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Abstract 

The Context-aware approach has proven to be an effective technique for software model-checking verification. It focuses 

on the explicit modelling of environment as one or more contexts. In this area, specifying precise requirement is a 

challenged task for engineer since often environmental conditions lack of precision. A DSL, called CDL, has been 

proposed to facilitate the specification of requirement and context. However, such language is still low-level and error 

prone, difficult to grasp on complex models and assessment about its usability is still mitigated. In this paper, we propose a 

high level formalism of CDL to facilitate specifying contexts based on interaction overview diagrams that orchestrate 

activity diagrams automatically transformed from textual use cases. Our approach highlights the boundaries between the 

system and its environment. It is qualified as model-checking context-aware that aims to reduce the semantic gap between 

informal and formal requirements, hence the objective is to assist and encourage engineers to put sufficient details to 

accomplish effectively the specification process.  
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1. Introduction

Describing the behaviour of systems is the principle on 

which verification by model-checking is based. In such 

technique, the System Under Study (SUS) is abstracted as a 

model presented, generally, in the form of concurrent 

automata (state machine) and on which we aim to verify the 

correctness of requirements expressed in a formal properties 

language. The whole of the model behaviours (i.e., states) 

are explored by the model-checker to evaluate whether the 

specified properties are true or not. During exploring model 

states, the number of reachable configurations is become too 

large to be contained in the memory. This is known by the 

state explosion problem [1].  

To overcome this problem, many works proposed to 

improve the performance of model-checkers by considering 

compositional verification [2, 3, 4, 5].  In this area, context-

aware verification has been introduced [6, 7] as a technique 

of state space decomposition that enables compositional 

verification of requirements. The idea is to allow to explicit 

separately the behaviour of entities (actors) that interact with 

the system and its environment. This technique reduces the 

set of possible spaces behaviours (and thus the state space) 

by considering an explicit model of the environment during 

its exploration. It consists to “close” the SUS with a well 

defined finite and acyclic environment. The reduction is 

based on the description of particular use cases on the 

environment, called contexts, with which the system 

interacts. The objective is to guide the model-checker to 

concentrate its efforts not on an exhaustive exploration of 

the whole model but on a relevant restriction of this latter. 

The formal specification of the environment enables at least 

three different decomposition axes:  a) the environment can 

be decomposed in contexts; b) contexts enable the automatic 

partitioning of the state space into independent verification 
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problems; c) the requirements are focused on specific 

environmental conditions in which they should be satisfied.   

Our work fits in this technique; we introduce an approach 

that is a part of a model-checking methodology for formal 

verification that separates contexts from functional 

requirements. These contexts are specified within a domain-

specific language called CDL (Context Description 

Language) based on the concept of use case scenario [8, 9]. 

The behaviours are formally defined by sets of use cases 

which describe how the environment interacts with the SUS. 

Within CDL, the environment is decomposed into a set of 

sub-contexts which are composed separately with the SUS 

and on which a set of relevant properties are evaluated.  

Our contribution aims to build intermediate models for 

the automatic generation of CDL models from manipulated 

artefacts. We focus particularly on the description of use 

cases-based contexts. The use case approach is an effective 

technique that allows to uncover (through scenarios) the 

behaviour of actors and to help focusing on their interactions 

with the system [10]. In the favour of our approach, use 

cases are transformed to a set of activity diagrams that are as 

well afterwards transformed into Interaction Overview 

Diagrams (IODs) to determinate the system boundaries. A 

more general type of IODs is used in second time to 

organize interactions according to CDL structure. The 

model of the SUS has to be established, producing such a 

model is out of the scope of this paper. 

In this paper, we are concerned by two contributions: 1) 

The interface specification is facilitated, thanks to the 

transformation from use cases into IODs for each actor and 

using gates to relate IODs with system boundaries; 2) The 

orchestration of several actors and related use cases are 

specified by the requirements engineer using IODs that are 

closely related to the CDL structure and easily transformed 

in CDL contexts. Hence, the set of interaction diagrams 

together with the system model constitutes a ground model 

of the system that captures and fully documents the 

requirements and constitutes the starting point of the 

verification process. The paper is organized as follows. 

Section 2 gives an overview of CDL structure, the problem 

statement and objectives in section 3. Section 4 is an overall 

presentation of the methodology of our context-aware 

approach. We give our meta-models, running example, 

boundaries specification and orchestration aspects in section 

5. Presentation of related works and comparison are

intended in section 6. Finally, a conclusion closes the paper 

in section 7. 

