
EAI Endorsed Transactions
on Context-aware Systems and Applications

1

Context-aware approach for formal verification

Amel Benabbou
1,

*, Safia Nait Bahloul
1
 and Dhaussy Philippe

2

1
LITIO Laboratory, IDTW team, University of Oran 1 Ahmed Ben Bella, BP 1524, El-M'Naouer, 31000 Oran, Algeria

2
Lab-STICC Laboratory, MOCS team, ENSTA-Bretagne, France

Abstract

The Context-aware approach has proven to be an effective technique for software model-checking verification. It focuses

on the explicit modelling of environment as one or more contexts. In this area, specifying precise requirement is a

challenged task for engineer since often environmental conditions lack of precision. A DSL, called CDL, has been

proposed to facilitate the specification of requirement and context. However, such language is still low-level and error

prone, difficult to grasp on complex models and assessment about its usability is still mitigated. In this paper, we propose a

high level formalism of CDL to facilitate specifying contexts based on interaction overview diagrams that orchestrate

activity diagrams automatically transformed from textual use cases. Our approach highlights the boundaries between the

system and its environment. It is qualified as model-checking context-aware that aims to reduce the semantic gap between

informal and formal requirements, hence the objective is to assist and encourage engineers to put sufficient details to

accomplish effectively the specification process.

Keywords: Context, Context-awareness, Context-aware verification, Model-checking, Model transformation, Use cases, Interaction

overview diagram.

Received on 20 November 2015, accepted on 20 January 2016, published on 12 February 2016

Copyright © 2016 Amel Benabbou et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.12-2-2016.151085

*Corresponding author. Email: benabbou_amel@yahoo.fr

1. Introduction

Describing the behaviour of systems is the principle on

which verification by model-checking is based. In such

technique, the System Under Study (SUS) is abstracted as a

model presented, generally, in the form of concurrent

automata (state machine) and on which we aim to verify the

correctness of requirements expressed in a formal properties

language. The whole of the model behaviours (i.e., states)

are explored by the model-checker to evaluate whether the

specified properties are true or not. During exploring model

states, the number of reachable configurations is become too

large to be contained in the memory. This is known by the

state explosion problem [1].

To overcome this problem, many works proposed to

improve the performance of model-checkers by considering

compositional verification [2, 3, 4, 5]. In this area, context-

aware verification has been introduced [6, 7] as a technique

of state space decomposition that enables compositional

verification of requirements. The idea is to allow to explicit

separately the behaviour of entities (actors) that interact with

the system and its environment. This technique reduces the

set of possible spaces behaviours (and thus the state space)

by considering an explicit model of the environment during

its exploration. It consists to “close” the SUS with a well

defined finite and acyclic environment. The reduction is

based on the description of particular use cases on the

environment, called contexts, with which the system

interacts. The objective is to guide the model-checker to

concentrate its efforts not on an exhaustive exploration of

the whole model but on a relevant restriction of this latter.

The formal specification of the environment enables at least

three different decomposition axes: a) the environment can

be decomposed in contexts; b) contexts enable the automatic

partitioning of the state space into independent verification

Research Article

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2 EAI
European Alliance
for Innovation

http://creativecommons.org/licenses/by/3.0/

A. Benabbou et al.

2

problems; c) the requirements are focused on specific

environmental conditions in which they should be satisfied.

Our work fits in this technique; we introduce an approach

that is a part of a model-checking methodology for formal

verification that separates contexts from functional

requirements. These contexts are specified within a domain-

specific language called CDL (Context Description

Language) based on the concept of use case scenario [8, 9].

The behaviours are formally defined by sets of use cases

which describe how the environment interacts with the SUS.

Within CDL, the environment is decomposed into a set of

sub-contexts which are composed separately with the SUS

and on which a set of relevant properties are evaluated.

Our contribution aims to build intermediate models for

the automatic generation of CDL models from manipulated

artefacts. We focus particularly on the description of use

cases-based contexts. The use case approach is an effective

technique that allows to uncover (through scenarios) the

behaviour of actors and to help focusing on their interactions

with the system [10]. In the favour of our approach, use

cases are transformed to a set of activity diagrams that are as

well afterwards transformed into Interaction Overview

Diagrams (IODs) to determinate the system boundaries. A

more general type of IODs is used in second time to

organize interactions according to CDL structure. The

model of the SUS has to be established, producing such a

model is out of the scope of this paper.

In this paper, we are concerned by two contributions: 1)

The interface specification is facilitated, thanks to the

transformation from use cases into IODs for each actor and

using gates to relate IODs with system boundaries; 2) The

orchestration of several actors and related use cases are

specified by the requirements engineer using IODs that are

closely related to the CDL structure and easily transformed

in CDL contexts. Hence, the set of interaction diagrams

together with the system model constitutes a ground model

of the system that captures and fully documents the

requirements and constitutes the starting point of the

verification process. The paper is organized as follows.

Section 2 gives an overview of CDL structure, the problem

statement and objectives in section 3. Section 4 is an overall

presentation of the methodology of our context-aware

approach. We give our meta-models, running example,

boundaries specification and orchestration aspects in section

5. Presentation of related works and comparison are

intended in section 6. Finally, a conclusion closes the paper

in section 7.

