
1

Querying Object-Oriented Databases Based on Signature
Graph and n-ary Tree
Tran Minh Bao1,*, Truong Cong Tuan1, Huynh Trong Duc2
1 College of Sciences, Hue University, Vietnam.
2 Ho Chi Minh City Industry and Trade College, Vietnam.

Abstract

In this paper, we suggest a new technique to create index helping for querying almost identical similarities with keywords
in case there is no correct match found. It’s based on a signature graph and n-ary tree helping to query related information
when there is no correct match. Main idea is a signature graph structure, created based on signature file, created for a layer
and signature files are arranged as a hierarchical system according to nested structure of layers. This technique helps to
decrease effectively search space, so therefore it will improve effectively complexity of query time. More than that, we
develop query algorithm on signature graph based on Chen and partners method [3] suggested, thereby helping to improve
query time on signature graph better.

Keywords: Object-oriented query, object signature, signature file, signature graph.

Received on 21 December 2015, accepted on 11 January 2016, published on 12 February 2016

Copyright © 2016 Tran Minh Bao et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.12-2-2016.151087

*Corresponding author. Email:tmbaovn@gmail.com

1. Introduction

Study of indexing technique is always an important issue
in effective information searching from databases. For
object-oriented databases, direct query on objects has a
large time cost. There are many database indexing
techniques to process query on object-oriented databases
in which signature file approach has been widely
acknowledged and been an effective approach in
processing query on object-oriented databases. For this
approach, objects of a class are coded into object
signatures by using hash function and stored in a signature
file. However, query on signature file has a disadvantage
which is high cost due to scanning the whole file. Some
other indexing methods try to overcome this and can be
found in many researches [2, 3, 4, 9, 10].
Various indexing techniques for object oriented
databases specifically for aggregation hierarchy are
summarized in [1] and it is shown that indexing technique
based on signature file has the best performance for the
retrieval operation.

Signature tree [2, 3] and signature graph [3, 4] are
improved indexing techniques based on signature
files. Signature tree which is based on signature file
arranges all signatures in a tree form, which leads to less
comparison and improves query evaluation. Signature
graph is an indexing technique built for a class and
in addition arranges signature files in aggregation
hierarchy and improves the search of a signature file.
In this paper, we propose improvement of query algorithm
on signature graph which can be used to improve query
time. Firstly, we organize sequential signature files in
nested signature file hierarchy to reduce searching space
during querying. Then we store each signature file in
signature graph or n-ary tree to speed up signature file
scanning. The larger signature file is, the more time can
be saved by using this approach.
This paper is organized as follows. In part 2, we provide
background. Part 3 proposes indexing technique. Part 4
proposes an approach combining signature file hierarchy
and signature graph. Finally, part 5 gives out a
conclusion.

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

Tran Minh Bao et al.

2

2. Background

2.1. Attribute Signature

In an object-oriented database, each object is presented by
a set of attribute values. Signature of an attribute value is
a sequence of hashed-code bits. Given an attribute value,
for example the word “student”, we decompose it into a
string of three-letter sets as follow: “stu”, “tud”, “ude”,
“den” and “ent”. Then, using hash function h, we map a
triplet to an integer k which means kth bit in a string
assigned value 1. For example, assuming that we have
h(stu) = 2, h(tud) = 7, h(ude) = 10, h(den) = 5 and h(ent) =
11. Then we create a bit string: 010 010 100 110 which is
signature of the word.

2.2. Attribute Signature, Signature file

Object signature is constructed by logical OR algorithm
for all signatures of attribute values of the object. Below
is an example of an attribute signature:
Example 1. Consider an object which has attribute values
of “student”, “12345678”, “professor”. Suppose that
signature of these attributes is:

010 010 100 110
100 010 010 100
110 100 011 000

In this case, object signature is 110 110 111 110,
generated from attribute signatures by using logical OR
algorithm. Object signatures of a class are stored in a file,
called object signature file.

2.3. Query Signature

An object query will be encoded into a query signature
together with hash function applied to objects. When a
query needs to be executed, object signatures will be
scanned and unmatched objects will be excluded. Then
query signature is compared with object signatures of
signature file. There are three possibilities:

(i) The object matches with the query, i.e., for every
bit in query signature sq, corresponding bit in
object signature s is the same, i.e, sq˄s = sq, a real
object of query.

(ii) The object does not match with the query, i.e.,
sq˄s ≠ sq;

(iii) Signatures are compared and matching one is
found but its object does not match with
searching condition of the query. To eliminate
this case, objects must be checked after object
signatures are matched.