2. Overview on CDL language

The CDL structure is inspired from the Use Case Chart 

proposal [11] but extended to allow describing the entities 

that contribute to the environment interaction. It is 

hierarchically constructed in three levels: Level-1 is a set of 

constructs which describes hierarchical activity diagrams 

where either alternative (alternative/merge) or concurrency 

(fork/join) between several executions is available. Level-2 

is a set of scenario diagrams organized in alternatives. Each 

scenario is fully described at Level-3 by sequence diagrams.  

CDL has then three operators: parallel par, alternative alt 

or, sequence seq, denoted by “||”, “+” and “;”, respectively. 

A context C is defined as either: (i) a simple MSC (Message 

Sequence Chart [12] M composed of a sequence of emission 

events a! and reception a? terminated by the empty MSC (0) 

which does nothing, or (ii) a sequential composition of two 

contexts (C1; C2), or (iii) a non deterministic choice between 

two contexts (C1+C2), or (4) a parallel composition (par 

denoted k) between two contexts (C1||C2). Formally defined 

by the following grammar: 

See the CDL structure in Figure1 as follows: 

In figure 1, the environment is composed of 3 actors dev1, 

dev2 and dev3. All these actors run in parallel and interleave 

their behaviour. The model can be formalized, with the 

above textual grammar as follows: 

     C     = dev1 || dev2 ||  dev2 

     devi  = Logi ; (Oper + (nackLog (err)?; . . . .0)) 

 Logi = (goInitDev ? ; logini !) 

  Oper = (ackLog (id) ? ; operate (op) ! (Acki + (nackOper 

(err) ? ; . . . ; 0)))  

    Acki  = ( ackOper (role) ? ; logouti ! ; . . . ; 0) 

    dev1, dev2, dev3 = devi with i = 1, 2, 3 

The semantics of CDL is based on the semantics of the 

scenarios and expressed by construction rules of sets of 

traces built using par, alt and seq operators. A scenario trace 

is an ordered events sequence which describes a history of 

the interactions between the context and the model. The 

formal semantics is defined by a function wait(C) 

associating the context C with the set of events awaited in its 

initial state: 

Wait (0)  ∅ Wait (a!; M)    ∅ 
Wait (a?; M)  {a} 

Wait (C1 + C2)    Wait (C1) ∪ Wait (C2) 

Wait (C1; C2)   Wait (C1) if C1 ≠ 0  

Figure1. Example of a CDL Model: Textual Vs 
Graphical version 

C       :: =  M | C1 ; C2 | C1+C2 | C1|| C2

M      :: =  0 |a !; M | a ?; M 
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Wait (0; C2)  Wait (C2) 

Wait (C1||C2)   Wait (C1) ∪ Wait (C2) 

A context is considered as a process communicating 

asynchronously with the system. Its input events are 

memorized in a buffer. The semantics of CDL is defined by 

the relation (C, B) 
 
  (C′, B′) to express that the context C 

with the buffer B “produces” a (which can be a sending or a 

receiving signal, or the nullσ signal if C does not evolve) 

and then becomes the new context C′ with the new buffer B′. 

This relation is defined by the following 8 rules (In these 

rules, a represents an event which is different from nullσ): 

// An MSC beginning with a sending event a! emits this event and 

continues with the remaining MSC. 

 

        
  
      

          

// Expresses that if an MSC begins by a reception a? and faces an 

input buffer containing this event at the head of the buffer, the 

MSC consumes this event and continues with the remaining 

MSC.  

          
  
      

          

// Establishes that a sequence of contexts C1; C2 behaves as C1 

until it has terminated. 

     

      
 
       

  

         
 
            

        

// If the first context C1 terminates (i.e., becomes 0), then the 

sequence becomes C2. 

 

      
 
       

         
 
        

        

// the semantics of the parallel operation is based on an 

asynchronous interleaving semantics 

     

      
 
       

  

          
 
           

  
        

          
 
              

      
 
       

          
 
      

  
                

          
 
      

   

//The alternative context C1 + C2 behaves either as C1 or as C2.  

      
 
        

         
 
       

  
         

         
 
          

// If an event a at the head of the input buffer is not expected, then 

this event is lost.  
         