2. Overview on CDL language

The CDL structure is inspired from the Use Case Chart

proposal [11] but extended to allow describing the entities

that contribute to the environment interaction. It is

hierarchically constructed in three levels: Level-1 is a set of

constructs which describes hierarchical activity diagrams

where either alternative (alternative/merge) or concurrency

(fork/join) between several executions is available. Level-2

is a set of scenario diagrams organized in alternatives. Each

scenario is fully described at Level-3 by sequence diagrams.

CDL has then three operators: parallel par, alternative alt

or, sequence seq, denoted by “||”, “+” and “;”, respectively.

A context C is defined as either: (i) a simple MSC (Message

Sequence Chart [12] M composed of a sequence of emission

events a! and reception a? terminated by the empty MSC (0)

which does nothing, or (ii) a sequential composition of two

contexts (C1; C2), or (iii) a non deterministic choice between

two contexts (C1+C2), or (4) a parallel composition (par

denoted k) between two contexts (C1||C2). Formally defined

by the following grammar:

See the CDL structure in Figure1 as follows:

In figure 1, the environment is composed of 3 actors dev1,

dev2 and dev3. All these actors run in parallel and interleave

their behaviour. The model can be formalized, with the

above textual grammar as follows:

 C = dev1 || dev2 || dev2

 devi = Logi ; (Oper + (nackLog (err)?;0))

 Logi = (goInitDev ? ; logini !)

 Oper = (ackLog (id) ? ; operate (op) ! (Acki + (nackOper

(err) ? ; . . . ; 0)))

 Acki = (ackOper (role) ? ; logouti ! ; . . . ; 0)

 dev1, dev2, dev3 = devi with i = 1, 2, 3

The semantics of CDL is based on the semantics of the

scenarios and expressed by construction rules of sets of

traces built using par, alt and seq operators. A scenario trace

is an ordered events sequence which describes a history of

the interactions between the context and the model. The

formal semantics is defined by a function wait(C)

associating the context C with the set of events awaited in its

initial state:

Wait (0) ∅ Wait (a!; M) ∅
Wait (a?; M) {a}

Wait (C1 + C2) Wait (C1) ∪ Wait (C2)

Wait (C1; C2) Wait (C1) if C1 ≠ 0

Figure1. Example of a CDL Model: Textual Vs
Graphical version

C :: = M | C1 ; C2 | C1+C2 | C1|| C2

M :: = 0 |a !; M | a ?; M

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2
 EAI

European Alliance
for Innovation

Context-aware Approach for Formal Verification

3

Wait (0; C2) Wait (C2)

Wait (C1||C2) Wait (C1) ∪ Wait (C2)

A context is considered as a process communicating

asynchronously with the system. Its input events are

memorized in a buffer. The semantics of CDL is defined by

the relation (C, B)

 (C′, B′) to express that the context C

with the buffer B “produces” a (which can be a sending or a

receiving signal, or the nullσ signal if C does not evolve)

and then becomes the new context C′ with the new buffer B′.

This relation is defined by the following 8 rules (In these

rules, a represents an event which is different from nullσ):

// An MSC beginning with a sending event a! emits this event and

continues with the remaining MSC.

// Expresses that if an MSC begins by a reception a? and faces an

input buffer containing this event at the head of the buffer, the

MSC consumes this event and continues with the remaining

MSC.

// Establishes that a sequence of contexts C1; C2 behaves as C1

until it has terminated.

// If the first context C1 terminates (i.e., becomes 0), then the

sequence becomes C2.

// the semantics of the parallel operation is based on an

asynchronous interleaving semantics

//The alternative context C1 + C2 behaves either as C1 or as C2.

// If an event a at the head of the input buffer is not expected, then

this event is lost.

For more description of CDL language, see the published

articles [7, 8, 9] available on http: //www.obpcdl.org

3. Problem statement and objectives

Use cases are a key element in our context-aware

approach. Traditionally, used in capturing requirements,

they are efficient to uncover, through scenarios, the

behaviour of actors and to help focusing on their interactions

with the system.

Within a CDL specification, the behaviour of each actor

is considered as series of scenarios. These behaviours are

composed in parallel to generate all the possible sequences

of events. Thus, users are required to identify the behaviour

of each actor to formalize it in the form of a CDL scenario.

This is a manual process that requires: a) significant effort,
to make the connection between the both modelling levels

(use case and CDL), especially when the system is strongly

coupled with its environment; b) good knowledge of the

syntax and semantic of CDL. There is a semantic gap

between the textual descriptions of use cases describing

scenarios and CDLS models that capture sent and received

messages by each actor. Moreover, produce an exhaustive

description of events seems to be a complicated task because

CDL is based on simple scenarios, which are just partial set

of interactions.

