
An Add-on End-to-end Secure Email Solution in Mobile

Communications

Shushan Zhao
Division of Management and Education

University of Pittsburgh at Bradford

shushanz@pitt.edu

Shuping Liu
Department of Electrical Engineering

University of Southern California

lius@usc.edu

ABSTRACT

Many attacks, scams, and malware threats are based on or
spread through emails nowadays. Although people have been
fighting against them with technical and legal measures for
many years, the situation is not mitigated but seems getting
worse and worse, especially in the era of mobile computing.
We attribute this to lack of end-to-end security solutions for
emails in current Internet infrastructure. In this paper, we
propose an add-on end-to-end solution for email security. It
is based on idea of trust chain from sender to receiver, which
spans multiple domains and organizations without require-
ment of a uniform platform. The solution is add-on, which
means that it can be implemented on top of existing pro-
tocols as an optional component, without replacing email
servers and routers in the Internet infrastructure. The solu-
tion provides end-to-end authentication and integrity for its
users, which is hard to achieve in existing works.

KEYWORDS

email, security

ACM Reference format:

Shushan Zhao and Shuping Liu. 2017. An Add-on End-to-end Se-
cure Email Solution in Mobile Communications. In Proceedings of
10th EAI International Conference on Mobile Multimedia Com-
munications, Chongqing, China, July 2017 (MOBIMEDIA 2017),
5 pages.
DOI: 10.475/123 4

1 INTRODUCTION

Nowadays, we cannot live or work without emails. Pervasion
of smart phones and mobile computing devices, 4G high-
speed data networks and Wi-Fi hotspots make people rely
more on emails. Many attacks, scams, and malware threats
are based on or spread through emails nowadays. Spamming
emails and phishing emails are widely existing and serious
problems, especially in mobile communications era. Some

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MOBIMEDIA 2017, Chongqing, China

� 2017 ACM. 123-4567-24-567/08/06. . . �15.00
DOI: 10.475/123 4

emails trick people into giving out their credentials. For ex-
ample, a few weeks ago, one of the authors received an email
seemingly from the president of the university, with content
saying “Here is an important document all staff has to look
at. It’s about school updates activities. Everyone needs to
read the important information carefully.” Attached in the
email is a pdf file. If you open the pdf file, it says “This is a
confidential document, verify your identity first” and asks for
user ID and password before reading it. This is an example of
phishing email. Some emails with spoofed sender addresses
are used to issue false messages. For example, In October
2013, an email that looked like it was from Fingerprint Cards,
a Swedish biometrics company, was sent to a news agency,
saying that Samsung offered to purchase the company. The
news spread and the stock exchange rate surged by 50%. It
was later discovered the email was a fake [8]. Some other
emails pretended to be from trustable senders are used to
spread viruses, Trojan horses, and other malware.

These emails are mostly from anonymous or impersonated
addresses. Simple Mail Transfer Protocol (SMTP) specifies
the process and requirements of sending an email. The email
recipient sees the email as having come from the address in
the From: header; they may sometimes be able to find the
MAIL FROM address; and if they reply to the email it will
go to either the address presented in the From: or Reply-
to: header — but none of these addresses are required to
be checked [5, 9]. Sending such emails is pretty easy. For
example, recently the authors tested an email with a spoofed
sender address webmaster@example.com sent to their email
box at Vanier College. The email was successfully received,
seemingly from the spoofed sender address, as is shown in
Figure 1(a). The PHP script used to send the email is shown
in Figure 1(b).

In many mail servers, the default configuration is open

mail relay. An open mail relay is an SMTP server configured
in such a way that it allows anyone on the Internet to send
e-mail through it, not just mail destined to or originating
from known users. The rationale of this design is: At begin-
ning of Internet and email, only a few people had access to
Internet and even fewer people had email addresses, so it
was common that many people were sharing an email ad-
dress. This design enabled people to send email from any
place they had Internet access, and the unchecked FROM
address enabled them to claim who they were or to which
organization they belonged to, and to receive replies at that
address. Obviously, things have changed so much ever since
then. Nowadays, each email sender has her/his own address;

MOBIMEDIA 2017, July 2017, Chongqing, China Shushan Zhao and Shuping Liu

(a) Email with spoofed sender address

(b) PHP script to send the email

Figure 1: Email with spoofed sender address and
PHP script to send the email

sharing an email address or sending an email from a different
place is not a decent requirement any more. On the contrary,
still having this enabled is the major concern now. Having
realized this fact, many Internet service providers block mail
sent from open relay servers. This reduced the percentage of
mail senders that were open relays. However, spammers and
attackers have created distributed botnets of zombie com-
puters that contain malware with mail relaying capability.