       
     
         

              

For more description of CDL language, see the published 

articles [7, 8, 9] available on http: //www.obpcdl.org 

3. Problem statement and objectives

Use cases are a key element in our context-aware 

approach. Traditionally, used in capturing requirements, 

they are efficient to uncover, through scenarios, the 

behaviour of actors and to help focusing on their interactions 

with the system. 

Within a CDL specification, the behaviour of each actor 

is considered as series of scenarios. These behaviours are 

composed in parallel to generate all the possible sequences 

of events. Thus, users are required to identify the behaviour 

of each actor to formalize it in the form of a CDL scenario. 

This is a manual process that requires: a) significant effort, 
to make the connection between the both modelling levels 

(use case and CDL), especially when the system is strongly 

coupled with its environment; b) good knowledge of the 

syntax and semantic of CDL. There is a semantic gap 

between the textual descriptions of use cases describing 

scenarios and CDLS models that capture sent and received 

messages by each actor. Moreover, produce an exhaustive 

description of events seems to be a complicated task because 

CDL is based on simple scenarios, which are just partial set 

of interactions. 

CDL has been evaluated through several aeronautic and 

military industrial case studies [13]. However, industrial 

feedback reports that although CDL has solved several state 

explosion cases, it is perceived as a low-level language, 

restrictive and difficult to grasp and apply on complex 

models. Then, we need to express environmental scenarios 

at a higher level of abstraction that maps better to 

requirement and specification engineers. The new UML 

interaction diagrams are suitable for high-level 

specifications. We use IODs known by their ability to show 

the control flow with a sequence of more general 

interactions [14]. IODs constitute a high-level structuring 

mechanism that we use to synthesize scenarios.  In our 

approach, IODs are used to: i) capture the behaviour of the 

system, ii) describe the messages flow in the system and iii) 

describe the structural organization of CDL. 

Our approach is qualified as model-checking context-

aware. This aims to facilitate contexts elaboration and to 

build intermediate models between use cases and CDL, 

allowing the automatic generation of CDL models from the 

manipulated artefacts. The main objective of the whole 

approach is to assist and encourage engineers to put 

sufficient details to accomplish effectively the specification 

process.  
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4. Presentation of the methodology for
context- aware Approach 

Context-aware verification focuses on modelling of the 

environment as a set of contexts. Furthermore, for our 

model-checking approach, the SUS is modelled using the 

formal language Fiacre [15], which enables the specification 

of interacting behaviours and constraints through automata. 

The surrounding environment and requirements are 

specified using the CDL formalism, and verified by the 

model-checker OBP
2
 (Observer Based Prover):  

. 

The methodology proposed for the context-aware model-

checking verification, is a kind of co-design methodology 

along three axes: a) the model of the SUS is elaborated 

using UML state diagrams expressed with a textual 

representation called tUML, transformed automatically into 

Fiacre models; b) the contexts are formalized with CDL; c) 

we need to formalize properties to be checked on the 

elaborated model.  

Our work focuses on context description based on 

informal use cases. The use cases that we seek are those 

with a textual format. The specification of these use cases 

should be controlled through a set of writing rules and 

instantiated from a use case meta-model. This control is 

performed so as to reduce ambiguity and facilitate the 

generation of behavioural models (CDL) from such 

instances. This allows precisely synthesizing the structure of 

our context description formalism as activity diagrams (with 

both actors and system partitions) by a set of transformation 

rules using an interaction meta-model. Because contexts 

focus on the system boundaries, the system partition is 

replaced by gates connected to the actors' interactions. IODs 

express use cases coordination at the higher level. The 

whole set of interaction diagrams constitute the high-level 

specification point of view from which CDL contexts are 

generated. The generated CDL models are used directly by 

OBP tools to assess the context part of the model submitted 

for verification. The double arrows between meta-models 

1
 Language and Tools set website: http://www.obpcdl.org 

transformations mean the ability to establish traceability 

links to ease the debugging process. See Figure 3. 

 

 

 

  Figure 3.  Methodology for a context-aware 
verification process 

It’s out of the scope of this paper to illustrate the whole 

verification process; rather we focus on application of our 

proposal of transformation rules to generate contexts (area 

squared with red in Figure 3). 

5. From Use cases to Activities: elaborate
context 

In this section we give our meta-models, resulting diagrams 

after applying transformation rules and generated IODs.  

