mechanism to encourage
these users. In addition, their framework only uses overall group
statistical data or ranges instead of specific values to substitute real
data. Because such simple privacy protectionmethods cannot guar-
antee the safety of every user’s personal information, our proposed
framework considers a more realistic situation in which the server
is selfish and possibly untrustworthy.We concentrate more on the
privacy issue such that existing users will be sufficiently protected
while simultaneously satisfying all three of our framework’s par-
ties.

Differential privacy [5, 12–15] is a recent theoretical privacy
model used to quantify the extent to which individuals’ privacy
in a statistical data set is maintained, while preserving the useful-
ness of a dataset’s aggregate information. In other words, differen-
tial privacy is a strictly provable and security-controlled method.
Since its inception, this concept has proven to be extremely suc-
cessful. Several widely used differential privacy mechanisms, such
as the Laplace mechanism [12], exponential mechanism [30], geo-
metric mechanism [19], and Gaussian mechanism [14, 33] have
been proposed. Differential privacy also has a composition prop-
erty [13, 17, 24, 31], which allows for more sophisticated differen-
tially private algorithms by combining several simpler ones.

3 SMART AND PRIVATE ACTIVITY
INVITATION FRAMEWORK

In this section, we introduce our proposed smart and private
activity invitation framework (refer to Figure 1).

Our framework involves three parties: a central server controlled
by the app developers, the existing app users, and potential new
members. The server accepts a request for organizing an activity
from an existing user and then distributes the invitation to appro-
priate candidates such that all of them meet the group activity re-
quirements and have a high chance to attend. The server profits in
this model by advertising to its existing users. While it strives to
provide quality services to maintain current members, the server
also aims at attracting more users to bolster its income. It may try
to entice new users by releasing some aggregate statistical infor-
mation about current users, and by providing online querying ser-
vices. For instance, a potential user may query for the number of
current users who like hiking. If the server can guarantee many
other hiking lovers, then the potential user is much more likely
to join. Our framework will also occasionally group strangers to-
gether to encourage a new bond over their mutual interest. Then, if
such strangers are able to befriend each other, their new friendship
can be added to the system.

Existing usersmay have trouble decidingwhether to report their
personal information honestly. Candid information helps the server
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Figure 1: Our smart and private activity invitation framework

compute users’ habits more accurately, which in turn leads to bet-
ter services, but the server itself is not trustworthy, and users should
be worried by the possibility of having their personal information
leaked. To palliate this concern, the front-end, user-side app will
automatically obfuscate the given personal information when re-
porting data to the server so that the conditions for differential
privacy are satisfied. Since differential privacy is a strong privacy
method, any privacy-preserving algorithm that satisfies differen-
tial privacy will protect the individual’s information regardless of
the adversary’s background information, and give the demarcation
of adversary’s ability.

3.1 Differential privacy

Differential privacy is a formal framework for releasing useful in-
formation about a given dataset without compromising its mem-
bers’ individual privacy. Intuitively, differential privacy works by
adding artificial noise to disclosed data in order to hide whether an
individual’s information in a dataset has changed. In other words
given two datasets where only one participant’s data is changed,
the probability distribution of outputs for a statistical analysis of
one dataset should be nearly identical to the distribution of the
other’s.

To formalize this, let x ∈ Xn and x ′ ∈ Xn be two data sets.
The distance between the two datasets, denoted as d (x,x ′), is the
minimum number of sample changes that are required to change
x into x ′. If d (x,x ′) = 1, that is, if x and x ′ differ by at most one
individual, then we say that x and x ′ are neighbors.

