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ABSTRACT

Although image stitching has been investigated for years, realtime

video stitching still lacks of efficient methods to meet the required

frame rate for satisfactory human vision experience. This work pro-

poses efficient video stitching solutions by exploiting both temporal

and spatial features among video frames. As a result, the stitching

speed is significantly improved with two techniques by exploiting:

(1) the dimmension of distance (spatial) by focusing only on the

region of frame overlap and (2) the dimmension of time (tempo-

ral) by reusing homography information across multiple frames.

Based on these two techniques, this paper presents three solutions

to determine submiages for rapid stitching the video frames from

side-by-side cameras. This work implements these solutions into a

video stitcher. The evaluation over video streams shows that the

proposed solutions can stitch the video at 6.5 frames per second (fps)

in contrast to 1.5 fps in conventional imaging stitching approaches,

which is over 400% improvement on stitching speed performance,

but at the cost of a marginal drop in accuracy.
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1 INTRODUCTION

Image stitching is the process of combining multiple images to

create a panorama, which is done in a series of procedures called the

image stitching pipeline [1–3]. An image stitching algorithm first

searches for distinct feature points in the images. Unusual points

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MOBIMEDIA’17, Chongqing, China

© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

and their surrounding points are identified as a feature descriptor [4,

5]. For example, a white pixel surrounded by black pixels is highly

unique, but a cluster of green pixels is not. Then, the stitching

algorithm searches for identical features among different images.

The images will be matched together upon these features. Feature

descriptors are compared against each other with a forgiveness

margin to allow small deviations. Feature points without a match

within this margin are discarded. Flann based matching is reported

to be the fastest currently available matching algorithm [6]. Based

on the locations of the matched points, the program is then able

to calculate a 3D model of the area. This 3D model is referred to

as the image homography [7]. The images can then be warped

and positioned with respect to the 3D model [8, 9]. This process

involves modifying the image matrices to generate the stitched

image. Normally the stitching will generate a visible seam where

two images are combined.

To address the problem of a visible seam in a stitched image, a

procedure of image blending is needed to smooth out this seam

so it is not noticeable. Image feathering, or setting a gradient of

transparencies, is one common approach [10–12], which “feathers"

the transparencies of the images close to the seam. In particular, the

small overlap region of two images will be processed with image

alpha, which relates to the transparency, is set close to 0.5. When

the alpha value approaches to 1, the image becomes closer to its

original one. The alphas are usually set to one within a small area,

so only the region surrounding the overlap is blended [13]. Today,

OpenCV [14] can fully automate this process of stitching with APIs

of matured stitching algorithms that implement the feature point

identifying, matching, image combining and blending.

Static image stitching is a process that has been investigated

for decades. Today image stitching is available in a wide variety

of commercial applications. Although there are many algorithms

available for conventional image stitching [15–17], they do notwork

well for video stitching. This is because time is not a constraint

when stitching a static images. However, video stitching, especially

realtime, is very challenging because the stitching speed has to

meet the basic human visual experience requirements. For example,

to stitch a video feed in real time, the stitching must be done quickly

enough to produce an attractive frame rate of 15+ fps. Currently,

the time to stitch two static images using the openCV library is

between 1 and 3 seconds, equivalent to 0.33 and1 fps. Therefore, in

order to achieve real time video stitching, the stitching speed must be

dramatically improved.
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In this work, to improve the stitching speed, we propose three

solutions based on two approaches to exploit the temporal and

spatial correlations among video frames. The first approach reduces

the amount of pixels needed for the homography calculation that

takes up the majority of the stitching time, therefore improving the

speed of this calculation will substantially improve the overall speed

of the stitch. The other approach reuses information calculated

in previous frames. Because individual successive frames do not

change very much, it is very likely that information taken from a

previous frame can be reused for a short period of time.

In the rest of this paper, Section 2 talks of the related work in

literature.We discuss the detail solutions in Section 3. The evaluated

performance is shown in Section 4. This paper is concluded by

Section 5.

2 RELATEDWORK

Image stitching or mosaic has been investigated for years and has

come out with a variety of solutions [18–23]. It normally consists

of two phases: alignment (a.k.a registration) and composition [24].