5.1. Meta-models 

Establishing good meta-models is a challenging task 

because we need to have meta-models conforming to 

the UML meta-model in order to ease the exchange 

of models produced by various UML tools. But we 

need also to keep the meta-models concise and 

sound. Hence, our use case and activity diagram meta-

models borrow as much as possible constructs and hierarchy 

from those in UML 2.4.1[14]. However, we have simplified 

and tuned them for our own purposes. Because use case 

structure is semi-formal, for model-checking verification 

purposes, we need to precise the use case structure. See 

Figure 4.  

Properties: 
invariants, 
observers 

CDL 

System 

model 
Fiacre 

OBP 

explorer 

Labeled 
transitio

n 
system

Context CDL Results 

Figure 2.  Context-aware verification: OBP 
Observation Engine overview 
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Figure 4. Use case Meta-model               

A use case is associated to one or many scenarios, called 

BehaviourFlow, some of them are main scenarios. A 

BehaviourFlow is made of an ordered sequence of Steps: 

SingleStep or StepGroup. A StepGroup contains an ordered 

sequence of Step, including other StepGroups recursively. A 

SingleStep may be specialized in: TriggerStep (the condition 

triggering a BehaviourFlow), IncludeStep (the step contains 

another BehaviourFlow), ReturnStep (a return to another 

Step), FinalStep (the use case ends). A StepGroup is a 

LoopGroup or a ConditionalGroup. A BehaviourFlow can 

have extension(s) (alternatives that describe different steps 

than those in a success scenario) and it applies recursively. 

A child BehaviourFlow refers to a parent BehaviourFlow 

and states the branching point where the extension condition 

(a TriggerStep) should be checked: a single branching point 

or a bounded interval; in the latter case, the condition can 

occur at any steps within the bounds and triggers the child 

BehaviourFlow. 

The second meta-model that we use is that of activity 

diagram. In this meta-model, Activity is a generalization of 

ActivityNodes and ActivityEdges for linking between them. 

ActivityNode is either a simple action, a ControlNode 

(decision, fusion, etc) or some specialization of groups of 

StructuredActivity in looped and conditional forms. An  

ActivitygGroup generalizes also the partition notion that 

gathers activities for each actor. Activity meta-model is 

given as follows: 

Figure 5. Activity Meta-model 

5.2. A running model-checking example 

We use a famous concurrency problem to illustrate a typical 

model-checking process, the context-aware approach and to 

introduce our proposal later. It’s about Lamport’s problem of 

two neighbours Alice and Bob that share a yard in an 

exclusive manner [15]. This problem is presented 

within the following algorithm:  

According to our context-aware verification approach, we 

need the followings artefacts: i) the system is translated into 

specification model to describe the behaviours of Alice and 

Bob, in the form of automata given in left side (A) in Figure 

6. The expression evRain [catIn-Yard = true /

AliceCatGoesHome] means that when the event evRain 

occurs and if the condition catInYard = true is satisfied then 

the action AliceCatGoesHome is performed. ii) Contexts are 

given through use cases “Alice’s cat comes home” and “Bob 

releases a dog” given in middle (B) and right sides (C), 

respectively. iii) A property to be checked, formalized using 

CDL, for instance the mutual exclusion property may be 

represented with not (catInYard and dogInYard).  
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Finally the model-checker is run to check the 

validity of the property on OBP. For example, the 

model-checker would not find any state where the mutual 

exclusion property is falsified. 

5.3. Transformation rules 

Transformation of textual use cases to activity diagrams 

is realized in three phases as follows:  

1) Basics creation: a use case generates an activity

diagram, each actor generates a partition and a partition

for the system is added; rules BCR1, BCR2, BCR3,

BCR4 and BCR5 are applicable on the whole use case.

2) Activity node creation: control nodes, structured nodes

and action nodes; ANR1, ANR 2, ANR 3 and ANR4 with

their sub rules applicable after Basics creation.

3) Activity edge creation: connecting activity nodes with

control flows, rules AER1, AER2, AER3 and AER4.

A summary of our transformation rules in the form of an 

algorithm is given as appendix at the end of this paper. 