Definition 3.1 ((ϵ, δ )-differential privacy). A mechanism or ran-
domized function M : Xn → R provides (ϵ, δ )-differential pri-
vacy [12–14] if and only if for all pairs of neighboring data sets x
and x ′, and all subset S ⊂ Range(M ), it holds that:

Pr[M (x ) ∈ S] ≤ eϵ Pr[M (x ′) ∈ S] + δ .
The two parameters ϵ and δ control the level of privacy. In-

tuitively speaking, ϵ , usually deemed privacy budget, is an upper
bound on the amount of influence that an individual’s record has
on the mechanism’s output; δ represents the probability that the
mechanism’s output varies by more than a factor of eϵ when ap-
plied to a data set and any one of its neighbors. Therefore, as ϵ
and δ decrease, Pr[M (x ) ∈ S] and Pr[M (x ′) ∈ S] become closer,
and privacy protection is increased. Usually, the values of ϵ and
δ are small. For instance, ϵ ∈ (0, 1] and δ ≤ 10−4. When δ = 0,
(ϵ, δ )-differential privacy becomes ϵ-differential privacy.

−10 −5 0 5 10

0.2

0.4

b = 2
b = 4
b = 8

Figure 2: Probability density function for the Laplace distri-

bution Lap(x | b )

A query f is a function that takes a data set as an input, and the
answer to the query f is denoted as f (x ). For example, if x is a
university’s dataset, then the question “How many students were
enrolled in this Fall?" is a query; it takes x as an input and then
outputs a number. Given a query f and a norm function ‖ · ‖ over
the range of f , the sensitivity of Δ f is defined as

Δ f = max
d (x ,x ′)=1

‖ f (x ) − f (x ′)‖.

The norm function ‖ · ‖ is either L1 or L2 norm.
ϵ-differentially privatemechanisms are usually designed by adding

random noise to the output of the query, that is,M (x ) = f (x ) +
noise. The Laplacianmechanism [14] and exponentialmechanism [30]
are two of the most popular ϵ-differentially private mechanisms.

Definition 3.2 (Laplacian Mechanism). Given a query f : Xn →
R
k , the Laplacian mechanism is defined as

ML (x ) = f (x ) + (Y1, . . . ,Yk ),

where Yi are i.i.d (independent and identically distributed) random
variables drawn from Lap(Δ f /ϵ ).

Here, Lap(b ) denotes a Laplace distribution (center at 0) with
scale b and its probability density function is

Lap(x | b ) = 1

2b
exp

(
− |x |

b

)
.

From figure 2 we can see that increasing b increases the noise
added to the output, while also flattening ϵ values.
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The exponential mechanism was designed for situations where
we need to select the “optimal" response but adding noise directly
to f (x ) can completely destroy its value. An example would be
setting a price at an auction [16]. Generally speaking, the Laplace
mechanism is typically usedwhen the output is numerical, whereas
the exponential mechanism is applied to non-numerical outputs. If
we define a utility function u : Xn × Range( f ) → R to map data
set/output pairs to utility scores, the sensitivity of u is defined as

Δu = max
r ∈Range(f )

max
d (x ,x ′)=1

‖u (x, r ) − u (x ′, r )‖.

Intuitively, the exponential mechanism guarantees that the change
of a single database record does not egregiously affect the resultant
utility function.

Definition 3.3 (Exponential Mechanism). The exponential mech-
anismME selects and outputs an element r ∈ Ranдe ( f ) with prob-

ability proportional to exp
(
ϵu (x ,r )
2Δu

)
.

The Laplacian mechanism is closely related to the exponential
mechanism; if f (x ) ∈ Rk and u (x, r ) = ‖r − f (x )‖ for ∀ r ∈
R
k , then the exponential mechanism is equivalent to the Laplacian

mechanism with a halved privacy budget.
Our choice to secure users’ data with differential privacy mech-

anisms is mainly due to the composition property of differential
privacy, which allows us to combine two differentially private algo-
rithms to create a new differentially private algorithm. The draw-
back, however, is that the privacy budget ϵ will necessarily degrade
linearly.