CDL has been evaluated through several aeronautic and

military industrial case studies [13]. However, industrial

feedback reports that although CDL has solved several state

explosion cases, it is perceived as a low-level language,

restrictive and difficult to grasp and apply on complex

models. Then, we need to express environmental scenarios

at a higher level of abstraction that maps better to

requirement and specification engineers. The new UML

interaction diagrams are suitable for high-level

specifications. We use IODs known by their ability to show

the control flow with a sequence of more general

interactions [14]. IODs constitute a high-level structuring

mechanism that we use to synthesize scenarios. In our

approach, IODs are used to: i) capture the behaviour of the

system, ii) describe the messages flow in the system and iii)

describe the structural organization of CDL.

Our approach is qualified as model-checking context-

aware. This aims to facilitate contexts elaboration and to

build intermediate models between use cases and CDL,

allowing the automatic generation of CDL models from the

manipulated artefacts. The main objective of the whole

approach is to assist and encourage engineers to put

sufficient details to accomplish effectively the specification

process.

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2
 EAI

European Alliance
for Innovation

A. Benabbou et al.

4

4. Presentation of the methodology for
context- aware Approach

Context-aware verification focuses on modelling of the

environment as a set of contexts. Furthermore, for our

model-checking approach, the SUS is modelled using the

formal language Fiacre [15], which enables the specification

of interacting behaviours and constraints through automata.

The surrounding environment and requirements are

specified using the CDL formalism, and verified by the

model-checker OBP
2
 (Observer Based Prover):

.

The methodology proposed for the context-aware model-

checking verification, is a kind of co-design methodology

along three axes: a) the model of the SUS is elaborated

using UML state diagrams expressed with a textual

representation called tUML, transformed automatically into

Fiacre models; b) the contexts are formalized with CDL; c)

we need to formalize properties to be checked on the

elaborated model.

Our work focuses on context description based on

informal use cases. The use cases that we seek are those

with a textual format. The specification of these use cases

should be controlled through a set of writing rules and

instantiated from a use case meta-model. This control is

performed so as to reduce ambiguity and facilitate the

generation of behavioural models (CDL) from such

instances. This allows precisely synthesizing the structure of

our context description formalism as activity diagrams (with

both actors and system partitions) by a set of transformation

rules using an interaction meta-model. Because contexts

focus on the system boundaries, the system partition is

replaced by gates connected to the actors' interactions. IODs

express use cases coordination at the higher level. The

whole set of interaction diagrams constitute the high-level

specification point of view from which CDL contexts are

generated. The generated CDL models are used directly by

OBP tools to assess the context part of the model submitted

for verification. The double arrows between meta-models

1
 Language and Tools set website: http://www.obpcdl.org

transformations mean the ability to establish traceability

links to ease the debugging process. See Figure 3.

 Figure 3. Methodology for a context-aware
verification process

It’s out of the scope of this paper to illustrate the whole

verification process; rather we focus on application of our

proposal of transformation rules to generate contexts (area

squared with red in Figure 3).

5. From Use cases to Activities: elaborate
context

In this section we give our meta-models, resulting diagrams

after applying transformation rules and generated IODs.

5.1. Meta-models

Establishing good meta-models is a challenging task

because we need to have meta-models conforming to

the UML meta-model in order to ease the exchange

of models produced by various UML tools. But we

need also to keep the meta-models concise and

sound. Hence, our use case and activity diagram meta-

models borrow as much as possible constructs and hierarchy

from those in UML 2.4.1[14]. However, we have simplified

and tuned them for our own purposes. Because use case

structure is semi-formal, for model-checking verification

purposes, we need to precise the use case structure. See

Figure 4.

Properties:
invariants,
observers

CDL

System

model
Fiacre

OBP

explorer

Labeled
transitio

n
system

Context CDL Results

Figure 2. Context-aware verification: OBP
Observation Engine overview

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2 EAI
European Alliance
for Innovation

5

Figure 4. Use case Meta-model

A use case is associated to one or many scenarios, called

BehaviourFlow, some of them are main scenarios. A

BehaviourFlow is made of an ordered sequence of Steps:

SingleStep or StepGroup. A StepGroup contains an ordered

sequence of Step, including other StepGroups recursively. A

SingleStep may be specialized in: TriggerStep (the condition

triggering a BehaviourFlow), IncludeStep (the step contains

another BehaviourFlow), ReturnStep (a return to another

Step), FinalStep (the use case ends). A StepGroup is a

LoopGroup or a ConditionalGroup. A BehaviourFlow can

have extension(s) (alternatives that describe different steps

than those in a success scenario) and it applies recursively.

A child BehaviourFlow refers to a parent BehaviourFlow

and states the branching point where the extension condition

(a TriggerStep) should be checked: a single branching point

or a bounded interval; in the latter case, the condition can

occur at any steps within the bounds and triggers the child

BehaviourFlow.

The second meta-model that we use is that of activity

diagram. In this meta-model, Activity is a generalization of

ActivityNodes and ActivityEdges for linking between them.