However, we show now how there are applied on the use 

case “Alice’s cat comes home” given above. More details 

and full rules are found in [16] 

Activity nodes 
Rules BCR1 and BCR 2 are respectively applied to 

generate an activity diagram, an Alice and system partition 

and also an InteractionUse for this activity diagram that will 

be contained in the IOD related to the actor Alice. With rule 

BCR 3 the ain scenario and the three extensions generate 

(including together 8 steps) four ActivityGroups. For 

generating the rest of activity nodes, we proceed as follows: 

Apply rule BCR 4:  - Generate an InitialNode into the 

ActivityGroup of the main flow. 

Apply rule BCR5: - Generates 3 ActivityFinalNode for 

each flow that ends within their corresponding 

ActivityGroup. 

Apply rule ANR2.a:  - Generates a FusionControlNode 

added at the ActivityGroup and pending to the second 

ActivityNode of this ActivityGroup for the 

BoundedBehaviorFlow 1-3a. Cancelling (shortcut for 

avoiding the repetition of Cancelling at each step of the 

main scenario).  

Apply rule ANR4: - unfold the BoundedBehaviorFlow in 2 

occurrences of Cancelling with 2 DecisionControlNodes 

generated and linked to this FusionControlNode, the former 

after the step 1 (before the step 2) and the latter after the step 

2 (before the step 3). 

Apply rule ANR2.b: Unfolding the Cancelling 

BoundedBehaviourFlow leads to 2 BehaviourFlows (Phone 

call and Cancelling) branching after step 1 and indeed to 

have 2 BehaviourFlows (Silly cat and Cancelling) branching 

after step 2.  

Apply rule ANR3.a: - Generate 4 DecisionControlNodes 

from the 4 triggers (steps that begin the BehaviourFlow) 

with the first DecisionControlNode located in Alice IOD, 

these 4 DecisionControlNodes are pending to the first 

ActivityNode of each corresponding ActivityGroup; and the 

remaining 4 steps generate 4 ActionNodes (rule ANR3).  

Activity Edge 
ActivityEdges are generated for linking ActivityNodes. 

Let us see what will be generated from our use case ”Alice’s 

cat comes home”. 

Apply rule AER1: - Generates an ActivityEdge from the 

InitialNode to the first DecisionNode before the ActionNode 

Alice opens the door to her cat. 

Apply Rule AER2: - Generates 3 ActivityEdges to the 3 

ActivityFinalNodes from the last ActivityNode of each 

ActivityGroup associated with each BehaviourFlow that 

ends. Because the ActivityGroup associated with the flow 

Silly cat contains only the ActivityFinalNode (the flow 

contains a single step), this ActivityFinalNode has been 

already linked as a target from the ActivityEdge generated 

from the processing of the TriggerStep during the activity 

node generation, hence this ActivityEdge is not generated. 

Figure 5. Activity Meta-model 

Figure 6.  Automata of Alice and Bob behaviours (A) 
       “Alice’s cat comes home” use case (B) 

 “Bob releases a dog” use case (C), 
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Apply rule AER3: - Generates 2 ActivityEdges for the 

ActionNode Alice opens the door to her cat and 1 

ActivityEdge for the ActionNode Alice asks the system to 

lower her flag. These ActivityEdges link together the  

DecisionControlNodes after an ActionNode and the last 

DecisionNode either to a FusionControlNode  (case  of  the 

former  ActionNode)  or  to  the  ActionNode  (latter case).  

Apply rule AER4:- Generates 2 ActivityEdges sourcing 

from the 2 ActionNodes that are non-ending steps and 

targeting the first ActivityNode of each following 

ActionNode (a DecisionNode in both cases). 

 Figure 7 shows the generated activity diagram as follow: 

Figure 7. The generated activity diagram for 
“Alice’s Cat goes home” use case 

5.4. Specification of the system boundaries 

Our aim now is to transform the resulting activity 

diagrams to our first type of IODs, focusing only on the 

actor’s partition and its interactions with the system. To do 

this, we need to use boundaries to establish the interface 

(focusing on exchanged messages) between the system and 

its environment. Our IODs are established as follows: first, 

we recommend writing actions with simple sentences having 

a subject, a verb, and eventually an object. Actions without 

the system as a subject or an object (such as Alice opens the 

door to her cat) are out of the scope and will be discarded. 