Example 2. This example illustrates the query for object
signature in example 1:
Query: Query signature: Result:
student 010 000 100 110 successful
john 011 000 100 100 unsuccessful
11223344 110 100 100 000 false drop

Comment: comparing query signature sq object signature
s is incorrect comparison. That means, query signature sq
matches with signature s if for any 1 bit in sq, the
corresponding bit in s is also 1 bit. However, for any 0 bit
in sq, the corresponding bit in s can be 0 or 1.

2.4. Querying Object-Oriented Databases

In object-oriented database systems, an entity is
represented as an object, which consists of methods and
attributes. Objects having the same set of attributes and
methods are grouped into the same class. Since a class C
may have a complex attribute with domain C’, a
relationship can be established between C and C’. The
relationship is called the aggregation relationship. When
arrows connecting classes are used to represent the
aggregation relationship, an aggregation hierarchy can be
constructed to show the nested structure of the classes.
Example 3. An example of a nested object hierarchy:

Vehicle

- manufacturer
- model: String
- color: String
- DriveTrain
- body

Company

- names: String
- headquarters: String
- divisions

Div ision

- names: String
- function: String
- location: String

VehicleDriv erTrain

- engine
- transmission: String

VehicleBody

- chassis: String
- interior: String
- door: Numeric

PistonEngine

- HPpower: Numeric
- CCsize: Numeric
- Cyl inderN: Numeric

Figure 1. An example of a nested object hierarchy

If an object o is referenced as an attribute of object o’,
then o is said to be nested in o’, and o’ is referred as the
parent object of o.
In object-oriented databases, the search condition in a
query is expressed as a combination of attribute. The
attribute may be a nested attribute of the target class.
Example 4. The query “retrieve all red vehicles
manufactured by a company with a division located in
Ann Arbor” can be expressed as:
select vehicle
where Vehicle.color = “red”
and Vehicle.company.Division.location = “Ann Arbor”
Without indexing structures, the above query can be
evaluated in a top-down manner as follows. First, the
system has to retrieve all of the objects in the class
Vehicle and single out those that are red in color. Then,
the system retrieves the company objects referenced by
the red vehicles and checks the locations of the divisions
of the manufacturers. Finally, those red vehicles made by
a company that has a division located in “Ann Arbor” are
returned.

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

 Querying Object-Oriented Databases Based on Signature Graph and n-ary Tree

3

2.5. Signature File Hierarchy and Query
Algorithm

 Signature File Hierarchy

The purpose of using a signature file is to screen out most
of the nonqualifying objects. A signature failing to match
the query signature guarantees that the corresponding
object can be ignored. Therefore, unnecessary object
accesses are prevented. In terms of an aggregation
hierarchy, a signature file hierarchy can be constructed as
follows:

(i) The signature of an object is generated by
superimposing the signatures of all its primitive
and complex attributes.

(ii) The signature of a primitive attribute is obtained
by hashing on the attribute values; the signature
of a complex attribute is the signature of the
object it references.

(iii) Let C be a class, and let o1, ...,ol be its objects;
there exists a signature file S such that each oi(i=
1, ..., l) has an entry <osig, oid> in S.

(iv) Let Si and Sj be two signature files associated
with classes Ci and Cj, respectively. If there
exists an arrow from Ci to Cj, then there is
implicitly an arrow from Si to Sj.

Example 5. Signature and signature file hierarchy:

 Figure 2. Signature and signature file hierarchy

Consider the class “Division” in the class hierarchy
shown in figure 1, which contains no complex attributes.
The signature of an object o of this class can be

constructed as shown in figure 2 (a), where each s(o, x)
stands for the signature produced for the attribute value x
of o and s(o) for the signature of o. For a class containing
complex attributes, the signature of its objects can be
generated in the same way as for a class containing only
primitive attributes. The only difference is that the
signature of a complex attribute is the signature of the
object it references. See figure 2 (b) for an illustration. In
figure 2 (b), o’ stands for an object of class “Company”,
and object o of class “Division” is the attribute value of
“division” of o’. Signature file hierarchy may be
constructed for a database with the schema shown in fig 1
for an illustration in fig 2(c).