Image stitching schemes have been used in video stitching by sim-

ply treating a video frame as an image [25–27]. Different from the

requirement in image stitching, the challenge in video stitching,

especially in real-time cases, is: the stitching speed has to match the

expected frame speed for pleasant user visual experience. Pal, Steedly

and Szeliski [20] proposed to exploit the temporal characteristics ex-

isting in the video frames of a camera to expedite the stitching. Most

available video stitching solutions [27–30] target at the successive

video frames of a single mobile camera moving across a scene, for

example, a person holds a camera and rotates 360o . Stitching video

streams frommultiple cameras has also been studied [25, 26, 31–33],

but these efforts focused on statically placed and well-calibrated

cameras. The only known endeavor of stitching video streams from

multiple mobile cameras was attempted by El-Saban, et al. [34], in

which the mobile smartphones were used as the video capturing

devices, but the users normally move in random patterns and they

can not be forced to cooperate. Some recent work on realtime image

stitching include [35–37].

3 TEMPORAL AND SPATIAL VIDEO
STITCHING (TSVS)

In this section, we first present special correlations among succes-

sive video frames that can be exploited by video stitching, and then

describe the design of our proposed temporal and spatial video

stitching (TSVS) solutions.

3.1 Temporal and Spatial Correlations

Although each video frame can be considered as an image, video

stitching has more information to exploit than image stitching.

Imagine a pair video cameras that overlap over a portion of FoV

(Field of View) as shown in Figure 1. After identifying the feature

points of their first video frames in the overlapped regions, some

of these feature points can be reused for successive stitching. First,

because of the very short interval in taking successive frames in

a video stream, e.g. 1/16 second in a 16 fps camera, it is of a great

probability that these temporally successive frames taken at t0 and
t1 from the same camera have a large portion of overlap, which we

define as temporal correlation. Second, the two frames from these

two cameras at time t1 is very likely to overlap on a portion of

the last overlap between the two frames taken at time t0, which
we define as spatial correlation. As shown on Figure 1, the feature

points inside the central shaded area of A′
2B

′
1C1D2 identified on

two video frames expect to be patricianly inherited by successive

video frames due to temporal and spatial correlation.
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Figure 1: Temporal and Spatial Correlation

Homography Reduction: A key to the stitching speed is to

reduce the number of pixels in the frames to be processed. There

are two approaches to the pixel reduction. One option is to lower

the image resolution, but at the potential cost of losing feature

points. The more favored approach, however, is to focus on the

overlapping region of the frames. Because the image stitching cal-

culation focuses on feature points that fall into the overlap region,

removing extraneous edges is unlikely to hurt the stitch integrity.

Namely, rather than using the entire frame images to identify the

feature points, we propose to focus on partial of a frame image,

called subimage. Once if the image homography is completely cal-

culated from subimages, it will be applied to the full images, and

then an appropriate translation on the coordinates of x and y is per-

formed.Therefore, it expects to significantly expedite the stitching

process. We name this solution “homography reduction" and the

challenge now is to determine the submiages of stitching frames.

If a large subimage is used, we will unnecessarily waste time on

identifying feature points in a region that does not really have. On

the other hand, if a small subimage will lose some feature points

and leads to the loss of accuracy of stitching results.

Coordinates Translation: Before we discuss the determination

of the subimages, we present how the coordinate translation is

performed with the assumptions that submiage homography is

already known. Currently several algorithms can automatically

calculate the x and y translation, as well as the overlapping region.

With a series of tests to determine the ideal size of the subimage, we

consistently found that values of 0.35x and 1.0y were the minimum

needed to get reliable results. To handle the x and y coordinate

translation, we tentatively stored a pair of x and y values based on

the offset of the subimage from its initial position. For example, if a

subimage used in homography calculation starts at an x coordinate

of 100 px, the translation is to compensate the warped image by

100 px. Although it is an imperfect method, it is more accurate than

the default offset of “0".
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In the follow, we present three homography reduction solutions

to the subimage determination: fixed-point subimage determination,

feature-point subimage determination, and seam subimage determi-

nation.

3.2 Fixed-Point Subimage Determination

Suppose that we have two (left and right) frames to stitch as shown

on Figure 2. Our initial approach is to simply take the rightmost half

(0.5x , x ) of the left image, and the leftmost half (0, 0.5x ) of the right
image. This solution is simple, but every fast. It works efficiently on

a pair of side-by-side cameras. Because it is sure that these images

overlapped after the very first stitching with feature points already

identified on previous frames, it is also certain that the portion of

image surrounding the seam will appear in both images.