Theorem3.4 (Composition theorem [16]). LetMi , i ∈ {1, 2, . . . ,n}
be ϵi -differentially private algorithms. Suppose

M[n](x ) = (M1 (x ),M2 (x ), . . . ,Mn (x ))

is the combination of these n algorithms. If all Mi are defined on

the same data set, then M[n] is (
∑n
i=1 ϵi )-differentially private. If

all Mi are defined on different data sets, thenM[n] is (max{ϵi })-
differentially private.

Regardless of whether we choose the Laplacian or exponential
mechanism to secure personal information, stronger privacy im-
plies more noise either way, which means the data may have lower
utility. In order to balance the security and utility of our dataset, we
need to choose an appropriate privacy budget ϵ and enhance the
accuracy of queries under the given ϵ . Existing methods usually
use the relative error, absolute error, standard deviation, variance,
and false negatives of an algorithm to evaluate its rationality [37].

3.2 Data collection and reporting

To collect data from users, we use a method similar to that pro-
posed by Ai et al. [2]. Our framework, however, will perturb the
original data using differentially private algorithms before sending
them to the server.

The server will create and maintain a profile for each existing
user. When a person registers on the app, he/she will be asked to
enter some basic personal information, such as age and sex. These
data will then be injected with some noise to satisfy differential pri-
vacy before being transferred to the server. If the user is a smart
device owner, the front-end app will seek authorization to access

their historical data which contains records pertaining to activi-
ties such as hiking, biking, running, etc. Otherwise, the user will
be required to enter their own profile based on their understand-
ing and estimation of their abilities; the server will also attempt to
warn these users about the possibility of suboptimal services. Of
course, the appropriate noise will be injected before all these data
are reported to the server.

When the server analyzes a user’s historical data, it will estimate
the user’s ability or level for each type of activity; the routine times
they are free; and a locational range, indicating the rough area in
which he/she is willing or able to travel in order to participate in
the activity. By having this information, activity invitations can be
withheld from users who are busy at the time, cannot reach the
event, or are otherwise disqualified.

Two differentially private algorithms will be applied to obfus-
cate different types of raw data, with accordance to the various
kinds of potential queries. For numerical datawewill use the Laplace
mechanism, and for non-numerical data, we will choose an appro-
priate utility function and utilize the exponential mechanism. For
example, suppose that x = (x1, . . . , xn ) is some user’s profile. Each
field xi denotes one property about this user, such as age, activity
types, or activity ranges. We assume that a query only concentrates
on one data field, and that all pair of queries on different data field
are independent. For instance, the queries “Howmany users are be-
tween the ages of 20 to 30?" and “What is the number of users who
like hiking?" are independent, as the former concerns the age field
and the latter focuses on the activity type field. With this assump-
tion, we add noise to each field using different ϵi -differentially pri-
vate algorithmsM1, . . . ,Mn . In other words, the noised data will
be

x̃ = (x1 +M1, . . . ,xn +Mn ).

This data will be optimized by post-processing, using, for exam-
ple, the least squares method to enhance the query’s accuracy by
the optimized data x̄ . Finally, the noised data x̄ will be disclosed
to the server. If we choose uniform privacy budget ϵ , our perturba-
tion will guarantee (max{ϵi } = ϵ )-differential privacy due to the
Composition theorem.

3.3 Selecting invitees

After a user submits a request to organize a group activity, the
server will choose candidates to invite. First, the server must guar-
antee that all participants meet the event’s requirements, in order
to maximize each participant’s satisfaction. Then, in accordance
with Ai et al. [2], we assume that having friends attend an activity
will improve a person’s overall experience. Therefore, the server
tries to ensure that for each invitee, a number of friends will also
be invited.