 Query Algorithm Based on Signature File

Definition 1. (Query tree) [3] Let p1˄p2…˄pk be the
search condition in query Q, where each pi is a predicate
of the form: <attribute operator value>. Then, all the paths
appearing in the search condition constitute a query tree,
denoted as Qt.
Example 6. Query tree:

 Figure 3. Query tree

Definition 2. (Query signature tree) [3] Let p1.p2pn be
a path in a query tree Qt (from the root to some leaves).
Let <pi... .pn operator value> be a predicate appearing in
the search condition of Q. Then pn’s signature is svalue. The
signature of a non-leaf node in Qt can be obtained by
superimposing the signatures of its child nodes. The query
signature tree is denoted as Q(s,t).
Example 7. The query signature tree:

Figure 4. Query signature tree

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

Tran Minh Bao et al.

4

Use the query signature tree to reduce searching space.
For this purpose, two stack structures are needed to
control depth-first traversal of tree structures: stackq for
Q(s,t) and stackc for the class hierarchy. In stackq, each
element is a signature, while in stackc, each element is a
set of objects belonging to the same class reached during
class hierarchy traversal.
Algorithm 1. [3] top-down-hierarchy-retrieval;

Input: an object query Q;

Output: a set of OIDs whose texts satisfy the query.

Method:
Step 1. Compute the query signature hierarchy Q(s,t) for
the query Q.

Step 2. Push the root signature of Q(s,t) into stackq; push
the set of object OID of the target class into stackc.

Step 3. If stackq is not empty, sqpop stackq; else go to
(7).

Step 4. Spop stackc; for each oidi E S, if its signature
osigi does not compare sq, remove it from S; put S in
Sresult.

Step 5. Let C be the class to which the objects of S
belong; let C1, ..., Ck be the subclasses of C; then partition
the OID set of the objects referenced by the objects of S
into S1, ..., Sk such that Si belongs to Ci; push S1, ..., Sk
into stackc; push the child nodes of sq into stackq.

Step 6. Go to (3).

Step 7. For each leaf object, check false drops.

In this technique, optimization is achieved by executing
step (4). In this step, some objects are filtered using the
corresponding signature in the query signature tree. In
step (5), the referenced objects and the signatures of the
child nodes of the query signature tree are put in stackc
and stackq, respectively. In step (7), the checking of false
drops is performed.
Example 8. Assume that a part of the signature file
hierarchy constructed for a database with the schema
shown in Figure 1 is of the form shown in the upper part
of Figure 5:

Figure 5. Illustration of query evaluation

Since both the top two signatures in the signature file for
Vehicle match the corresponding signature in the query
signature tree, the signatures referenced by them in the
signature file for Company are further checked. Assume
that the first signature in Company is referenced by the
first signature in Vehicle while the second one in
Company is referenced by the second one in Vehicle. We
can see that the second signature in Company does not
match the corresponding signature in the query signature
tree. Thus, all those Division object signatures referenced
by it will not be checked further (see the grey part of Fig 5
for an illustration). This is optimal compared to “top-
down-retrieval” since by means of “top-down-retrieval”,
checking against all Division object signatures has to be
performed.

2.6. Signature Graph

 Construction of Signature Graph

To find a matching signature, a signature file has to be
scanned. If it is large, the amount of time elapsed for
searching such a file becomes significant. The first idea to
improve this process is to sort the signature file and then
employ a binary searching. Unfortunately, this does not
work due to the fact that a signature file is only an inexact
filter. The following example helps for illustration.
Example 9. Consider a sorted signature file containing
only three signatures:

010 000 100 110
010 100 011 000
100 010 010 100

Assume that the query signature sq is equal to 000 010
010 100. It matches 100 010 010 100. However, if we use
a binary search, 100 010 010 100 cannot be found. On the
other side, there might be the same signatures in the
signature file that match with objects having the same
content, query processing needs to find out all locations of
suitable objects. Due to this reason, we will organize
signature file in a graph, called signature graph, to store
signature list and allow reverse query for location of
corresponding data. We have the following definition:
Definition 3. (signature graph) [4] A signature graph G
for a signature file S = s1.s2... .sn, where si ≠ sj for i ≠ j and
|sk| = m for k = 1, ..., n, is a graph G= (V, E) such that

1. Each node v ∈ V is of the form (p, skip), where p is a

pointer to a signature s in S, and skip is a non-negative
integer i. If i > 0, it tells that the ith bit of sq will be
checked when searching. If i= 0, s will be compared with
sq.