Figure 2: Fixed Point Subimage Determination

Figure 3: Problem of Fixed Point SubimageAlthough the fixed-point subimage solution works for those

images overlapped in the middle, which is the case where a pair

of cameras set side-by-side, this simple solution does not work

for other cases that the overlap is not in the middle. For example,

as illustrated in Figure 3, the right side of the left image overlaps

the middle part of the right image. With the fixed-point subimage

solution, the results are completely unacceptable. More of such

problems are demonstrated in Figure 4 with images from real life.

Subimage Set 1 Subimage Set 2 Subimage Set 3 from [1]

Figure 4: Problem of Fixed Point Subimage on Real Images

3.2.1 Feature Point Subimages Determination. Regardless of the

settings of cameras, their feature points needed to be identified

anyway as part of the stitching pipeline for the very first frames.

Based on this observation, we propose the second subimage deter-

mination solution that finds a overlap region, i.e. subimage, based

on the feature points of the two images. Whenever two matching

feature points are identified within two frame images, it implies that

those points represent part of the overlapping region, as illustrated

in Figure 5. By stitching the current frames, the subimages can

continuously be predicted for the next frames. However, for this

solution to work effectively, three problems need to be addressed

as discussed below.

Figure 5: Features in Images and Their Subimages

Accumulative Errors: Because the feature point subimage de-

termination process is self-contained, any error from the current

stitching will accumulatively impact future frame stitching. To

solve this issue, we occasionally re-run a full image stitch to dis-

card the accumulative errors, or reset the subimage determination

procedure.

Different Subimage Sizes: In order to stitch images, they need

to be identical in size. The subimages returned by the feature point

determination algorithm are almost never in the same size.We there-

fore choose the largest horizontal and vertical size (i.e. max(x1,x2)
and max(y1,y2)) among subimages, then transform the subimages

into the size of (max(x1,x2), max(y1,y2)). Then, the stitching can
work correctly.

Outliers: Since no algorithm can identify all the feature points

with 100% confidence, the incorrectly identified false feature points

will significantly hurt the accuracy of the stitching. To address

the outlier problem of false feature points, we design the fuzzy

algorithm to filter out the outlier feature points. Basically, the fuzzy

algorithm uses the standard deviation to measure the location of

the feature points to its surrounding neighbor feature points. If

the deviation is larger than a threshold, the feature points will be

classified as false points and will be discarded.

With a combination of the above schemes, a block diagram of

the feature point subimage determination algorithm is shown in

Figure 6.

3.3 Seam Subimage Determination

The third subimage determination is completely based on a stitching

on full images. After a single stitching of both full frame images,

the information on the region of overlap between these two images

can be available. Specifically, based on the size of the stitched image,

we can determine the region of overlap by eliminating those pixels

that are not part of the stitched overlap. For example, if two images

have an identical size of 1.0x and their stitched image has a size of

1.4x , it can be estimated that the region of overlap in each image

is about 0.6x . This is because if the images did not overlap at all,

the size of the stitched image would be 2.0x and any smaller size

implies a region of overlap, namely subimage, that is equal in size

in both images.

The subimage is calculated as shown in Figure 7. First, we label

the left-bottom of the right image with the coordinates of (X1, Y1).
We define the original image width IMAGE_WIDTH and define the
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Figure 6: Feature Point Subimage Determination Block Dia-

gram

width of subimage ROI_WIDTH. Because the frames from the cam-

eras have the same length, this length will remain in the stitching.

We only need to calculate ROI_WIDTH to determine the subim-

ages, which is the “overlap", namely the difference in the sizes of X
between the stitched and before-stitched images.

Figure 7: Seam Subimage Determination

The calculation is performed as follows. First, we transform

all the stitched images to always be the same size. They are just

superimposed on a large file with a black background. Then, we

trace a line around the image on this background, and remember

each point on that line. Next, the corners of each of the images are

calculated. Finally, the corners of the image will be compared to

the boundaries of the unwarped images. The subimage calculation

is illustrated by a procedure below:

(1) For the right subimage, because it is always the leftmost

portion of the entire right image, its X coordinate starts

fromXr =0 and ends atXr =ROI_WIDTH on the right image.

(2) For the left subimage, its X coordinate starts from the

point of ROI_WIDTH away from its rightmost edge. There-

fore, its X coordinate spans from Xl=IMAGE_WIDTH -

ROI_WIDTH to Xl=IMAGE_WIDTH.

(3) For both subimages, we set their Y = Y1 × 0.5 with the

assumption that half of their pixels will be carried into the

successive images to be stitched.

With the approach of seam subimage determination, we tested

its performance against a few images and the results are shown

in Figure 8. On the figure, each set shows the subimages of a pair

of frames. We can observe that, although the subimages are not

exactly identical, they do show a large region of overlaps.

Figure 8: Seam Subimage Results

4 PERFORMANCE EVALUATION

We evaluate the performance of the subimage based stitching so-

lutions by comparing to the literature solution implemented in

OpenCV that we name it “Full Stitching". We first evaluate their

stitching accuracy in the results and then compare their stitching

speed that is the main focus of this work.

4.1 Visual Comparison

We first compare the visual stitched results between our solution of

seam subimage determination and the full stitching with existing

OpenCV algorithms. The comparison is shown in Figure 9. As we

can observe from the figure, in image sets 1, 2, and 4, the stitching

is nearly identical. Although the stitching based on seam subimage

on the set 4 has alignment issues, those alignment issues are also

present in the full stitch, which means the problem are not caused

by the seam subimage determination.

4.2 Stitching Time

The time on stitching is critical in video stitching to satisfy the

human visual experience. With the translation values and region

of overlap calculated properly, stitching using subimages can sig-

nificantly improve the stitching time. We evaluate the stitching

time performance with subimages of a size of 0.35x and 1.0y of the

original image. Our solution offers a 20.83% increase in speed over

traditional approaches. However, this performance improvement
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Figure 9: Visual Comparison

is at a minor drop in accuracy. The performance is summarized in

Table 1.

Table 1: Full Image vs Subimage

Solutions 20 Stitchings fps hps

Full Image 13.79s 1.450 1.450

Subimage 11.41s 1.752 1.752

4.3 Multithreading Stitching

Because subimage-based solutions reuse the history stitching infor-

mation and a video stream often have correlated successive frames,

it is ideal to use multithreading to stitch multiple frames in a paral-

lel style. We design a two-thread solution in which one thread is

dedicated to calculating the homography based on the subimage

solutions and the other thread focuses on stitching images based

on the last available homography.

Table 2: Full Image vs Multithreading in Stitching Speed

Solutions 100 frames 28 homographies fps hps

Single Thread 68.95s 19.31s 1.450 1.450

Multithreading 15.42s 14.70s 6.485 1.904

We evaluate the performance on 100 pairs of image frames and

the calculation of 28 homographies. The results are shown in Ta-

ble 2. From the results, multithreading combined with subimage

information reuse offers a substantial speed improvement. It boasts

6.485 fps and 1.904 Homography Per Second (hps). This is equiv-

alent to 447% of the fps performance of traditional methods. We

also summarize the comparison of the performance of traditional

stitching, single-thread stitching and multithread stitching in Ta-

ble tab:sum that shows the performance gain with subimage based

either single-thread or multithread solutions. However, the im-

provement of homography calculation is not significant because

only it is still performed by only one thread.

Table 3: Full Image vs Single Thread vs Multithreading

Metric Full Image Single Thread Multithreading

fps 1.450 1.752 6.485

fps gain 0 20.83% 347.24%

hps 1.450 1.752 1.904

hps gain 0 20.83% 33.31%

We also observe a downside that, while the the image homogra-

phy can properly warp the images, it is more difficult to keep them

aligned. A noticeable offset between the frames is thus observed. If

the cameras shake, two video feeds appear independent, but ff the

videos were taken on a tripod, this method will work effectively.

5 CONCLUSION

This work proposes a category of video stitching solutions to im-

prove the stitching speed with less time to meet human visual

experience. These solutions are based on calculating and reusing

the subimages carried in successive video frames temporally and

spatially. Overall, all approaches show improvements in speed, but

with a varying degree of accuracy loss. When these solutions are

implemented with a carefully designed multithreading framework,

they can improve the stitching time by about 4.5 times. Our future

work is to design a hybrid solution to improve the stitching accu-

racy by implementing blending algorithms, fully automating seam

detection, and implementing feature point tracking to dynamically

adjust the image translations, while attaining the high performance

on stitching time.
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