To accomplish this, we adopt the concept of k-cores from graph
theory in order to simulate a social network where each user has
at least k friends. Let G = (V ,E) represent a graph with a vertex
set V = V (G) and an edge set E = E (G). A vertex v ∈ V denotes a
user who has satisfied all the requirements for an event. An edge
e = (u,v ) ∈ E connecting vertex u and v indicates that u and v are
friends. We say a graphG = (V , E) is a k-core graph if each vertex
v ∈ V has at least k neighbors. Let NG (v ) be the set of neighbors of
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v in graph G, and let |NG (v ) | denote its cardinality, or the degree
of v in G. Suppose a group activity has a limited capacity m, and
r is the statistical response rate for similar past activities. The task
then becomes choosingm+m/r invitees such that each person also
has k friends invited.

In Ai et al. [2]’s paper, the proposed invitee-selection algorithms
prefer users with more friends. They realize, however, that this
preference makes the less active or isolated users even more iso-
lated over time. To fix this, the authors implement a rule: if a user
participates in less events than 80% of all members, then they are
automatically invited whenever they qualify for an activity group.
This means that a few invitation slots are reserved for a privileged
group, resulting in a policy that may seem unfair and arbitrary to
members of the framework.

Instead of reserving invitations for isolated users, we propose
using a novel algorithm to inject an appropriate amount of noise to
perturb friendships in a social network such that isolated users are
more likely to be selected as invitees. We first construct a k ′-core
graph G ′ = (V ′,E′), and let V ′′ be the set of qualified candidates
not included inG ′. We perturb the graph (V ′∪V ′′,E′) by negating
the existence of edges independently with a small probabilityp > 0.
The perturbed graph is now denoted as G̃ = (Ṽ , Ẽ ). That is, G̃ has
the vertex set V ′ ∪ V ′′ but it contains edge e with probability pe ,
where pe = 1 − p if e ∈ E′ or otherwise pe = p. After deleting all
isolated vertices from G̃ , letG = (V ,E) be the resultant graph. The
graph perturbation algorithm is described in Figure 3.

Lemma 3.5. When k ′ = k−(n−1)p
1−2p , G = (V ,E) is, on average, a

k-core graph. The expected number of newly included less active and

isolated users is at most
n ·p
1−p .

Proof. It is clear that E = Ẽ, as we remove only the isolated ver-
tices in G̃ to obtainG. By the definition of our perturbation schema,

Pr{e ∈ E | e ∈ E′} = Pr{e ∈ Ẽ | e ∈ E′} = 1 − p,
Pr{e ∈ E | e � E′} = Pr{e ∈ Ẽ | e ∈ E′} = p.

The expected number of v’s neighbors inG is

E{|NG (v ) |} = (1 − p) |NG′ (v ) | + p (n − 1 − |NG′ (v ) |)
= (1 − 2p) |NG′ (v ) | + (n − 1)p.

When k ′ ≥ k−(n−1)p
1−2p , |NG′ (v ) | ≥ k ′ ≥ k−(n−1)p

1−2p , which implies

E{|NG (v ) |} ≥ k .
If v is a less active and isolated user, v was originally not in V ′,

that is, |NG′ (v ) | = 0.v exists in the perturbed graphG only if there
is at least one edge connecting to v in G.

Pr{v ∈ G} = Pr{
n−1∨
i=1

(i edges connected to v )}

=

n−1∑
i=1

Pr{i edges connected to v }

=

n−1∑
i=1

pi = p
1 − pn−1
1 − p <

p

1 − p .

Thus, the expected number of newly included less active and iso-
lated users is at most

(n − 1 − |V ′ |) p

1 − p <
n · p
1 − p .

�

By choosing appropriate values for p, we can allow a controlled
number of less active or isolated users to be invited to group activ-
ities. Since this is all done randomly, we minimize the impression
that certain users receive preferential treatment.