ActivityNode is either a simple action, a ControlNode

(decision, fusion, etc) or some specialization of groups of

StructuredActivity in looped and conditional forms. An

ActivitygGroup generalizes also the partition notion that

gathers activities for each actor. Activity meta-model is

given as follows:

Figure 5. Activity Meta-model

5.2. A running model-checking example

We use a famous concurrency problem to illustrate a typical

model-checking process, the context-aware approach and to

introduce our proposal later. It’s about Lamport’s problem of

two neighbours Alice and Bob that share a yard in an

exclusive manner [15]. This problem is presented

within the following algorithm:

According to our context-aware verification approach, we

need the followings artefacts: i) the system is translated into

specification model to describe the behaviours of Alice and

Bob, in the form of automata given in left side (A) in Figure

6. The expression evRain [catIn-Yard = true /

AliceCatGoesHome] means that when the event evRain

occurs and if the condition catInYard = true is satisfied then

the action AliceCatGoesHome is performed. ii) Contexts are

given through use cases “Alice’s cat comes home” and “Bob

releases a dog” given in middle (B) and right sides (C),

respectively. iii) A property to be checked, formalized using

CDL, for instance the mutual exclusion property may be

represented with not (catInYard and dogInYard).

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2
 EAI

European Alliance
for Innovation

Context-aware Approach for Formal Verification

A. Benabbou et al.

6

Finally the model-checker is run to check the

validity of the property on OBP. For example, the

model-checker would not find any state where the mutual

exclusion property is falsified.

5.3. Transformation rules

Transformation of textual use cases to activity diagrams

is realized in three phases as follows:

1) Basics creation: a use case generates an activity

diagram, each actor generates a partition and a partition

for the system is added; rules BCR1, BCR2, BCR3,

BCR4 and BCR5 are applicable on the whole use case.

2) Activity node creation: control nodes, structured nodes

and action nodes; ANR1, ANR 2, ANR 3 and ANR4 with

their sub rules applicable after Basics creation.

3) Activity edge creation: connecting activity nodes with

control flows, rules AER1, AER2, AER3 and AER4.

A summary of our transformation rules in the form of an

algorithm is given as appendix at the end of this paper.

However, we show now how there are applied on the use

case “Alice’s cat comes home” given above. More details

and full rules are found in [16]

Activity nodes
Rules BCR1 and BCR 2 are respectively applied to

generate an activity diagram, an Alice and system partition

and also an InteractionUse for this activity diagram that will

be contained in the IOD related to the actor Alice. With rule

BCR 3 the ain scenario and the three extensions generate

(including together 8 steps) four ActivityGroups. For

generating the rest of activity nodes, we proceed as follows:

Apply rule BCR 4: - Generate an InitialNode into the

ActivityGroup of the main flow.

Apply rule BCR5: - Generates 3 ActivityFinalNode for

each flow that ends within their corresponding

ActivityGroup.

Apply rule ANR2.a: - Generates a FusionControlNode

added at the ActivityGroup and pending to the second

ActivityNode of this ActivityGroup for the

BoundedBehaviorFlow 1-3a. Cancelling (shortcut for

avoiding the repetition of Cancelling at each step of the

main scenario).

Apply rule ANR4: - unfold the BoundedBehaviorFlow in 2

occurrences of Cancelling with 2 DecisionControlNodes

generated and linked to this FusionControlNode, the former

after the step 1 (before the step 2) and the latter after the step

2 (before the step 3).

Apply rule ANR2.b: Unfolding the Cancelling

BoundedBehaviourFlow leads to 2 BehaviourFlows (Phone

call and Cancelling) branching after step 1 and indeed to

have 2 BehaviourFlows (Silly cat and Cancelling) branching

after step 2.

Apply rule ANR3.a: - Generate 4 DecisionControlNodes

from the 4 triggers (steps that begin the BehaviourFlow)

with the first DecisionControlNode located in Alice IOD,

these 4 DecisionControlNodes are pending to the first

ActivityNode of each corresponding ActivityGroup; and the

remaining 4 steps generate 4 ActionNodes (rule ANR3).

Activity Edge
ActivityEdges are generated for linking ActivityNodes.

Let us see what will be generated from our use case ”Alice’s

cat comes home”.

Apply rule AER1: - Generates an ActivityEdge from the

InitialNode to the first DecisionNode before the ActionNode

Alice opens the door to her cat.

Apply Rule AER2: - Generates 3 ActivityEdges to the 3

ActivityFinalNodes from the last ActivityNode of each

ActivityGroup associated with each BehaviourFlow that

ends. Because the ActivityGroup associated with the flow

Silly cat contains only the ActivityFinalNode (the flow

contains a single step), this ActivityFinalNode has been

already linked as a target from the ActivityEdge generated

from the processing of the TriggerStep during the activity

node generation, hence this ActivityEdge is not generated.

Figure 5. Activity Meta-model

Figure 6. Automata of Alice and Bob behaviours (A)
 “Alice’s cat comes home” use case (B)

 “Bob releases a dog” use case (C),

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2 EAI
European Alliance
for Innovation

7

Apply rule AER3: - Generates 2 ActivityEdges for the

ActionNode Alice opens the door to her cat and 1

ActivityEdge for the ActionNode Alice asks the system to

lower her flag. These ActivityEdges link together the

DecisionControlNodes after an ActionNode and the last

DecisionNode either to a FusionControlNode (case of the

former ActionNode) or to the ActionNode (latter case).