Compound actions (such as Alice releases her cat and warns 

the system) have to be split in simple actions (such as Alice 

releases her cat - out of the scope - and Alice warns the 

system) - within the scope). When the simple sentence rule 

is applied, it is easy to process ActionNodes and recognize if 

the system is a subject or an object and eventually discard 

the ActionNode from the system scope. The same rule 

applies to DecisionControlNodes: if the condition includes 

any reference to the system, the DecisionControlNode will 

be kept, else discarded. Any incoming or outgoing 

ActivityEdges to a discarded ActivityNode (Action or 

Decision) will be discarded too, and the pending 

ActivityEdge reconnected to the following ActivityNode (that 

might be discarded later, forcing the ActivityEdge to be 

reconnected).  

At the end, a set of nodes are discarded. Moreover, there 

are ActivityEdges crossing the boundary and because the 

system partition is not included, such ActivityEdge will be 

cut and replaced by a pair of related gates, one is the actor’s 

model and another is the system model. Thus, an IOD is 

established for each actor (Actor IOD). See Figure 8: 

Figure 8. IOD and system boundaries 

The activity diagram (left side (A)) and its IOD (right 

side (B)) generated from the use case “Bob releases a dog” 

are given in Figure 9: 

     (A)                                                    (B) 

Figure 9. IOD corresponding to the use case “Bob 
releases a dog” and System Boundaries 

SUS Actor IOD 

Boundaries 

MessageIn 

MessageOut 

Gates 
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After this step, the specification engineer has to identify 

and gather all gates pair in the Interface Requirements 

Specification Document. We expect to have an interface 

specification including types, messages and events. For our 

purposes, the interface specification has to be abstracted as a 

list of UML Messages whose semantic is simply the trace 

<sendEvent, receiveEvent>. 

5.5. Orchestration of activity diagrams with 
IODs 

The last step towards elaborating contexts is to organize 

all interactions in higher-level diagrams. Our second type of 

IODs fits for this purpose. Such IODs focus on the overview 

of the flow of control where the nodes are (inline) 

Interactions or InteractionUses. The specification engineer 

is free to orchestrate interactions from different system 

viewpoints or from his engineering needs. He should be 

aware of the structure of the CDL language. For instance, 

uses concurrency at the higher level, corresponding to CDL 

Level-1 and fully describe scenarios by sequence 

diagrams, corresponding to CDL Level-3. 

Figure 10. Example of an IOD used for orchestrating a 
set of use cases 

With these recommendations, there will be no difficulties 

to generate CDL diagrams from these IODs. 

6. Related work and comparison

Many works exist in applying compositional verification 

techniques as in [17, 18, 19, 20]. These works deal with 

model checking/analyzing individual components (rather 

than whole systems) by specifying, considering, or even 

automatically determining the interactions that a component 

has with its environment. Our approach is different from 

such compositional or modular analysis. Context aware 

verification is not about verifying component by component, 

with the ”traditional” techniques where contexts are often 

included in the system model. Rather, we explicit contexts 

separately from the model. Further, such approaches use 

temporal logic-based languages for specification (LTL [21] 

or CTL [22] for example) since we use the specific domain 

language CDL based on context description. 

Using use cases to elaborate contexts for context-aware 

model-checking approach has been intended in some similar 

works. Such approach has a limited audience because use 

cases often lack of precision. However we can compare our 

work with other research works that process use cases for 

different purposes as long as the purpose requires a precise 

semantics. 

The work presented in [23] describes an approach to 

translate use case-based functional requirements to activity 

charts. The source models are use cases diagrams with 

support of high-level relationships like inclusion and 

generalization; our approach focuses on the detailed 

relationships between BehaviourFlows. 

In [24], authors proposed a model-based approach to 

generate activity diagrams for modelling scenarios. A 

functional requirement meta-model was proposed to 

represent use cases scenarios with possible exceptions. The 

goal of this approach is not stated clearly and although our 

work shares some transformation rules with it, the generality 

of their approach limits its employability. In our case, the 

generated activity diagrams are employed in further steps 

within the verification methodology and contribute to the 

goal of generating contexts. 

In [25], Authors used a restricted use cases modelling 

approach with rules and a template to produce use cases that 

are transformed automatically in activity diagrams. The 

authors claim that quality activity diagrams can be generated 

and that their approach outperforms existing commercial 

tools. This work is closest to ours, we share some techniques 

with it but such approach is also too general. Our approach 

differs in the sense that we go beyond generating activities 

from use cases scenario and that we contribute to other 

phases of the verification process such as the interface 

specification and decreasing the state space with contexts. 

