
EAI Endorsed Transactions
on Serious Games Research Article

1

Toward reusable game technologies: assessing the
usability of the RAGE component-based architecture
framework
Wim van der Vegt1,*, Kiavash Bahreini1, Enkhbold Nyamsuren1 and Wim Westera1

1Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands

{wim.vandervegt;kiavash.bahreini,enkhbold.nyamsuren,wim.westera}@ou.nl

Abstract
This paper investigates the usability of the RAGE component-based software architecture (RCSA). This
architecture was designed to support serious game development by enabling cross-platform reuse of game
software components. While the architecture has been technically validated elsewhere, this paper studies the
perceived usefulness and ease of use of the architecture in practice. An extensive questionnaire based on the
Technology Acceptance Model (TAM) was administered to 23 software and game developers that have been
creating RCSA-compliant game components or integrating these in actual serious games. The results show that
developers are generally positive about the usability of the architecture and that the architecture helps them to do a
better job in less time. It turns out that developers effectively use all communication modes that are offered by the
architecture, most frequently those based on the component´s APIs and the bridge pattern. Some issues were
reported, but could be easily addressed. Most developers reported that they have well understood the effectiveness
of the architecture and indicated to keep using the architecture in future projects. The outcomes of this study show
that the architecture opens up new opportunities to the cross-platform reuse of advanced game functionalities in
serious game projects, to reduce production efforts and to advance the domain of serious games at large.

Keywords: serious games, software components, game development, reuse, cross-platform, portability, game engines.

Received on 05 December 2018, accepted on 28 May 2019, published on 11 July 2019

Copyright © 2019 Wim van der Vegt et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.11-7-2019.159527

1. Introduction

Although the potential of games for teaching and training has
been widely recognised, their uptake in schools and business
has been quite limited [1, 2]. The serious game industry
displays many features of an emerging, immature branch of
business, being scattered over a large number of small
independent studios, displaying weak interconnectedness,
limited knowledge exchange, and absence of harmonising
standards [3]. Notably, progress is hampered by the wide
variety of programming languages, game development
systems and delivery platforms that are being used, all of
which go with specific technical constraints and
incompatibilities that pose severe barriers to growth.

Moreover, access to emerging media technologies that could
be easily incorporated in serious game projects, such as novel
adaptation algorithms, artificial intelligence kernels, or
natural language processing methods, is limited, while the
alternative of in-company development of such technologies
is not feasible, either because of required investments or
because of lacking know-how.

This paper presents the evaluation results of the RAGE
component-based software architecture (RCSA), which was
designed to accommodate the development and reuse of
advanced software components offering pedagogically
relevant functionalities for serious games [4,5]. The RCSA
was developed by the RAGE project (rageproject.eu), which
is a leading serious gaming research project funded by the
Horizon 2020 Programme of the European Commission.
RAGE focuses on the development of advanced software

1Corresponding author. Email:wim.vandervegt@ou.nl

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

Wim van der Vegt et al.

2

components that can be easily reused and integrated in
serious game projects across a wide variety of prevailing
technology platforms. To this end, the RCSA provides the
technical framework that overcomes many issues of
incompatibility and non-portability across different technical
environments. Software components based on RCSA would
thus greatly amplify the opportunities of serious game
developers to efficiently enhance their games with reusable
software. Although the RCSA was extensively tested and
technically validated with a series of proof cases [4, 5], its
usability in professional practice has not yet been studied.
This paper presents the evaluation study of the RCSA with
respect to technical usability, that was carried out among 18
component developers and 5 game developers, respectively,
all involved in RAGE. In addition, detailed data is collected
about the usage of specific technical elements of the RCSA.

The research questions investigated are 1) to what extent
does the RCSA simplify creation and delivery of
components, 2) to what extent does the RCSA simplify reuse
of 3rd party components, 3) are there any specific factors
preventing acceptance of the RCSA, and 4) to what extent
are individual functionalities of the RCSA being used. The
first question has the component developers as target group,
while the second question targets the component users (e.g.
game developers). The third question aims to investigate if
game developers experience any trust issues using RCSA
based components or other 3rd party code. The final question
focuses on the usage of RCSA features.

First, we will briefly introduce the RCSA. Then, we will
detail the research method and instruments used. Finally, we
will present and discuss the outcomes.