Apply rule AER4:- Generates 2 ActivityEdges sourcing

from the 2 ActionNodes that are non-ending steps and

targeting the first ActivityNode of each following

ActionNode (a DecisionNode in both cases).

 Figure 7 shows the generated activity diagram as follow:

Figure 7. The generated activity diagram for
“Alice’s Cat goes home” use case

5.4. Specification of the system boundaries

Our aim now is to transform the resulting activity

diagrams to our first type of IODs, focusing only on the

actor’s partition and its interactions with the system. To do

this, we need to use boundaries to establish the interface

(focusing on exchanged messages) between the system and

its environment. Our IODs are established as follows: first,

we recommend writing actions with simple sentences having

a subject, a verb, and eventually an object. Actions without

the system as a subject or an object (such as Alice opens the

door to her cat) are out of the scope and will be discarded.

Compound actions (such as Alice releases her cat and warns

the system) have to be split in simple actions (such as Alice

releases her cat - out of the scope - and Alice warns the

system) - within the scope). When the simple sentence rule

is applied, it is easy to process ActionNodes and recognize if

the system is a subject or an object and eventually discard

the ActionNode from the system scope. The same rule

applies to DecisionControlNodes: if the condition includes

any reference to the system, the DecisionControlNode will

be kept, else discarded. Any incoming or outgoing

ActivityEdges to a discarded ActivityNode (Action or

Decision) will be discarded too, and the pending

ActivityEdge reconnected to the following ActivityNode (that

might be discarded later, forcing the ActivityEdge to be

reconnected).

At the end, a set of nodes are discarded. Moreover, there

are ActivityEdges crossing the boundary and because the

system partition is not included, such ActivityEdge will be

cut and replaced by a pair of related gates, one is the actor’s

model and another is the system model. Thus, an IOD is

established for each actor (Actor IOD). See Figure 8:

Figure 8. IOD and system boundaries

The activity diagram (left side (A)) and its IOD (right

side (B)) generated from the use case “Bob releases a dog”

are given in Figure 9:

 (A) (B)

Figure 9. IOD corresponding to the use case “Bob
releases a dog” and System Boundaries

SUS Actor IOD

Boundaries

MessageIn

MessageOut

Gates

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2 EAI
European Alliance
for Innovation

Context-aware Approach for Formal Verification

A. Benabbou et al.

8

After this step, the specification engineer has to identify

and gather all gates pair in the Interface Requirements

Specification Document. We expect to have an interface

specification including types, messages and events. For our

purposes, the interface specification has to be abstracted as a

list of UML Messages whose semantic is simply the trace

<sendEvent, receiveEvent>.

5.5. Orchestration of activity diagrams with
IODs

The last step towards elaborating contexts is to organize

all interactions in higher-level diagrams. Our second type of

IODs fits for this purpose. Such IODs focus on the overview

of the flow of control where the nodes are (inline)

Interactions or InteractionUses. The specification engineer

is free to orchestrate interactions from different system

viewpoints or from his engineering needs. He should be

aware of the structure of the CDL language. For instance,

uses concurrency at the higher level, corresponding to CDL

Level-1 and fully describe scenarios by sequence

diagrams, corresponding to CDL Level-3.

Figure 10. Example of an IOD used for orchestrating a
set of use cases

With these recommendations, there will be no difficulties

to generate CDL diagrams from these IODs.

6. Related work and comparison

Many works exist in applying compositional verification

techniques as in [17, 18, 19, 20]. These works deal with

model checking/analyzing individual components (rather

than whole systems) by specifying, considering, or even

automatically determining the interactions that a component

has with its environment. Our approach is different from

such compositional or modular analysis. Context aware

verification is not about verifying component by component,

with the ”traditional” techniques where contexts are often

included in the system model. Rather, we explicit contexts

separately from the model. Further, such approaches use

temporal logic-based languages for specification (LTL [21]

or CTL [22] for example) since we use the specific domain

language CDL based on context description.

Using use cases to elaborate contexts for context-aware

model-checking approach has been intended in some similar

works. Such approach has a limited audience because use

cases often lack of precision. However we can compare our

work with other research works that process use cases for

different purposes as long as the purpose requires a precise

semantics.

The work presented in [23] describes an approach to

translate use case-based functional requirements to activity

charts. The source models are use cases diagrams with

support of high-level relationships like inclusion and

generalization; our approach focuses on the detailed

relationships between BehaviourFlows.

In [24], authors proposed a model-based approach to

generate activity diagrams for modelling scenarios. A

functional requirement meta-model was proposed to

represent use cases scenarios with possible exceptions. The

goal of this approach is not stated clearly and although our

work shares some transformation rules with it, the generality

of their approach limits its employability. In our case, the

generated activity diagrams are employed in further steps

within the verification methodology and contribute to the

goal of generating contexts.

In [25], Authors used a restricted use cases modelling

approach with rules and a template to produce use cases that

are transformed automatically in activity diagrams. The

authors claim that quality activity diagrams can be generated

and that their approach outperforms existing commercial

tools. This work is closest to ours, we share some techniques

with it but such approach is also too general. Our approach

differs in the sense that we go beyond generating activities

from use cases scenario and that we contribute to other

phases of the verification process such as the interface

specification and decreasing the state space with contexts.