Some technical solutions have been proposed to fight against
email spoofing and spamming, such as Domain Keys Iden-

tified Mail (DKIM), Sender Policy Framework (SPF), and
Domain-based Message Authentication, Reporting and Con-

formance (DMARC), that we are going to review in Sec-
tion 2. However, they are not end-to-end. When sending
an email from universityA.com domain, if user A writes
FROM: A@universityB.com, DKIM/SPF/DMARC can de-
tect domain name spoofing; but if the sender writes B@
universityA.com, then those solutions cannot find anything
wrong with it. End-to-end authentication is difficult to achieve.
That is because there is no security infrastructure from sender’s
end to receiver’s end. Theoretically Public Key Infrastruc-
ture (PKI), or personal certificates, can solve this problem;

but so far PKI is only applied on domain level, and not on in-
dividual user level. For the latter, too much burden would be
added to current Internet infrastructure, as each user needs
to have a certificate. In summary, there are techniques to au-
thenticate sender, to ensure sender domain, to verify email
integrity en route, but they are not providing end-to-end en-
surance for both the sender and receiver. By combining them,
it is possible to have some end-to-end security solution, but
the connecting points may be subject to man-in-the-middle
attack or record-and-replay attack. In light of status quo, we
propose a seamless solution to ensure end-to-end email au-
thentication and integrity by which the receiver can verify
if the sender is authentic, and the sender can verify if the
receiver is authentic, and if the email content is forged or
tampered en route.

The rest of this paper is organized as follows: Section 2
briefly reviews related work this work is based on. Section 3
presents the solution from overview to details. Section 4 di-
cusses and analyzes the security features and limitations of
the scheme. Section 5 concludes the paper.

2 BACKGROUND

To fight against emails sent from spoofed addresses, a num-
ber of effective systems are now widely used to enforce email
authentication.

DKIM allows the receiver to check that an email claimed
to come from a specific domain was indeed authorized by the
owner of that domain. The sender’s email server signs the
email with its private key if it is really from its domain, and
sends the signature with the email to the receiver’s server to
verify. The public key of sender’s server is published on Do-
main Name System (DNS) records of the sender’s domain [3].
The purpose of a DKIM-signature is not to assure message
integrity. Often, it does not even guarantee that a message
author’s data, as per a signed From: field, has a real name
or a valid mailbox. The parts to be signed are chosen so
as to identify the message unequivocally. A valid signature
just states that the message did actually flow through a box
operated by the sender’s domain [1].

SPF provides a mechanism to allow receiving mail ex-
changers to check that incoming mail from a domain comes
from a host authorized by that domain’s administrators. The
list of authorized sending hosts for a domain is published in
the DNS records for that domain in the form of a specially
formatted TXT record. SPF checks that the IP address of the
sending server is authorized by the owner of the domain that
appears in the SMTP MAIL FROM command [4]. This only
ensures the email sender is indeed in the sender’s domain.
After this authentication, it’s still possible for attackers to
replace sender address, or tamper the email content, and the
receiver has no means to detect that.

DMARC defines a policy that allows a sender’s domain
to indicate that their emails are protected by SPF and/or
DKIM, and tells a receiver what to do if neither of those
authentication methods passes — such as junk or reject the

An Add-on End-to-end Secure Email Solution in Mobile Communications MOBIMEDIA 2017, July 2017, Chongqing, China

message. It enables receivers to provide authentication re-
porting to senders to improve and monitor their authentica-
tion infrastructures [6]. DMARC is based on combination of
DKIM and SPF, and it does not address the limitation of
the two protocols mentioned above.