Input: A k−(n−1)p
1−2p -core graphG ′ = (V ′,E′)

Output: A k-core graphG = (V , E)

1. Let V ′′ be the set of qualified candidates not inG ′
2. Let G = (V ,E) with V = V ′ ∪V ′′ and E = ∅
3. for each (u,v ) ∈ V ×V
4. if (u,v ) ∈ E′
5. Add (u,v ) to E with probability 1 − p
6. else

7. Add (u,v ) to E with probability p
8. end if

9. end for

10. Delete all isolated vertices fromG
11. Return the resultant graphG

Figure 3: A high-level description of our graph perturbation

algorithm

After obtaining the perturbed graph, the system will apply two
simple greedy algorithms [2], denoted as Greedy and k-core, to
select candidates. The basic idea of Greedy is to take the activity
organizer as a seed and then add vertices iteratively until the size of
the chosen vertex set reaches (m +m/r ). Greedy always picks the
vertex which has the most neighbors in the current vertex set, and
any tie is broken by choosing the vertex with the higher degree in
the original graph. The k-core algorithm selects candidates in the
opposite manner; it starts with the original graph, sets k = 1, and
then it iteratively deletes all vertices with a degree less than k in
the current graph. k gradually increases, and the algorithm stops
when the size of the remaining graph is (m +m/r ).

4 EXPERIMENTS

In order to evaluate the performance of our activity invitation
framework, we design three experiments. In these experiments, an
outdoor activity invitation system is simulated, where 1000 users
are created with different profiles, including age, sex, free time
schedules, activity types, activity levels, and locational ranges. Then,
10,000 different activity events are generated, each of which re-
quires a specific age range, time range, activity type, activity level,
and location. As previously mentioned, each participant must sat-
isfy all of the event’s requirements. A random response rate r ∈
[0.6, 1) is generated uniformly for each user in advance. When a
user receives an invitation, another random number re ∈ [0, 1)
is generated. If re < r , he/she accepts the invitation; otherwise,
there will be no response. All experiments are implemented with
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Java and conducted under OS X EL Capitan with processor – 3.5
GHz Intel Core i5 and memory – 16 GB 1600 MHz DDR3.

4.1 Experiment 1

Since the personal information of existing users has theoreti-
cally been secured by differential privacy mechanisms, our Exper-
iment 1 is to investigate whether existing users will receive worse
services if they report noisy data to the server. We define the util-
ity for each existing user as the ratio of accepted invitations vs. the
number of received invitations. The higher the average ratio is, the
better our framework serves the existing users. In this experiment,
we test privacy budget ϵ ∈ {0.05 : 0.05 : 1}, and concentrate on
the age and location range fields. In particular, to better test the
efficiency of our system framework, we investigate three cases: 1)
only injecting noise to the age field; 2) only injecting noise to the
location range field; 3) injecting noise to both of the age and loca-
tion range field.
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Figure 4: Average utility for existing users under only age

perturbation
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Figure 5: Average utility for existing users under only loca-

tion range perturbation

The experiments results are shown in Figure 4, 5, 9, 8, 6 and 7.
From these figures, we can observe that when the privacy budget
is small, average utility is relatively low; and it increases along the
increment of ϵ . Thus, by choosing an appropriately small privacy
budget, existing users will enjoy qualified services with their pri-
vacy protected very well. In particular, the average utility ratio for

existing users is as large as 0.95 when ϵ ≥ 0.3 (ϵ ≥ 0.05, respec-
tively), if we perturb only the age field (location range field, respec-
tively). Figure 4 and 5, compares the utility for existing users un-
der only age perturbation and under only location range perturba-
tion. The comparison result shows age information is more sensi-
tive than the location information. Besides, the Greedy algorithm
is more robust than the k-core algorithm, as their performances
are similar for location range perturbation while the Greedy al-
gorithm performs slightly better for the more sensitive age field
perturbation.