Another similar work is proposed in [26] that presents an

algorithm that transforms use cases into activity diagrams to

facilitate the construction of formal requirements

specification models. The source use case models are

presented in the form of textual use case with a defined

template and structure. However, such use cases are those

that model the exceptional behaviour (extensions)

introduced using special stereotypes which we handle using

the notions of Parent and child BehaviouralFlows in our

approach. Transformation algorithm and rules are similar

and it still manual as well as in our case.

The work presented in [27] is an approach towards

automated generation of behavioural UML models. This

approach is based on transforming the requirements

statements to intermediary structured representations called

frames, translated later to activity and sequence diagrams.

Grammatical Knowledge Patterns and lexical and syntactic

analysis are used to populate frames for the corresponding

requirement statements. This approach differs from ours in

the fact that requirements are captured from Natural

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2
 EAI

European Alliance
for Innovation

http://www.hindawi.com/journals/ase/2012/547157/#B10
http://www.hindawi.com/journals/ase/2012/547157/#B9

9

language and does not require any rewriting of the

statements or constraint on the input format, whereas our

work is based on semi structured format in the form of

textual use cases and rewriting rules. Furthermore, its

objective fits to improve software requirements analysis and

development in general, and generating behavioural

diagrams are not addressed to elaborate contexts in the

favour of formal verification with a context-aware approach

such as in our work. Using IODs for orchestrating high-level

interactions is also a surplus in our favour.

In order to help specification engineers, authors in [28]

proposed an approach that reuses models of existing web

applications for specification of requirements of new web

application. It takes brief description of the requirements in

terms of use case diagram, and generates the drafts of the

detailed description in terms of activity diagrams using an

ontology repository and annotation algorithm. A use case

similarity metric is used for retrieving, from the model

repository, the use cases which are similar to the new.

Compared with our work, this approach is semi automated

and another adaptation algorithm is used to adapt the

annotated activity diagram for the new use cases. It fits in

the Web engineering framework where the semantic web

data model is the underlying representation format.

Appendix A. Transformation rules

Table1. Algorithmic presentation of transformation
rules

Input: textual Use case

 For all (UseCase)

 BCR 1: a use case generates an activity diagram

 BCR 2: an Actor generates a Partition

 BCR 3 : BehaviourFlow generates an ActivityGroup

 BCR 4: a main BehaviourFlow generates an AcitivityInitialNode

 For all (BehaviourFlow)

 BCR 5: if (ENDS = true) then (//* do not terminate with a

ReturnStep)

- Generate an ActivityFinalNode such as each ActivityFinalNode is

added to its corresponding Activity- Group.

ANR1 : if (BehaviourFlow. ExtenstionType = singleBehaviourFlow)

then

 ANR1.a : if (1 extension)

- Generate a DecisionControlNode and an ActivityEdge has as

source its corresponding DecisionControlNode and as a pending

target the first ActivityGroup generated from the

c h i l d B e h a v i o r F l o w .

 else

 ANR1.b: if (N extensions)

- Generate N DecisionControlNode (f or eac h

Chi ldBehav iourF low) in cascade and N ActivityEdge

ha vin g a s source their corresponding DecisionControlNode and

as pending target the first ActivityGroup generated from the

corresponding C h i l d BehaviorFlow.

 ANR2: if (BehaviourFlow. ExtenstionType =

boundedBehaviourFlow) then

 if (1 extension) then

 ANR2.a: - Generate a FusionControlNode for the

ParentBehaviorFlow (from a DepartureStep m to an

ArrivalStep n) at the first place of the ActivityGroup
generated from the c h i l d BehaviorFlow and an

ActivityEdge having as source this FusionControlNode
and as a pending target the second ActivityNode of this

ActivityGroup.

 ANR2.b: - Generate a DecisionControlNode for each step in

the interval [m, n] of the ParentBehaviourFlow, n-m+1

DecisionControlNode are generated in total.

 - G e n e r a t e n-m+1 ActivityEdge having as

source its corresponding DecisionControlNode and as a

pending target the first FusionControlNode of the

ActivityGroup generated from the c h i l d BehaviorFlow).
 Else

 if (N extension) then

ANR2.c: - Generate N FusionControlNode for the

ParentBehaviorFlow (from a DepartureStep m to an

ArrivalStep n) at the first place of the ActivityGroup
generated from the c h i l d BehaviorFlow and an

ActivityEdge having as source this FusionControlNode

and as a pending target the second ActivityNode of this

ActivityGroup.

ANR2.d: - Generate N DecisionControlNode for each

step in the interval [m, n] of the ParentBehaviourFlow,

N (n-m+1) DecisionControlNode are generated in total.

 - G e n e r a t e N (n-m+1) ActivityEdge, hence

each having as source its corresponding

DecisionControlNode and as a pending target the first

FusionControlNode of the ActivityGroup generated from

the c h i l d BehaviorFlow).