In the literature, there are also a number of works related
to this topic. In [7], the authors realize that the SSL/TLS
system used to encrypt server-to-server email traffic can also
be used to enforce email authentication, and most of exist-
ing techniques are server-oriented and transparent to the
user. They propose an SSL-based anti-spoofing application
that allows a client to send trusted emails and authenticate
received emails using the SSL protocol. However, it uses a
self-signed certificate to exchange a secure authentication
message alongside the email with a view to prevent spoofing.
Self-signed certificates can only protect integrity, i.e. using
the public key of the sender and signature in the email, the
receiver can verify if the email is modified or not. There is
no way to ensure authenticity of the sender, i.e. the sender
can generate a self-signed certificate by him/herself to claim
to be somebody else.

In [10], the authors demonstrate an example of email sender
address spoofing by TELNET, which is from spoofed address
uso@uso.uso to an authentic user at gmail.com. They pro-
pose that the receiver server obtains a sender domain name
by using Auto Whois from IP address described “Received”
of the most below header field, and then the sender domain
name obtained by using Auto Whois, domain name below @
in the mail address written in “Received:”, and “From:” are
compared to detect spoofing. Again, this is only domain level
authentication, and not indivisual user level authentication.

3 AN END-TO-END SOLUTION

The basic idea of this solution is chain of trust, i.e.: Sender’s
email server verifies that the sender is authentic, and signs
it; the receiver’s email server verifies that the sender’s email
server is authentic and trustable, and its signature is authen-
tic; the receiver’s email server authenticates the receiver, and
the receiver trusts her/his own email server. Based on the
above three conditions, the receiver ensures the sender is au-
thentic,and the sender ensures the receiver is authentic. The
logic is sound and reasonable.

Figure 2 shows the most common ways that an email
message can get transferred from its author to its recipient.
In this figure, a message submission agent (MSA) or mail
submission agent is a computer program or software agent
that receives electronic mail messages from a mail user agent
(MUA) and cooperates with a mail transfer agent (MTA) for
delivery of the mail. An MUA, mostly known as an email
client, is a computer program in the category of groupware
environments used to access and manage a user’s email. A
mail delivery agent or message delivery agent (MDA) is a
computer software component that is responsible for the de-
livery of email messages to a local recipient’s mailbox [2].
Our end-to-end solution is from MUA to MDA.

The process of sending an email is as follows, and an email
header and body with signature components are demonstrated
in Figure 3:

(1) User logs into an MUA, e.g. from a webmail page
or a mobile terminal application. A password p for
sending email is required for this step. This pass-
word can be set to the same as the one for receiving
emails by default.

(2) User inputs all header fields and body content of
the email. The following steps are transparent to
the user.

(3) MUA application calculates hash value of user’s pass-
word. We can use the same mechanism used in Linux
systems:
(a) MUA chooses a salt value s that is a random

data generated to combine with the original
password, in order to increase the strength of
the hash.

(b) MUA chooses a hash algorithm H of index i

from a pre-defined list, e.g.:1 for MD5, 2 for
Blowfish, 3 for SHA-256, etc.

(c) MUA calculates a hash value h = H(p+ s).
(4) MSA application appends [s1 = is$h] to the end

of message body. For example,
[s1 = 1Etg2ExUZ$Ds5e24NuQTP2tQ8vLn5Mw] means:
usingMD5 hash algorithm, Etg2ExUZ as salt, hash
value of H(p+ s) is Ds5e24NuQTP2tQ8vLn5Mw (p’s
value is “emailpswd” in this example).

(5) MSA uses h as key, and uses a predefined Message
Authentication Code (MAC) algorithm, such as
HMAC, to calculate a message tag s2 of the mes-
sage headermh and message bodymb and the above
s1: s2 = HMACh(mh+mb+ s1).

(6) MSA appends s2 to the end of message body, and
sends it to MTA.

(7) MTA first verifies authenticity of the claimed sender
in email header:
(a) MTA derives i, s, and h from s1, and a hash al-

gorithm H of index i from the same pre-defined
list embedded in the code.