2. The RAGE component-based software
architecture (RCSA)

The RCSA was devised to accommodate the development of
software components that can be easily reused and integrated
in serious game projects across a wide variety of prevailing
technology platforms. An initial set of state-of-the-art
RCSA-based components can be accessed through the
RAGE marketplace portal at gamecomponents.eu. The
components offer a variety of functionalities ranging from
learning analytics, adaptation and personalisation, to
language-based sentiment analysis, emotion recognition,
social gamification and affective computing, i.e.
functionality targeting serious games. The RCSA [4, 5]
distinguishes between server-side components and client-side
components. While remote communications of server-side
components with centralised applications can be easily
achieved with web services using the HTTP-protocol (e.g.,
REST), which offers platform-independence and
interoperability among heterogeneous technologies, client-
side components need to be integrated into client-machine
applications (viz. game engines), which is often problematic.
Client-side components should be 1) highly portable, 2)
should allow easy integration without interfering with game
code, 3) consequently, should not directly access the game´s
user interface, and 4) should not access or make assumptions

about the underlying operating system. To this end, the
RCSA was designed by relying on a limited set of well-
established coding practices and software patterns (API,
Bridge, Publish/Subscribe and Web Services) aimed at the
abstraction of operations. Communications between
component code and game code is accommodated by five
different communication modes, the usage of which will be
investigated in this study [6]. First, games can use the
component’s API for direct access to the component’s core
functionality. Second, the bridge software pattern is
platform-dependent code implementing one or more
interfaces that allow a component to invoke game engine
code without having knowledge about the game’s
implementation details or making an assumption about the
underlying operating system. This also makes RCSA
components very well suited for performing unit testing.
Third, broadcast messaging (Publish/Subscribe) supports a 1-
N type of communication, for instance the game engine
sending player performance data, which then could be
received by multiple components. Also, a component could
send broadcast messages to the game engine and other
components. Fourth, the Bridge can also be used for web
service calls to remote services. Fifth, partly based on the
previous modes, component-to-component communication
would be an additional mode.

Proofs of concept of the RCSA have been established for
C#, C++, Java and JavaScript/TypeScript, which are among
the predominant programming languages used game
development [6]. Also, RCSA-compliant components have
been successfully integrated in multiple game engines, such
as Unity3D [23], MonoGame [24], Cocos2D [25] and
Xamarin [26], and deployed at the most important desktop
and mobile platforms [5]. Although these proofs of concepts
have demonstrated the effectiveness of the RCSA, an
important question remains: how usable is the RCSA in
practice, when used by technology developers creating
RCSA-compliant components on the one hand, and game
developers wanting to reuse these components in their
serious games projects on the other hand.

Although the RCSA and its coding boundaries with
regards to game and operating system itself might be seen as
a composite game software pattern its main purpose differs
from the patterns described in [21] as those are targeting to
improve game coding structure or readability where the
RCSA is more a nonobtrusive delivery format for 3rd party
code and therefor has more in common with software
packages like NuGet packages [22]. Preliminary research
showed RCSA components can automatically be converted
to multi-platform NuGet packages. However unlike the
NuGet packages which basically delivers libraries with
potentially full access to the game and underlying operating
system, the RCSA’s boundaries prevent this kind of direct
access by design, therefor leaving important decisions about
for example where to store data to the game developer.

The same coding boundaries also ensure that RCSA
components can be easily tested with agile unit testing
techniques, thus improving testability and quality.

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

3

3. Method

The study was carried out with two extensive questionnaires
that were administered in January 2018 to 18 component
developers and five game developers (component users),
respectively, involved in the RAGE project. Both groups are
users of the RCSA, be it from different perspectives:
component developers need to accept the RCSA to build
upon, while game developers need to accept RCSA based
components and the integration methodology the RCSA
provides.

3.1. Target groups

The pool of potential participants familiar with the
architecture was necessarily restricted to individuals within
the RAGE project. The 18 component developers in the
RAGE project were employees at research institutes from
different European countries. The five game developers were
professionals from the four game studios that were part of the
RAGE consortium. In both groups, the age distribution is
bimodal, revealing two peaks, one typically under 25 years
and one around 40 years, respectively.