 For all (Step)

 ANR3: A Step in a BehaviorFlow generates, generally, an

ActionNode (in the ActivityGroup generated from the

BehaviorFlow) with the following exceptions:
 If (Step = TriggerStep) then

ANR3.a: Generates a DecisionControlNode associated to the

ActivityGroup generated from the BehaviorFlow) and an ActivityEdge
having as a source this DecisionControlNode and as a pending target

the first ActivityNode of the ActivityGroup generated from the

BehaviorFlow.
 Else if (Step = ReturnStep) then

ANR3.b: The first ReturnStep to a given Step generates a

FusionControlNode and an ActivityEdge having as source this

FusionControlNode and as target the ActivityNode generated from

the given Step; another ReturnStep to the same Step does not

generate anything else.

 Else if (Step= IncludeStep) then

ANR3.c: The first IncludeStep to a given BehaviorFlow generate a

FusionControlNode and an ActivityEdge having as source this

FusionControlNode and as a target the first ActivityNode from the

Activity Diagram; another IncludeStep to the same BehaviorFlow
does not generate anything else.

 Else if (Step= StepGroup) then

ANR3.d: A StepGroup (either a LoopGroup or a ConditionalGroup)

generates a StructuredActivityNode (either a LoopNode or a

ConditionalNode), then rule ANR3 is applied recursively to the

StepGroup.

 ANR4: Resolve all pending targets of any ActivityEdge thanks to

the completion of the ActivityGroup.

For all (main BehaviourFlow)

AER1: Generate an ActivityEdge having as source the InitialNode and

as target the first ActionNode from the ActivityGroup generated from

such BehaviourFlow.

For all (BehaviourFlow)

 if (ENDS = true and non-empty ActivityGroup) then
 AER2: Generate an ActivityEdge having as target its

ActivityFinalNode and as source the last ActivityNode of the

ActivityGroup generated from such BehaviourFlow.

For all (Step)

 if (Branching = true) then (for one or N extensions)

AER3: generate one or N ActivityEdge for linking together the

generated DecisionControlNode by ANR1 (ANR1.a and ANR1.b).

The N-th ActivityEdge links the last DecisionControlNode to the

FusionControlNode associated with the Step in question if this

FusionControlNode exists else to the ActivityNode generated

from such Step (either an ActionNode or a

StructuredActivityNode)

 AER4: For each ActionNode generated from a non-ending Step
(being not followed by a ReturnStep or End), generates an

ActivityEdge having as source the ActionNode and as target, either

the next ActionNode if no DecisionNode or FusionControlNode
are associated to, or the first of these ControlNodes.

Output: Activity diagram

7. Conclusion and future work

This paper has presented an overview of a part of the

method aiming to facilitate system verification from

informal requirements. Thanks to elaboration and

 EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2

Context-aware Approach for Formal Verification

A. Benabbou et al.

10

transformation activities, the semantic gap between informal

and formal requirements is reduced and engineers helped

towards formal verification.

As [26], our approach is still manual. However, we aim to

automate the transformation process for a validation purpose

on an industrial case study to check the completeness and

correctness of our transformation rules. A framework for

automation like Ecore for meta-models implementation and

Java for rules transformation are among proposals.

However, we are looking for a solution that might be easily

customized to the tools set used by the users: XML

Metadata Interchange (XMI) enables interchange of meta-

data between UML-based modelling tools but there might

be slightly differences between the tools meta-models.

References

[1] Pelanek, R. (2009) " Fighting state space explosion: Review

and evaluation". In Formal Methods for Industrial Critical

Systems, volume 5596, pages 37{52. Springer Berlin

Heidelberg, 2009.

[2] Alur, R., Brayton, R., Henzinger, T., Qadeer, S. and

Rajamani, S. (1997) " Partial-order reduction in symbolic

state space exploration". In Computer Aided Veri_cation,

volume 1254, pages 340_351. Springer Verlag, LNCS, 1997.

[3] Valmari, A. (1991) "Stubborn sets for reduced state space

generation". In Proceedings of the 10th International

Conference on Applications and Theory of Petri Nets, pages

491_515, London, UK, 1991. Springer-Verlag.

[4] Park,. S and Kwon, G. (2006). "Avoidance of state explosion

using dependency analysis in model-checking control flow

model". In Proceedings of the 5th International Conference

on Computational Science and Its Applications (ICCSA '06),

volume 3984, pages 905_911. Springer-Verlag, LNCS, 2006

[5] Bosnacki, D. and Holzmann, G. (2005) " Improving spin's

partial-order reduction for breadth-First search". In

SPIN2005, volume 3639, pages 91_105, 2005.

[6] Dhaussy P, Boniol, F. and Roger, J. (2011a). "Reducing State

Explosion with Context Modeling for Model-Checking. In

13th IEEE International High Assurance Systems

Engineering Symposium (Hase’11), Boca Raton, USA, 2011.

5, 37, 38, 39, 40, 44.

[7] Dhaussy, P. Boniol, F. Roger, J. and Leroux, L. (2012a).

Improving model-checking with context modeling. Advances

in Software Engineering, ID 547157:13 pages, 2012.

[8] Dhaussy, P. and Roger, J. "CDL (Context Description

Language) : Syntax and Semantics". Rapport technique,

ENSTA- Bretagne, 2011. 37

[9] Dhaussy, P., Roger, J., Leroux, L. and Boniol, F. "Context

Aware Model Exploration with OBP tool to Improve Model-

Checking". ERTS'12, February 1-3, 2012.

[10] Chaelynne M. Wolak, (2001) "Gathering Requirements: The

Use Case Approach". School of Computer and Information

Sciences , Nova Southeastern University ,June 2001

[11] Whittle, J. (2006) "Specifying precise use cases with use case

charts". In Proceedings of the 2005 International Conference

on Satellite Events at the MoDELS, pages 290{301. Springer-

Verlag, 2006.

[12] Dhaussy, P., Pillain, P., Creff, S., Raji ,A., Le Traon, Y. and

Baudry, B.(2009) "Evaluating context descriptions and

property definition patterns for software formal validation".

In 12th IEEE/ACM conference on Model Driven Engineering

Languages and Systems (Models'09), volume 5795, pages

438_452. Springer-Verlag, LNCS, 2009.

[13] OMG UML. “OMG unified modeling languageTM,

infrastructure". Technical report, Object Management Group,

(http://www.omg.org/spec/UML/)

[14] Berthomieu, J., Bodeveix, JP., Farail, P., Filali, M.,

Garavel, H., Gaufillet, P., Lang, F. and .Vernadat, F.

(2008) " Fiacre: an intermediate language for model

verification in the topcased environment". In ERTS

2008. 2008.

[15] Lamport, L. (1983) "invited address solved problems,

unsolved problems and non-problems in concurrency". In

Proceedings of the Third Annual ACM Symposium on

Principles of Distributed Computing, pages 1{11. ACM,

1984.

[16] Benabbou A. (2015) "Formalisation des interactions et des

exigences pour la génération des modèles cdl "- partie 1 :

Contextes. Technical Report 2015-03-01, ENSTA Bretagne.

[17] E. M. Clarke, D. E. Long, and K. L.

Mcmillan, Compositional Model Checking, MIT Press, 1999.

[18] L. De Alfaro and T. A. Henzinger, “Interface automata,”

in Proceedings of the 8th Eiropean Engineering Conference

and 9th ACM SIGSOFT Symposium on the Foundations of

Software Engineering (FSE '01), pp. 109–120, ACM Press,

September 2001.

[19] Cormac, F. and Shaz Q.(2003)” Thread-modular model

checking”. In SPIN’03, 2003.

[20] Oksana, T. and Matthew, D.(2003)” Automated environment

generation for software model checking”. In Proceedings of

the 18th International Conference on Automated Software

Engineering, pages 116–129, 2003.

[21] Pnueli, A. (1977) "The temporal logic of programs". In SFCS

'77: Proceedings of the 18th Annual Symposium on

Foundations of Computer Science, pages 46_57, Washington,

DC, USA, 1977. IEEE Computer Society.

[22] Clarke, E., Emerson, E. and Sistla, A. (1986) "Automatic

verification of finite-state concurrent systems using temporal

logic specifications". ACM Trans. Program. Lang. Syst.,

8(2):244_263, 1986.

[23] Almendros, J. and Iribarne, L. (2005) "Describing use

cases with activity charts". In Metainformatics, volume

3511, pages 141–159. Springer Berlin Heidel- berg,

2005.

[24] Gutierrez, C., Nebut, M., Escalona, M., Mejas, I. and Ramos,

M. (2008) "Visualization of use cases through automatically

generated activity diagrams". In Model Driven Engineering

Languages and Systems, pages 83{96. Springer Berlin

Heidelberg, 2008.

[25] Tao, Y., Lionel, C., Briand, and Yvan, L. (2010) "An

automated approach to trans-form use cases into activity

diagrams". In Modeling Foundations and Applications, pages

337{353. Springer, 2010.

[26] Mustafiz, S., Kienzle, J., and Vangheluwe, H.(2009) "Model

transformation of dependability-focused requirements

models". In ICSE Workshop on Modeling in Software

Engineering, MISE '09, pages 50{55. 2009.

[27] Sharma, R., Gulia, S., Biswas, K. (1977)” Automated

Generation of Activity and Sequence Diagrams from Natural

Language Requirements”. ENASE 2014: 69-77

[28] Paydar, S., Kahani, M. (2015) ”A semi-automated approach

to adapt activity diagrams for new use cases”. Information &

Software Technology 57: 543-570 (2015)

 EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Context-aware Systems and Applications

11 2015 - 02 2016 | Volume 3 | Issue 7 | e2

http://www.omg.org/spec/UML/
http://dblp.uni-trier.de/pers/hd/g/Gulia:Sarita
http://dblp.uni-trier.de/pers/hd/b/Biswas:K=_K=
http://dblp.uni-trier.de/db/conf/enase/enase2014.html#SharmaGB14
http://dblp.uni-trier.de/pers/hd/k/Kahani:Mohsen
http://dblp.uni-trier.de/db/journals/infsof/infsof57.html#PaydarK15
http://dblp.uni-trier.de/db/journals/infsof/infsof57.html#PaydarK15