Another similar work is proposed in [26] that presents an 

algorithm that transforms use cases into activity diagrams to 

facilitate the construction of formal requirements 

specification models. The source use case models are 

presented in the form of textual use case with a defined 

template and structure. However, such use cases are those 

that model the exceptional behaviour (extensions) 

introduced using special stereotypes which we handle using 

the notions of Parent and child BehaviouralFlows in our 

approach. Transformation algorithm and rules are similar 

and it still manual as well as in our case. 

The work presented in [27] is an approach towards 

automated generation of behavioural UML models. This 

approach is based on transforming the requirements 

statements to intermediary structured representations called 

frames, translated later to activity and sequence diagrams. 

Grammatical Knowledge Patterns and lexical and syntactic 

analysis are used to populate frames for the corresponding 

requirement statements. This approach differs from ours in 

the fact that requirements are captured from Natural 
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language and does not require any rewriting of the 

statements or constraint on the input format, whereas our 

work is based on semi structured format in the form of 

textual use cases and rewriting rules. Furthermore, its 

objective fits to improve software requirements analysis and 

development in general, and generating behavioural 

diagrams are not addressed to elaborate contexts in the 

favour of formal verification with a context-aware approach 

such as in our work. Using IODs for orchestrating high-level 

interactions is also a surplus in our favour.  

In order to help specification engineers, authors in [28] 

proposed an approach that reuses models of existing web 

applications for specification of requirements of new web 

application. It takes brief description of the requirements in 

terms of use case diagram, and generates the drafts of the 

detailed description in terms of activity diagrams using an 

ontology repository and annotation algorithm. A use case 

similarity metric is used for retrieving, from the model 

repository, the use cases which are similar to the new. 

Compared with our work, this approach is semi automated 

and another adaptation algorithm is used to adapt the 

annotated activity diagram for the new use cases. It fits in 

the Web engineering framework where the semantic web 

data model is the underlying representation format. 

Appendix A. Transformation rules 

Table1. Algorithmic presentation of transformation 
rules  

Input: textual Use case 

  For all (UseCase)  

  BCR 1: a use case generates an activity diagram 

  BCR 2: an Actor generates a Partition 

 BCR 3 : BehaviourFlow generates an ActivityGroup 

  BCR 4: a main BehaviourFlow generates an AcitivityInitialNode 

  For all (BehaviourFlow ) 

     BCR 5:   if (ENDS = true )  then ( //* do not terminate with a 

ReturnStep) 

-  Generate an ActivityFinalNode  such as each  ActivityFinalNode is 

added to its corresponding Activity- Group. 

ANR1 :   if (BehaviourFlow. ExtenstionType = singleBehaviourFlow) 

then 

   ANR1.a :         if (1 extension) 

-  Generate a DecisionControlNode and an ActivityEdge has as 

source its corresponding DecisionControlNode and as a pending 

target the first ActivityGroup generated from the 

c h i l d B e h a v i o r F l o w . 

     else  

   ANR1.b:   if (N extensions) 

-  Generate N DecisionControlNode ( f or  eac h  

Chi ldBehav iourF low  )  in cascade and N ActivityEdge 

ha vin g  a s  source their corresponding DecisionControlNode and 

as pending target the first ActivityGroup generated from the 

corresponding C h i l d BehaviorFlow. 

      ANR2:  if (BehaviourFlow. ExtenstionType = 

boundedBehaviourFlow) then 

  if (1 extension) then 

  ANR2.a:   - Generate a FusionControlNode for the 

ParentBehaviorFlow (from a DepartureStep m to an 

ArrivalStep n) at the first place of the ActivityGroup 
generated from the c h i l d BehaviorFlow and an 

ActivityEdge having as source this FusionControlNode 
and as a pending target the second ActivityNode of this 

ActivityGroup. 

  ANR2.b:  - Generate a DecisionControlNode for each step in 

the interval [m, n] of the ParentBehaviourFlow,  n-m+1 

DecisionControlNode are generated in total. 