By injecting noise to both the age field and location range field
with privacy budget ϵ1 and ϵ2 respectively, the total privacy budget
will become ϵ1+ϵ2, according to the Composition Theorem. Indeed,
in Figure 6 and 7, the average utility for existing users decreases
regardless of the choice of selection algorithm.
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Figure 6: Average utility for existing users with Greedy al-

gorithm under combined age and location range perturba-

tion
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Figure 7: Average utility for existing users with k-core algo-

rithm under combined age and location range perturbation

4.2 Experiment 2

Experiment 2 demonstrates that the noised data from existing
users is still able to provide informative replies to queries from po-
tential new users, who want information about existing users be-
fore joining up. Assume new users only care about the age informa-
tion of the existing users in the database, because they onlywant to
participate in activities with those of a similar age to themselves. In
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Figure 8: Average utility for existing users with Greedy algorithm under combined age and location range perturbation (with

differental angle views)
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Figure 9: Average utility for existing users with k-core algorithm under combined age and location range perturbation (with

differental angle views)

our simulation, a userâĂŹs age can fall in a range between 15 and
70. The 1,000 users in our database have various ages. We then con-
struct 11 queries, of the format: "How many users in the database
are between the age of a and b", where a and b are both integers
divisible by 5. To evaluate whether the replies are informative, we
use the mean absolute percentage error (MAPE) as a measure,

MAPE =
1

N
·
N∑
i=1

�
�
�
�
�

ri − ai
ai

�
�
�
�
�

,

where N is the total number of trials, ai is the true answer to the
i-th query, and ri is the reply from the server to the i-th query. In
this experiment, we test privacy budget ϵ ∈ {0 : 0.05 : 1}. The
experiment results is shown in Figure 10.

From Figure 10, we can observe that the MAPE decreases dra-
matically as the privacy budget increases, which indicate that the
system can provide very informative and accurate statistical infor-
mation to all queries. On the other hand, when the privacy budget
ϵ is small, say ϵ < 0.3, any querist or potential new user is not
able to learn the existence of a specific person in the current data-
base, according to the strong mathematical privacy guarantee of
differential privacy. Therefore, our framework indeed ameliorates
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Figure 10: MAPE of replies to potential new users under age

perturbation

the conflict between the existing users’ concerns about personal
privacy and the app developers’ agenda.

4.3 Experiment 3
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Experiment 3 studies the relationship between the graph per-
turbation parameter p and the number of newly included less ac-
tive or isolated users. The k-core graph is perturbed by parameter
p ∈ {0 : 0.001 : 0.01}. After the graph has been fully perturbed,
we send the database a series of 10,000 pre-generated events and
keep a count of the number of invited isolated users selected by the
k-core and Greedy algorithms. After all events have been simu-
lated, the system prints the number of isolated users divided by
the total number of invited users, to provide a ratio indicating the
effectiveness of the perturbation from that parameter.

According to Figure 11, both k-core and Greedy algorithms
tend to include more inactive or isolated users as the graph pertur-
bation parameter p increases, which verifies our analysis result in
Section 3.3. We can also observe that the k-core algorithm is more
stable than the Greedy algorithm. By controlling the value ofp, we
can limit the number of less active or isolated users to be invited.
This will help to guarantee most attendees’ satisfied experience of
the group activities.
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Figure 11: the relationship between the number of included

isolated users and the graph perturbation parameter p

5 CONCLUSION

This paper summarizes the mechanisms for a smart and pri-
vate social activity invitation framework using historical data col-
lected from smart devices. Our main contribution is in solving the
trilemma among existing users’ privacy; quality services to both
existing and potential users; and an app developers’ profits.We cre-
ate a model where the server is assumed to be untrustworthy, but
can nonetheless help users organize group activities intelligently
and efficiently. In addition, the proposed framework helps less ac-
tive or isolated members participate via a new method based on
perturbed graphs. Our simulation results show that our proposed
framework has good performance. In our current research, we only
consider very simple queries; each query only focuses on one data
field. We also assume any pair of queries are independent. In the
future, we will consider the corelation among queries. Another re-
search direction is to consider more complicated queries which
may involve several data fields. Moreover, we will also explore
ways to protect the friendships in the social network structure, and
design more efficient invitee selection algorithms.
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