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

 Querying Object-Oriented Databases Based on Signature Graph and n-ary Tree

5

2. Let e= (u, v) ∈ E. Then, e is labeled with 0 or 1 and

skip(u) > 0. Let skip(u) = i. If e is labeled with 0 and i > 0,
the ith bit of the signature pointed to by p(v) is 0. If e is
labeled with 1 and i> 0, the ith bit of the signature pointed
to by p(v) is 1. A node v with skip(u) = 0 does not have
any children.
Example 10. Consider the signature file and signature
graph:

Figure 6. Signature file and signature graph

 Algorithm 2 [4] signature-graphs-search

Input: a query signature sq ;
Output: set of signatures which survive the checking;
Method:

Step 1. Set ←

Step 2. Push the root of the signature tree into stackp.

Step 3. If stackp is not empty, then v ← pop(stackp); else
return(S).

Step 4. If v is not a market node and skip(v)≠ 0, i ←
skip(v); mark v;

Step 5. Compare sq with the signature pointed to by p(v).

(*p(v) – pointer to signature*)

If sq matches, then S ← S {p(v)}.

Step 6. Go to(3)

3. PROPOSED INDEXING TECHNIQUE

3.1. Improved Algorithm for Signature
Graph Search

In this part, we propose improvement of query algorithm
on signature graph [4] which can be used to improve
query time as follows:

Algorithm 3 signature-graphs-search

Input: a query signature Sq;

Output: set of signatures which survive the checking;

Method:

Step 1. Compute the Signature weight for the query
signature.

Step 2. Set←Ø

Step 3. Push the root of the signature tree into stackp.

Step 4. If stackp is not empty, v←pop(stackp); else return
(Set).

Step 5. If v is not a marked node and skip ≠ 0, i←skip(v);
mark v;

If Sq=0, push Cr and Cl into stackp; (where Cr and Cl are
v’s right and left child, respectively) otherwise, put only
Cr into stackp.

Step 6. If signature weight is smaller than 50% then
search the query signature in the signature nodes for the
unset bits.

Step 7. Else search the query signature in the signature
nodes for the set bits

Step 8. Compare Sq with the signature pointed by p(v).

(p(v) pointer to a signature)

If Sq matches, Set ← Set ᴗ {p(v)}.

Step 9. Go to (3).

3.2. Time Complexity

From [4], query time complexity on signature graph is
O(N/2l), where N is the number of signatures in the
signature file and l is the number of bit 1 put in query
signature Sq.
If query signature weight is higher than 50% then the
number of bit 1 is larger than the number of bit 0 in Sq.
Let k be the number of bit 0 put in query signature Sq,
then we have O(N/2l) > O(N/2k). Otherwise, O(N/2l) <
O(N/2k).
The above analysis shows that if signature weight is
higher than 50%, comparison between query signature
and signature of signature file will be based on bit 1.
Otherwise, it will be based on bit 0, this way can improve
query time on signature graph.

3.3. Clustering Algorithm

How is it if query returns zero? In this case, to find out
closer match, Hierarchical Clustering is applied. In cluster,

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

Tran Minh Bao et al.

6

similar objects are arranged together to create cluster.
Because similar cluster objects will be suitable with any
requirements (if any). This thing will increase search
speed. This process included 2 step. First of all is cluster
and the second is cluster searching. In hierarchical
clustering, objects is linked with each other. In here, data
structure of n-ary tree is used for creating cluster.
Algorithm 4. Clustering algorithm
Input: Condition collections.
Output: Qualified object is embedded in n-ary tree
Method:
Step 1. Creating new node and inserting into graph.
Step 2. Seeking object that being content with available
condition and attaching new condition.
Step 3. Inserting new node with graph that being content
with new condition.
For searching almost identical similarities, locating
position of condition collections is provided in hierarchy
system and seeking father node of it. For locating
position of node, using Level Order Tree Traversal.
Algorithm to find father node such as follows:
Algorithm 5. Parent node
Input: Object Condition collections.
Output: Parent node.
Method:
Step 1. Searching nodes are suitable with conditions.
Step 2. Returning qualified nodes to father node.
After gaining closest match, query is edited and
information is retrieved. So therefore hierarchical tree
helps for searching almost identical match.

4. Approach Combining Signature File
Hierarchy and Signature Graph

4.1. Query Data Structure Model

To improve query time on databases, we need to describe
data structure in a more simple way and build a
corresponding data structure to reduce searching space
during implementing query while ensuring query of
necessary objects by using signature graph. From [4], to
make query more optimized, we need to combine
signature file hierarchy and signature graph, this issue has
been proved to improve query time better. From algorithm
3, query time complexity on signature graph is smaller
than query time complexity of algorithm 2. Thus, we still
use signature file hierarchy as in [4], but replace
algorithm 2 with algorithm 3 to improve query time
better.
Base on theoretical basis and suggested algorithm, the
paper proposes improved approach for query algorithm on
signature graph combining signature file hierarchy as
follows: (1) Each signature file is stored in signature
graph structure to speed up signature file scanning; (2) All
of signature files are organized in hierarchy to facilitate
implementing step by step filter technique.