(b) MTA retrieves sending password p of the sender.
(c) MTA calculates a hash value h′ = H(p + s),

and compares it with the one h derived from

s1 in the message: h′ ?
= h. If it is same, then

continue; otherwise, reject the message.
(8) If receiver is in the same domain as the sender, the

message is forwarded following flow shown in Fig-
ure 2.

(9) If receiver is in different domain than the sender,
MTA does the following:
(a) MTA calculates signature of s2 by encrypting

it with SK Sender — private key of sender’s
Administrative Management Domain (ADMD)
email server:
s3 = ESK Sender(s2).

(b) MTA appends s3 to the end of message body.

MOBIMEDIA 2017, July 2017, Chongqing, China Shushan Zhao and Shuping Liu

Figure 2: A schematic representation of the most
common ways that an email message can get trans-
ferred from its author to its recipient ([2])

(c) MTA appends s4 — public key certificate of
sender’s ADMD email server — to the end of
message body.

Correspondingly, the process of receiving an email is as
follows:

(1) MDA checks if the email is from the same domain.
If it is, go to Step 5.

(2) MDA reads signature component s4, and checks with
well-know Certificate Authority (CA) to determine
if s4 is authentic for sender’s ADMD (more is dis-
cussed in Section 4). If not, reject the email and
stop.

(3) MDA gets sender’s ADMD public key PK Sender from
its certificate s4.

(4) MDA reads signature components s2, s3, and veri-
fies if s3 is a valid signature of s2 signed by sender’s
ADMD specified in s4, by decrypting s2 with PK Sender

and comparing the result with s3:

s3
?
= DPK Sender(s2). If not, reject the email and

stop.
(5) MDA reads the message header mh, message body

mb, and signature component s1.
(6) MDA uses h in s1 as key, and uses a predefined MAC

algorithm, such as HMAC, to calculate a message
tag s2

′ of the message header mh and message body
mb and the above s1: s2

′ = HMACh(mh+mb+s1);

and compare it with s2 from the email: if s2
′ ?
= s2.

If not equal, reject the email.

Notice that if the email is sent in the same domain, the
MDA does not need to check authenticity of sender’s ADMD
server, but just checks if the sender uses correct username
and password as claimed. Otherwise, MDA needs to verify if
the email is really from the claimed domain. This is done by
verifying the signature of sender’s ADMD server using the
public key in its certificate. The public key certificate needs
to be issued from a publicly accepted and trusted source.

Figure 3: An email header and body with MAC tag
and signature components

In summary, the solution is an interlocked chain: we re-
quire the email sender provide correct username and pass-
word to generate s1, use s1 as authenticator of the user who
is sending the email, and generate s2; we use s2 to protect
integrity of the email and the authenticator, and generates
s3; we use s3 to protect integrity of s2; finally, we use s4
to verify authenticity and integrity of s3, and s4 itself is a
publicly accepted and trusted public key certificate.

4 DISCUSSION

From above description of the solution, we can see that the
security of the solution is based on “chain of trust” that
is similar to the widely used “certificate chain” but the last
segment employs existing technology and infrastructure. The
verification of the sender is passed all the way down to the
receiver. Since all the connections are interlocked with each
other, the receiver and sender can establish end-to-end trust.

We want to bring the following features and limitations of
this solutions to the notice of readers:

• End-to-end authentication and integrity : The iden-
tity of the sender is verified and signed by sender’s
ADMD email server. The MAC tag and signature
cannot be tampered or forged without detection. If
User A is sending an email with name User B, MTA
can detect the mismatch in sending password and
rejects the email. If the sender’s domain name is
forged by the sender, MTA can also detect and re-
ject it. If an email is intercepted and forged en route,
it can be detected by receiver using sender’s ADMD
email server’s signature and public key ceritificate.

• End-to-end confidentiality : This solution is designed
to ensure authenticity and integrity, by using MAC
and signature. If end-to-end confidentiality is required,
the sender needs to share a secret key with receiver,
or the sender needs to know the public key of the re-
ceiver, which needs to be distributed before creating
the email and used to encrypt the email body. The
email content is transparent to the solution. This

An Add-on End-to-end Secure Email Solution in Mobile Communications MOBIMEDIA 2017, July 2017, Chongqing, China

means that an encrypted email body is treated the
same way as a plaintext email body.