3.2. RCSA Components

The study relies on participants´ operational experiences,
either as a developer or as a user, with one or more of up to
30 initial software components developed by RAGE. The
quality and nature of the components’ pedagogical
functionalities are expressly excluded from current
evaluation, as these are reported in separate studies. Now, the
focus is on the usability of the architecture in the practices of
software development and game development. Usability
issues might particularly surface for client-side RCSA
components, as they are inherently bound to the abstraction
layers, e.g. by using the bridge pattern.

Instructions and support to component developers and
game developers were provided through manuals, workshops
and component code reviews. Component developers were
supported with downloadable Visual Studio project
templates for both C# and TypeScript (a superset of
JavaScript including static typing). Most of the (client-side)
components are written in C# and benefit from portable
assemblies that are used across Visual Studio, Xamarin as
well as the Unity3D game development platform. C# based
project templates have been made available, including a
regular (.NET 3.5) project and a portable assembly
counterpart using the same source code. Both projects
preserve portability by using a common subset of the two
.NET framework versions in order to compile. Also, code
snippets for implementing various bridge interfaces were
made available.

3.3 Games

To assess the functioning of components in real games with
real end-users, the four game studios in RAGE created seven
component-based serious games of which the majority was
created using Unity3D. The games focus on various social
and entrepreneurial skills and address diverse target groups
including school and university students, sports volunteers,
policemen and corporate candidates. Overall, over 1500
participants in total were involved in the game pilots. Details
about the game pilots and their evaluations can be found in
[27, 28].

3.4 Questionnaires

We opted for questionnaires rather than interviews to avoid
1) any influences of interviewers and 2) potential issues
resulting from (spoken) language barriers, given the various
nationalities involved. Because of the two different target
groups, two separate questionnaires were developed, both
with a similar setup and structure, but with slightly different
questions in some sections. The questionnaires were based
on the Technology Acceptance Model (TAM) [7, 8], which
was designed to collect information on perceived usefulness
and ease of use, both being indicators of technology
acceptance and usability. TAM was preferred to USE
(Usefulness, Satisfaction, and Ease of use) [9], TTF (Task-
Technology Fit) [10] and SUS (System Usability Scale) [11].
The USE and SUS instruments were discarded as they are
more focused on the (graphical) user interfaces and
associated end-user experiences and are difficult to apply to
software coding and architectures. Task-Technology Fit was
discarded, because of the lack of a suitable profile and the
efforts required to create a new profile and validate it. The
TAM-based questionnaire uses six items for each scale;
topics are briefly indicated in Table 1.

Table 1. Topics covered by the TAM-based
questionnaire for RCSA usability.

Perceived usefulness Ease of use
1 Faster task accomplishment Easy to learn
2 Enhanced job performance Easy to control
3 Improved productivity Clear and understandable
4 Enhanced effectiveness Flexible to use
5 Makes jobs easier Easy to become skilful
6 Usefulness in job Easy to use

For the TAM questions we used ‘RAGE architecture’ as
subject, except for the first question on perceived usefulness
in the component developers’ questionnaire where we
expressly used ‘the RAGE architecture when creating
reusable components’ specifying the task more explicitly.

The 7 point Likert scales used the following labels for the
perceived usefulness questions: ‘extremely unlikely’, 2, 3, 4,
5, 6 and ‘extremely likely’, respectively.

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

4

In addition to TAM, sections were included to establish 1)
programming experience self-estimation [12] in the most
relevant programming languages, 2) the usage of the
architectural features, interfaces and communication modes,
including required efforts and restrictions encountered, and
3) the architectural elements that were actually implemented
or used. For game developers, an additional section was
added to determine their attitude towards including third
party software in their projects and infrastructure. Although
the evaluation is primarily addressing the technical
dimensions of the architecture, acceptance could be hindered
by trust issues regarding the use of third party code and its
origin. All score items used a 7-points Likert scale. Basic
demographic data was limited to name, age, company,
programming languages and development environments
used, and the components or games developed. The
questionnaires comprise 53 architecture-related questions,
supplemented with 17 open-ended questions allowing for
comments. All invited participants completed the
questionnaire, possibly as a result of the shared commitment
of being part of the RAGE project, be it not without the need
for sending reminders.

For each of the two questionnaire versions, we have
checked the reliability of the two TAM scales. The perceived
usefulness scale shows excellent internal consistency
(Cronbach´s alpha: 0.96 and 0.97, respectively), the
perceived ease of use scale shows good internal consistency
(Cronbach´s alpha: 0.88 and 0.84, respectively) [14, 15].