Example 11. Construction of signature graph is
illustrated as below:

Figure 7. Construction signature graph

Example 12. Combination of signature file hierarchy and
signature graph is illustrated as follow:

Figure 8. Signature file hierarchy and signature
graph

Data structure is totally stored in the main memory, in this
case, inserting or deleting a signature on a signature graph
can be done easily. However, files are very large in
databases, so database structure cannot store in the main
memory but in the external memory. For object-oriented
databases, they will be stored and implemented on the
external memory. An object-oriented database has many
classes, each class has many objects. There is a signature
graph structure corresponding with each class, also each
object will form an object signature. The entire object-
oriented database is partitioned in a hash table structure
including object’s signatures to implement query process.

4.2. Object-Oriented Query Processing

To execute a query of an object in an object-oriented
database, firstly we have to change an object-oriented
database into data structure as above, we do:

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

 Querying Object-Oriented Databases Based on Signature Graph and n-ary Tree

7

Step 1. Attribute of the object is hashed into binary
signatures and attributes which form object signatures.
Step 2. Object signatures in a same layer will form
signature graphs.
Step 3. Create signature file hierarchy where each file is a
signature graph.
After having data structure for query, we execute object
query process on object-oriented databases as follow:
Step 1. Encode key words which need to be retrieved into
binary signature.
Step 2. Execute key word signature query to determine
classes which need to be searched.
Step 3. Execute key word signature query on signature
graphs corresponding with determined classes.
Step 4. In case exact match is unavailable we change to
step 5. Opposite, turning to step 6.
Step 5. Finding closest match.
Step 5.1. Using Clustering Algorithms on n-ary tree to
create new requirement.
Step 5.2. Finding out information is suitable with new
requirement.
Step 5.3. Seeking match of son node and returning
corresponding father node.
Step 6. Updating information in database.

5. Conclusion

In this paper, we suggest to improve query algorithm on
signature graph. Signature graph is created based on signature
file for a layer and helping to improve effectively for searching
on signature file. Plus, in case exact match is unavailable, n-ary
tree is used for locating corresponding coincident position.
Signature files are created as a hierarchical system according to
nested structures of layers in Object-oriented database system
helping to improve effectively for query time.

References

[1] S. Sung and J. Fu, (1996), Access Methods on Aggregation
of Object-Oriented Database. IEEE International
Conference, Vol (2), pp.977-982.

[2] Yangjun Chen, Yibin Chen (2006), On the Signature Tree
Construction and Analysis, IEEE Trans Knowl Data Eng,
18(9), pp.1207-1224.

[3] Yangjun Chen (2004), Building Signature Trees into
OODBs, Journal of Information Science and Engineering,
20(2), pp.275-304.

[4] Yangjun Chen, Yibin Chen (2004), Signature File
Hierarchies and Signature Graphs: a New Index Method
for Object-Oriented Databases, Proceedings of the 2004
ACM symposium on Applied computing, Nicosia, Cyprus,
pp.724-728.

[5] D. Dervos, Y. Manolopulos and P. Linardis (1998),
Comparison of signature file models with superimposed
coding, J. of Information Processing Letters 65, pp.101 -
106.

[6] C. Faloutsos, (1985), Signature Files: Design and
Performance Comparaison of Some Signature Extraction
Methods, ACM Sigmod Record, Volume 14, Issue 4, pp. 63
– 82.

[7] D. L. Lee, Y. M. Kim, G. Patel, (1995), Efficient Signature
File Methods for Text Retrieval, IEEE Tran Knowl Data
Eng, 7(3), pp.423-435.

[8] W. C. Lee, D. L. Lee, (1992), Signature File Methods for
Indexing Object-Oriented Database systems, Proceedings
of the 2nd International Computer Science Conference,
Hong Kong, pp.616-622.

[9] P. Mahatthanapiwat, (2010), Flexible Searching for Graph
Aggregation Hierarchy, Proceedings of the World
Congress on Engineering, London, UK, pp.405-409.

[10] E. Tousidoua, P. Bozanis, Y. Manolopoulos, (2002),
Signature-based structures for objects with set-
valued attributes, Elsevier Science, Information Systems,
27(2), pp.93-121.

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e4