• Security of authenticator : If somebody gets your ac-
count password, s/he can send emails in your name
— this is the normal case understood by everybody.
Password is not secure enough to ensure exclusive
authentication. More reliable methods include hard-
ware authentication token, biometric authentication
such as fingerprint, iris, face recognition, voice recog-
nition etc. that can provent most of password-based
impersonation. The proposed solution is compatible
to these choices, as long as the sender’s ADMD email
server supports them.

• Public key certificate access: In the above descrip-
tion, we have the public key certificate of the sender’s
ADMD email server attached in the email data. This
is not efficient and adds traffic overhead, especially
for frequent contacts. A better way is to adopt DKIM
approach: have the public key certificates (X.509)
stored with DNS records of the sender’s domain,
and retrieve them when needed; a local certificate
deposit is also suggested, as most web browsers do.

• Performance impact : We are aware that the MAC/
signature generation and verification will lower down
performance of the sender’s and receiver’s servers.
But we don’t think that’s a big concern, as email is
not a time-sensitive communication measure, and a
little percentage increase of process time does not
matter much for normal users, but matters much
for senders of batch spamming emails and phish-
ing emails. That’s why we did not carry out per-
formance simulation and analysis.

5 CONCLUSION

Spam emails and phishing emails are widely existing issues,
and most of them are spoofed emails. We consider lack of
end-to-end infrastructure the main challenge when fighting

against these issues. In the solution presented in this pa-
per, we connect end users to existing security infrastruc-
ture, by having the sender’s server verify and endorse its
users, and passing this verification and endorsement to the
receiver. The message tag and signature appended to the
email provide authentication and integrity protection to the
email. The solution is add-on, which means that it can be
implemented on top of existing protocols as an optional com-
ponent, without replacing email servers and routers in the
Internet infrastructure. All work is to be done on sender’s
and receiver’s email client application and sever application.

We believe this is a novel, feasible, and promising solution
in current situation and the near future.

REFERENCES

[1] Dave Crocker. DKIM Frequently Asked Questions,
Version: 16-Oct-2007 10:32. Available online at
www.dkim.org/info/dkim-faq.html.

[2] Patrik Faltstrom. 2017. Most common ways that an
email message can get transferred from its author to
its recipient. (March 2017). Available online at
en.wikipedia.org/wiki/Email authentication.

[3] Tony Hansen, Dave Crocker, and Phillip Hallam-Baker. 2009.
Domain Keys Identified Mail (DKIM) Service Overview. (July
2009). IETF RFC 5585.

[4] S. Kitterman. 2014. Sender Policy Framework (SPF) for Autho-
rizing Use of Domains in Email, Version 1. (April 2014). IETF
RFC 7208.

[5] J. Klensin. 2008. Simple Mail Transfer Protocol. (October 2008).
IETF RFC 5321.

[6] M. Kucherawy and E. Zwicky. 2015. Domain-based Message Au-
thentication, Reporting, and Conformance (DMARC). (March
2015). IETF RFC 7489.

[7] D. Mooloo and T.P. Fowdur. 2013. An SSL-Based Client-
Oriented Anti-Spoofing Email Application. In Africon Confer-
ence Proceedings.

[8] Simon Mundy. Fraudsters’ fingerprints on fake Samsung deal,
Financial Times, October 11, 2013. Available online at.
www.ft.com/content/0b972892-3259-11e3-b3a7-00144feab7de.

[9] Jonathan B. Postel. 1982. Simple Mail Transfer Protocol. (Au-
gust 1982). IETF RFC 821.

[10] A.S. Zadgaonkar, Vikas Chandra Pandey, and Pratap Singh Prad-
han. 2013. Authentication against E-Mail Address Spoofing Us-
ing Application. International Journal of Science and Modern
Engineering (IJISME) 1, 6 (May 2013), 13–17.