3.5. Procedure

The questionnaires were administered using Google Forms.
The component developer version was pre-tested with one
component developer to check for completion time (30-45
minutes) and to test for the clarity of the questions. As the
game developer version was similar in length and design no
further tests were undertaken. RAGE work package leaders
were asked to distribute the questionnaire amongst the
software developers that had sufficient hands-on experience
or knowledge about the architecture. Reminders where send
to increase the response rate. An informed consent was
administered as part of the online questionnaire. All collected
data were anonymised and handled confidentially, in
accordance with RAGE policies to comply with research
ethics regulations. Quantitative data from the Likert scales
were all normalised to the 0-1 range before further statistical
processing.

4. Results

The overall number of participants, in particular the number
of game developers was small, because only a small number
of individuals within the RAGE project would have
sufficient practical experience with the architecture. The data
from the component developers is more informative and
representative than the data from the game developers,
because of the small sample size of the latter group (five

respondents). Although the small sample of game developers
provided some potentially useful preliminary insights,
elaborate statistical processing or direct comparison with the
data from component developers was not opportune.

4.1. Self-assessment of software skills

The results of the self-assessed programming skills for both
component developers and game developers display
relatively high overall scores, typically well above 0.6,
except for TypeScript. The skills deficiency in Typescript
may be ascribed to the fact that it is the most recently
launched programming language, extending JavaScript. Java
expertise is rated high among component developers (0.77).
This may be attributed to the development of high
performance server-based web-services by the component
developers, an area where Java is still a popular choice [13].
Overall, the RAGE developers involved can be qualified as
(highly) experienced.

4.2. Results from component developers

Responses
From 18 component developers, five only worked on server-
side components and skipped the TAM questions, which
were mainly referring to the client-side architectural
elements. They were then excluded from the TAM analysis
but remained included in the remaining functionality usage.

Software communication patterns used
While the RCSA accommodates a variety of software
communications modes [4, 5], component developers are
quite selective (cf. figure 1). In the RCSA communication
from the game to the component is covered by accessing the
component’s API. The reverse, communication from a
component to the game uses, web services, which are used
for addressing any remote server, also make use of RCSA’s
bridge interface. Broadcasting is used to inform any listening
service in the system.

Fig. 1. Usage of software communication modes in
client-side components.

Wim van der Vegt et al.

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

5

Figure 1 shows that game to component communication
through component’s API is most abundantly used.
Communication in the reversed direction, that is, the
component using an interface from the Bridge in order to
gain access to the game or operating system functionality
(such as saving and loading data), is also frequently used.
Using this same mechanism to gain access to web-services
was less used. Mutual communications between components
were not much used as most components work independently
from each other. Publish/subscribe broadcasting was the least
popular communication mode. In sum, most RCSA
communication modes are being used in the components,
most frequently the ones using the components’ APIs and the
bridge interfaces.

Reported issues and comments
A comment was made about the risks of using files with the
textual data format. This may cause UTF encoding issues
when loading XML files. The .NET framework works
internally with UTF-16 encoded strings [16], and as such it
defaults to UTF-16 encoded XML files. Forcing UTF-8
output as used by some web-services requires some
additional coding [18]. Binary data is currently only
supported in C# by base64 encoding it [17].

One component developer highly appreciated using the
bridge for platform dependent functionality but expressed
concerns about the obligation for game developers to
implement interfaces for the bridge, because they are
reluctant to implement code that is not strictly related to their
games. Their proposed solution was to include a ready to use
bridge class with the component. Although the concern is
legitimate, the proposed solution of adding a bridge actually
undermines platform independence. Pointing towards the
available code snippets providing reference was inspired by
one of the leading game platforms, Unity3D, not supporting
modern async/await type of method invocations during
RCSA design. Only recently Unity3D has started supporting
a more up-to-date .NET framework [19]. The RCSA easily
supports this new framework with its portable assembly
counterpart. Preliminary research also indicated that .Net
Core 2.0 and newer are easy to add using the same shared
sources mechanism as used for creating the portable
assemblies. Besides the current interface, which does not
enforce async calls, leaves the actual sync/async choice to
the game programmer.

During component creation, one-third of the component
developers reported having requested (and received) some
support for the architecture team. Most component
developers indicated that they would use the RCSA in future
projects.

Architecture usability
Figure 2 and figure 3 show the normalised mean scores from
the component developers on six items of the perceived
usefulness scale and ease of use scale, respectively.

Fig. 2. Perceived usefulness according to component
developers (normalized scores).

Fig. 3. Ease of use according to component developers
(normalized scores).

Perceived usefulness has a mean score of 0.55 (standard
error 0.05), whereas ease of use received a mean score of
0.64 (standard error 0.05), both representing values well
above average. Actually, all separate items received scores
above 0.50. Notably, component developers indicate that the
RCSA makes tasks easier, helps to accomplish tasks more
quickly and efficiently, and thereby improves job
performance and productivity (perceived usefulness). Also,
the RCSA is easy to understand, provides a flexible way to
create components, which can be easily applied.

4.3. Results from game developers

Responses

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

6

Five game developers, representing each of the four game
studios participating in RAGE, responded to the
questionnaire.

Components and game projects
Game developers reported being involved in the
development of all seven RAGE games. Six out of seven
games were coded using C#. One game developer used C++
as the coding language. Five games used the Unity3D
development environment, one game used Cocos-2D, and
one of the studios used its own platform. The average
number of RAGE components being incorporated in each
game is seven, evenly divided among server-side
components and client-side components.

Software communication patterns used
In this section, we report how the game developers relied on
the RCSA features. We pay little attention to component’s
API since it is in-dependent of the RCSA. Four game
developers used one or more interfaces implementing the
bridge pattern that allows a communication from the
component to the game. For example, the interface for
storing and retrieving local data was used by four developers,
and three developers used the logging facility.

A component-to-component communication was used by
one developer. There are two options for such
communication. One component can directly call the other
one if the former implements the latter’s API interface. For
such cases, the RCSA provides a component manager that
offers automatic registry and lookup of available
components. Alternatively, if the components are unaware of
each other’s APIs then the game developer can implement a
mediating wrapper code that makes use of the component
manager.

Other RCSA features were used to various degrees. Three
game developers used RCSA’s web-service interface to send
a request to remote services. Functionality for handling run-
time and default settings to be compiled into the game was
used once, which indicates that most game developers prefer
to supply the settings by game code. The only
communication pattern that was not used so far by the game
developers is publish-subscribe for broadcasting messages.

Reported issues and comments.
Scarce issues were reported. An issue was raised about the
voice synthesis component, which requires direct access to
the underlying operating system. This should be solved by
the component developer implementing a simple, generic
interface for this. For example, in the facial emotion
recognition component, direct access to a webcam was
replaced by a simple yet more versatile API that requires the
game developer to submit frames from a camera or other
sources (e.g. stills or pre-recorded video) to the component,
thereby ensuring platform independence.

One game developer needed to port client-side C#
components to C++ programming language. This requires
some effort, but is doable as such, since the RCSA was
proven to be valid for C++ [4].

With respect to adoption barriers, some of the game
developers expressed their concerns about the academic
origin of the components pedagogical content, while on the
other hand being totally confident with using third-party
code. We hypothesize that components from academia that
are often open-source and do not provide a quality guarantee
in the license agreement are perceived to have lower quality
than their commercial counterparts. For this reason,
architectures such as the RCSA may be highly beneficial for
a wider adoption of academic components since a
conformance to such architecture guarantees a level of
standardization and quality control.

One game developer reported compilation and
deployment issues for their game in a highly secured
corporate environment, prohibiting for example outwards
web-service calls. Although this environmental behaviour is
not caused by the RCSA itself, it is a potential issue for those
RCSA-based components that expect a web-service to be
accessible. Four game developers expressed a preference for
‘traditional’ direct integration of functionality, which seems
to suggest some aversion to the RCSA. Still, four of the
game developers reported that they would keep using RCSA-
compliant components outside RAGE as well, while the fifth
developer said to be using it conditional to the component
offering core functionality needed in the game.

Architecture usability
The game developers TAM scores for both scales are slightly
above average: 0.53 (standard error 0.12) for perceived
usefulness and 0.58 (standard error 0.08) for ease of use.
Given the standard errors, the RCSA is to be qualified as
moderately usable. However, the scores were negatively
biased by one of the game developers assigning
systematically much lower scores as compared to the other
developers. Removing this outlier (scoring 0.19 and 0.33 on
the two scales) would produce perceived usefulness of 0.62
(standard error 0.10) and ease of use of 0.64 (standard error
0.06). This means that most game developers are positive
about the RCSA’s usability.

5. Discussion and conclusion

The outcomes of this usability study can be summarised as
follows: developers of software components are generally
positive about the usability of the RCSA and indicate that the
RCSA helps them to do a better job in less time. All
communication patterns offered by the RCSA have been
effectively used in the components under consideration, most
frequently the communications patterns based on the
component´s APIs and the bridge pattern. Some issues were
reported, but most of them could be covered without
affecting the portability principles of the RCSA. Most
component developers reported that they have well
understood the effectiveness of the architecture and indicated
to use the RCSA in future projects.

Game developers, acting as the users of the software
components, are likewise positive about the RCSA. Although
the sample was small, unambiguous responses indicated that

Wim van der Vegt et al.

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

7

most game developers qualify the RCSA-compliant
components as useful and easy to integrate. Also, game
developers used most of the communication patterns
provided by the RCSA. Functionality for handling run-time
and default settings to be compiled into the game was
scarcely used, however. It seems that most game developers
prefer to supply the settings through the game code. The
tendency to stay in full control of their game application may
pose a barrier to adoption of the RCSA. In [20] it was
established that game studios are generally open and positive
toward new technologies, but they are critical as such. They
look for added value in terms of better games or commercial
potential, but at the same time, they are afraid of complex
and cumbersome implementation, which is understandable as
their games should run smoothly without bugs or crashes.
This exploitation requirement inevitably goes with some
reluctance toward innovation: game developers first want to
see the evidence before adopting something new. Some
ambiguity was also shown by game developers raising
concerns about software from academic origin, while at the
same time they claimed to be confident with using third-
party code.

Nevertheless, most game developers in the sample
indicated that they would keep using the RCSA in future.

Although the respondents where RAGE project
participants and this might have led to a bias in the TAM
scores, the absence of high TAM scores and the presence of
critical comments indicates that the respondents completed
the questionnaire from a professional viewpoint and thus
gives confidence the TAM scores are not biased.

Overall, this qualitative study has confirmed the
practicability of the RCSA by tapping on the practical
experiences of targeted component developers and game
developers using the RCSA. The positive outcomes of this
study open up new opportunities to flexibly incorporate
advanced game functionalities in serious game projects,
reduce production efforts and advance the domain of serious
games at large. The outlook would be a flourishing market of
advanced and affordable serious games that would contribute
in purposeful ways to addressing societal problems in the
fields of, e.g., media literacy, education and training, cultural
heritage and social inclusion.

Future work will include monitoring acceptance by
component and game developers outside RAGE and a closer
investigation of the not RCSA architecture related questions
on acceptance by game developers of foreign code (and
especially code with an academic origin) but that might
lower acceptation of components created according to the
RCSA.

Acknowledgements.
This work has been partially funded by the EC H2020 project
RAGE (Realising an Applied Gaming Eco-System);
http://www.rageproject.eu/; Grant agreement No 644187.

References

[1] Carl Abt: Serious games. Viking Press, New York (1970).
[2] T.M. Connolly, E.A. Boyle, E. MacArthur, T. Hainey and

J.M. Boyle: A systematic literature review of empirical
evidence on computer games and serious games. In:
Computers & Education 59 (2), 661–686. DOI:
10.1016/j.compedu.2012.03.004 (2013).

[3] Stewart, J., Bleumers, L., Van Looy, J., Mariën, I., All,
A., Schurmans, D., Willaert, K., De Grove, F., Jacobs, A.,
and Misuraca, G.: The Potential of Digital Games for
Empowerment and Social Inclusion of Groups at Risk of
Social and Economic Exclusion: Evidence and
Opportunity for Policy. Centeno, C. (Ed.), Joint Research
Centre, European Commission. (2013).

[4] G.W. van der Vegt, W. Westera, E. Nyamsuren, A.
Georgiev and I. Martinez Ortiz: RAGE architecture for
reusable serious gaming technology components. In:
International Journal of Computer Games Technology.
Article ID 5680526. DOI: 10.1155/2016/5680526. (2016).

[5] W. van der Vegt, E. Nyamsuren and W. Westera: RAGE
Reusable Game Software Components and Their
Integration into Serious Game Engines. In: Proceedings of
the 15th International Conference on Software Reuse
(ICSR 2016). Springer International Publishing, