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ABSTRACT
The electrocardiogram (ECG) recovery is very important for
clinical diagnosis, especially in the presence of power line
interference (PLI). In this work, to suppress the PLI, it is
modeled as a linear combination of sinusoidal signals that
have a sparse representation in the frequency domain. To
accurately reconstruct the ECG, the time domain as a sparse
domain for ECG signal is exploited. Based on the sparse
representations, a joint optimization estimation problem is
developed that allows one to simultaneously perform the
ECG recovery and PLI suppression. In order to solve the
optimization problem, two efficient schemes based on the
greedy algorithms such as orthogonal matching pursuit (OM-
P) and compressive sampling matching pursuit (CoSaMP)
are utilized. Finally, numerical studies demonstrate that the
JCoSaMP estimation algorithm outperforms the state-of-the-
art approaches.

KEYWORDS
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joint estimation

1 INTRODUCTION
The electrocardiogram (ECG) signal is a useful means in
the clinical diagnosis because it provides critical information
for patients [15]. In practice, the power line interference
(PLI) is a common source of interference during the process
of recording the ECG. To recover the ECG signal for fur-
ther diagnosis, PLI suppression is required and thus attracts
intensive research interests [3, 7, 13, 14].

Generally speaking, PLI suppression approaches are divid-
ed into two groups, namely, nonadaptive filters and adaptive
filters. For the nonadaptive filters, the famous one is the
notch filter [13], which devises a bandstop filter to suppress
the interference that occupies the certain frequency band.
Unfortunately, the spectrum of ECG signal in the same band
will be suppressed as well as an interference, thereby de-
grading the quality of the ECG signal drastically. It is also
obvious that to achieve high suppression ratio and less useful
signal distortion, the suppression band of the notch filter
should be as narrow and deep as possible. This fact leads,
however, to the need of high order of the filter, which is not
pratical for portable devices, especially the wearable health
devices.

In the second group, the adaptive interference cancellation
concept is utilized to remove the PLI. To successfully perform
cancellation, the reference input must be correlated to the
interference that is intended to be removed. For the PLI
suppression, the reference input can be a sinusoid of 50Hz
frequency if the PLI consists of only the fundamental frequen-
cy. To suppress the harmonics, the prior information on the
number of harmonics are required for adaptive cancellation
to work. If we have the reference input, the error function is
minimized under different cost functions, for example, least
squares and minimum mean square error criteria. As a con-
sequence, the error function produces the estimate of the
ECG signal. The authors in [3], [14] show that adaptive
filters, for example, least mean square(LMS) and recursive
least square(RLS) can also be utilized to minimize the error
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function. It has already been shown in [7] that after the
convergence of adaptive filters, these adaptive filters and the
notch filter are equivalent.

Recently, in [5, 6, 12], the compressed sensing (CS) algo-
rithm is applied to perform ECG compression, where basis
pursuit (BP) and greedy algorithms including orthogonal
matching pursuit (OMP), compressive sampling matching
pursuit (CoSaMP), regularized orthogonal least squares and
normalized iterative hard thresholding are utilized to perfor-
m the ECG recovery. By exploring transform domain, the
CS concept has been successfully applied to perform more
accurate reconstruction. However, the idea of utilizing the
CS is mostly restricted to perform compression. In [4], a
detailed review of the CS algorithm that applied to different
biosignals is provided.

The main motivation of this work is to utilize the sparsity
of the signals to perform PLI suppression and to recover the
ECG signals. To achieve this end, in this work, the PLI is rep-
resented as the linear superposition of the multiple sinusoids
with unknown amplitudes and frequencies. To sparsely rep-
resent the PLI, the frequency domain is utilized in which the
sinusoids have sparse representations. For the ECG signal,
the time domain is utilized to reveal the sparse representation.
Therefore, using the coefficients in the transform domain, a
joint approach is proposed under an optimization framework
to recover the ECG and to suppress the PLI simultaneously.
To solve the proposed optimization problem, two greedy algo-
rithms based on OMP and CoSaMP are utilized. According
to the results of experiments, the approach based on CoSaMP
appears to be a promising candidate for ECG recovery and
PLI suppression when provided the sparsity of the signals.

2 PROBLEM FORMULATION
The ECG signal that is corrupted by the PLI is modeled by
[16], [8]

y(n) = x(n) + i(n)

= x(n) +

K∑
k=1

Aksin(ωln), n = 1, 2, · · ·, N,
(1)

where x(n) is the clean ECG signal to be recovered, i(n) is
the PLI to be suppressed, and n is the time index. When
K = 1, this is the case corresponding to the PLI with only
the fundamental frequency (50Hz or 60Hz), and when K ≥ 1,
the PLI contains harmonic frequencies. To achieve simulta-
neous suppression of the PLI and restoration of the ECG,
transform domains are utilized in which the ECG and PLI
are sparsely formulated. In what follows, time transform
domain is introduced, where the ECG signal has sparse rep-
resentations, and the frequency domain [11], [9] is utilized to
explore its sparse representation for the PLI.

2.1 Time domain for ECG
A simulation of the ECG signal is provided in Figure 1, where
three heartbeats are simulated. From the figure, it is obvious
that the ECG signal contains large amplitudes when the
heartbeat is active and small/zero amplitudes when the heart

is at rest. This phenomenon suggests that the ECG is a
sparse signal itself in the time domain. In the matrix form,
the representation is denoted by αtime = Φtimex , where
Φtime = I is the sparse domain and the coefficient αtime is
sparse. This is the property that will be exploited when the
ECG signal recovery approach is developed.
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Figure 1: Clean ECG signal

2.2 Frequency domain for PLI
From the signal model in (1), the PLI is a linear combination
of sinusoidal signals and using the matrix representation, the
PLI is

i = Θa, (2)

where i = [i1, · · · , iN ]T,a = [A1, · · · , AK ]T, and Θ has the
form

Θ =

⎡
⎢⎢⎢⎣

sin(ω1) sin(ω2) · · · sin(ωK)
sin(2ω1) sin(2ω2) · · · sin(2ωK)

...
...

...
...

sin(Nω1) sin(Nω2) · · · sin(NωK)

⎤
⎥⎥⎥⎦

N×K

(3)

To see the sparse property of the PLI, the whole frequency
range of interest is uniformly discretized, denoted by a vector
[f0 : df : fe], where f0 and fe are the initial and final fre-
quency, respectively, and df is the discretization step. With
this discretization, a dictionary similar to (3) is constructed
by considering all the frequency components in the vector.
That is,

Ω =

⎡
⎢⎢⎢⎣

sin(f0) sin((f0 + df)) · · · sin(fe)
sin(2f0) sin(2(f0 + df)) · · · sin(2fe)

...
...

...
...

sin(Nf0) sin(N(f0 + df)) · · · sin(Nfe)

⎤
⎥⎥⎥⎦

N×M

(4)
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where M = (fe−f0)/df+1 is the total number of frequencies
in which M � K is commonly used to construct a fine dic-
tionary. Let σ = [σ1, · · · , σM ]T be a vector to represent the
corresponding amplitude for each virtual frequency created
in (4). One can imagine if Ω were used to represent the PLI,
then many elements in σ would be zero because σi = ai if,
and only if ωi = f0 + i ∗ df , otherwise σi = 0. In other words,
the PLI has a sparse representation in the frequency domain
because it contains only finite number of sinusoidal signals.
In a matrix form, i = Ωσ where σ is sparse and this property
will be explored to develop the PLI suppression algorithm.

3 JOINT ECG RECOVERY AND PLI
SUPPRESSION ALGORITHMS

From the analysis conducted in Section 2, it is concluded that
the ECG has a sparse representation in the time domain, and
the PLI has a sparse representation in the frequency domain.
The received signal now can be expressed using the sparse
domains as

y = Φ′
timeα+Ωσ (5)

where y = [y1, · · · , yN ]T and Φ′
time indicates the correspond-

ing inverse transform. From (5), the α and σ are sparse,
hence, by utilizing this property, the following joint estima-
tion is developed to perform the ECG recovery and the PLI
suppression. That is,

minimize ‖α‖0 + λ‖σ‖0
subject to ‖y − Φ′

timeα− Ωσ‖2 < ε,
(6)

with variables α and σ, ‖·‖2 is the �2-norm that measures the
data fidelity, ‖ · ‖0 is the �0-norm that promotes the sparse
solutions, see [2], and λ and ε are the regularization and
precision constant, respectively. To solve this optimization
problem in (6), two greedy algorithms, namely JOMP and
JCoSaMP [10], are utilized.

The basic concept behind two joint algorithms is the alter-
nating minimization. To be accurate, the entire algorithm
essentially contains two steps, where in the first step the PLI
is estimated and in the second step the ECG is restored. In
the each step, the OMP/CoSaMP algorithm is applied to
perform estimation and two steps are iterated until certain
stopping rule is satisfied. For completeness, the JCoSaMP
and JOMP algorithms are provided in Tables 1 and 2 , respec-
tively. For more details, the interested readers are referred
to [10].

4 SIMULATIONS
In this section, the results of simulations are presented to
demonstrate the performance of the proposed joint estimation
method. For comparison purposes, the results from the LMS
filter are also provided. In the simulations, the parameters
of T = 500 and δ = 10−5 for JCoSaMP are chosen, and also,
δ = 10−5 is selected for JOMP. Two performance evaluation
indexes are employed to provide accurate accessions on the

proposed approaches, given by

suppression ratio: γ = 10 log10

{∑ |x(n)|2∑ |x̂(n)|2
}
, (7)

distortion ratio: β = 10 log10

{∑ |x0(n)− x̂(n)|2∑ |x0(n)|2
}
,

(8)

where x(n) and x̂(n) represent the signal before and after
interference suppression, respectively, and x0(n) is the clean
signal. For a desired suppression method, the suppression
ratio γ should be high since the interference should be re-
moved as much as possible. Meanwhile, the distortion ratio
β should be low because the recovered signal should be close
to the clean signal, which indicates that the reconstruction
error is small.

The ECG signal is generated by FECGSY N function [1]
and then it is corrupted by the PLI to produce the received
signal. In the first experiment, the ECG is contaminated by
50Hz PLI at signal-to-interference ratio (SIR)=-20dB, which
is depicted in Figure 2a, and it is seen that the clean ECG is
completely overwhelmed by the strong PLI. The result from
LMS filter is provided in the same figure. Although LMS filter
removes the PLI to certain extent, the residual interference is
still noticeable in the recovered ECG, which is also observed
in Figure 2d from the recovered spectrum. The JOMP and
JCoSaMP algorithms are now applied and the results are
demonstrated in Figure 3. It is now seen that the PLI is
removed and ECG is clean. In addition, the spectrum of the
recovered ECG is also free of interference, shown in Figures
3b-3c. The suppression and distortion ratios versus SIR are
depicted in Figure 4. From Figure 4a, one observes that
JOMP and JCoSaMP produce almost the same suppression
ratios, which suggests that they are good at suppressing the
interference. As expected, the suppression ratio decreases
as the SIR grows. When the SIR is low, for example, SIR=
-30dB, the suppression is 27dB, which indicates the excellent
suppression capacity. For the distortion ratio, the JOMP
and JCoSaMP outperform the LMS by almost 50dB, and
produce nearly the same distortion ratios regardless of the
SIR of the PLI. This indicates that the JOMP and JCoSaMP
preserve the useful signal well. Therefore, both the JOMP
and JCoSaMP are promising candidates in suppressing the
interference and recovering the ECG signal.

In the second experiment, the ECG is corrupted by a
50Hz PLI and its first harmonic at SIR= -20dB, depicted
in Figure 5a, and the reconstructed result of LMS filter is
also provided. From Figure 5a, for the LMS filter, even the
known PLI is utilized as the reference input, there is still an
convergence issue at the beginning. The LMS filter is able to
form two stopbands in the frequency domain, but the ECG
is also suppressed in the same bands. On the other hand,
the JOMP and JCoSaMP approach are able to recover the
ECG signal and to suppress the interferences simultaneously,
and provide good recovery results, demonstrated in Figure 6.
The recovered signals in both time and frequency domains
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(c) The spectrum of corrupted ECG
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(d) The reconstructed spectrum

Figure 2: Reconstructed signal by the LMS filter
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(b) The reconstructed spectrum by JOMP
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Figure 3: Reconstructed signal by JOMP and JCoSaMP
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Table 1: JCoSaMP Algorithm.

Objective function: minimize ‖α‖0 + λ‖σ‖0 subject to ‖y −Φ′α−Ωσ‖2 < ε
Inputs: y, Φ, Ω, K1 {sparsity level for σ}, K2 {sparsity level for α}
Outputs: Estimates of σ and α

Initialization: t = 1, r = y, rσ = 0 {residue for σ}, rα = 0 {residue for α}, σ0 and α0

Repeat
t=t+1
Step 1: Estimate the σ as (σt, rt

σ) ← CoSaMP(y,r,Ω,K1)
Step 2: Estimate the α as (αt, rt

σ) ← CoSaMP(y,r,Φ,K2)
Step 3: Update the global residue as r = y − rt

σ − rt
α

Until t > T {maximum iteration} or norm(r) < δ {predefined threshold}

Table 2: JOMP Algorithm.

Objective function: minimize ‖α‖0 + λ‖σ‖0 subject to ‖y −Φ′α−Ωσ‖2 < ε
Inputs: y, Φ, Ω
Outputs: Estimates of σ and α

Initialization: t = 1, r = y, rσ = 0 {residue for σ}, rα = 0 {residue for α}, σ0 and α0

Repeat
t=t+1
Step 1: Estimate the σ as (σt, rt

σ) ← OMP(y,r,Ω)
Step 2: Estimate the α as (αt, rt

α) ← OMP(y,r,Φ)
Step 3: Update the global residue as r = y − rt

σ − rt
α

Until t > T {maximum iteration} or norm(r) < δ {predefined threshold}
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Figure 4: Suppression ratios and distortion ratios obtained by JOMP, CoSaMP and LMS filter

match the original ones well. In this case, the suppression
and distortion ratios versus SIR are depicted in Figure 7.
However for JOMP, its performance degrades occasionally in
suppression, especially when the SIR is small, which is also
observed in the distortion ratio. It is clear that JCoSaMP
is a better choice for handling the ECG recovery and PLI

suppression for its steady performance. It should be noted
that the JCoSaMP based approach requires the prior knowl-
edge on the sparsity of the signal and in this case, the sparse
level is set to be two, namely K1 = 2, since there are two
PLI interferences.
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(d) The reconstructed spectrum

Figure 5: Reconstructed signal by the LMS filter in the presence of harmonic PLI
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Figure 6: Reconstructed signal by the JOMP and JCoSaMP in the presence of harmonic PLI
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Figure 7: Suppression ratios and distortion ratios obtained by JOMP and CoSaMP in the presence of harmonic
PLI

5 CONCLUSION
In this work, a joint estimation approach of the ECG signal
recover and PLI suppression based on JOMP and JCoSaMP
is developed. To utilize the algorithms, the time domain
is exploited as a sparse domain to represent the ECG sig-
nal. The PLI, on the other hand, is modeled as a linear
combination of the sinusoidal signals, which can be sparsely
represented in frequency domain. An optimization framework
is developed to perform ECG restoration and PLI suppres-
sion simultaneously, and JOMP and JCoSaMP are applied
to efficiently obtain the solutions. From the experiments
conducted, the joint estimation approach offers great per-
formance improvement over the state-of-the-art algorithms,
especially for JCoSaMP.
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