   -  G e n e r a t e  n-m+1 ActivityEdge having as 

source its corresponding DecisionControlNode and as a 

pending target the first FusionControlNode of the 

ActivityGroup generated from the c h i l d BehaviorFlow).  
    Else  

  if (N extension) then 

ANR2.c: - Generate N FusionControlNode for the 

ParentBehaviorFlow (from a DepartureStep m to an 

ArrivalStep n) at the first place of the ActivityGroup 
generated from the c h i l d BehaviorFlow and an 

ActivityEdge having as source this FusionControlNode 

and as a pending target the second ActivityNode of this 

ActivityGroup. 

ANR2.d:  -   Generate N DecisionControlNode for each 

step in the interval [m, n] of the   ParentBehaviourFlow,  

N ( n-m+1) DecisionControlNode are generated in total.  

   -  G e n e r a t e  N (n-m+1) ActivityEdge, hence 

each having as source its corresponding  

DecisionControlNode and as a pending target the first 

FusionControlNode of the ActivityGroup generated from 

the c h i l d BehaviorFlow). 

  For all (Step) 

     ANR3:   A Step in a BehaviorFlow generates, generally, an 

ActionNode (in the    ActivityGroup generated from the 

BehaviorFlow) with the following exceptions: 
  If (Step = TriggerStep) then  

ANR3.a:  Generates a DecisionControlNode associated to the 

ActivityGroup generated from the BehaviorFlow) and an ActivityEdge 
having as a source this DecisionControlNode and as a pending target 

the first ActivityNode of the ActivityGroup generated from the 

BehaviorFlow. 
  Else if (Step = ReturnStep) then  

ANR3.b: The first ReturnStep to a given Step generates a 

FusionControlNode and an ActivityEdge   having as source this 

FusionControlNode and as target the ActivityNode generated from 

the given Step; another ReturnStep to the same Step does not 

generate anything else. 

  Else  if (Step= IncludeStep) then 

ANR3.c: The first IncludeStep to a given BehaviorFlow generate a 

FusionControlNode and an ActivityEdge having as source this 

FusionControlNode and as a target the first ActivityNode from the 

Activity Diagram; another IncludeStep to the same BehaviorFlow 
does not generate anything else. 

  Else  if (Step= StepGroup) then 

ANR3.d: A StepGroup (either a LoopGroup or a ConditionalGroup) 

generates a StructuredActivityNode (either a LoopNode or a 

ConditionalNode), then rule ANR3 is applied recursively to the 

StepGroup. 

 ANR4: Resolve all pending targets of any ActivityEdge thanks to 

the completion of the ActivityGroup. 

For all (main BehaviourFlow) 

AER1: Generate an ActivityEdge having as source the InitialNode and 

as target the first ActionNode from the ActivityGroup generated from 

such  BehaviourFlow. 

For all (BehaviourFlow) 

     if ( ENDS = true and non-empty ActivityGroup)  then 
        AER2: Generate an ActivityEdge having as target its 

ActivityFinalNode and as source the last ActivityNode of the 

ActivityGroup generated from such BehaviourFlow. 

For all (Step) 

     if (Branching = true) then (for one or N extensions) 

AER3: generate one or N ActivityEdge for linking together the 

generated DecisionControlNode by ANR1 (ANR1.a  and   ANR1.b). 

The N-th ActivityEdge links the last DecisionControlNode to the 

FusionControlNode associated with the Step in question if this 

FusionControlNode exists else to the ActivityNode generated 

from such Step (either an ActionNode or a 

StructuredActivityNode) 

 AER4: For each ActionNode generated from a non-ending Step 
(being not followed by a ReturnStep or  End), generates an 

ActivityEdge having as source the ActionNode and as target, either 

the next ActionNode if no DecisionNode or FusionControlNode 
are associated to, or the first of these ControlNodes. 

Output: Activity diagram 

7. Conclusion and future work

This paper has presented an overview of a part of the 

method aiming to facilitate system verification from 

informal requirements. Thanks to elaboration and 
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transformation activities, the semantic gap between informal 

and formal requirements is reduced and engineers helped 

towards formal verification. 

As [26], our approach is still manual. However, we aim to 

automate the transformation process for a validation purpose 

on an industrial case study to check the completeness and 

correctness of our transformation rules.  A framework for 

automation like Ecore for meta-models implementation and 

Java for rules transformation are among proposals. 

However, we are looking for a solution that might be easily 

customized to the tools set used by the users: XML 

Metadata Interchange (XMI) enables interchange of meta-

data between UML-based modelling tools but there might 

be slightly differences between the tools meta-models.  
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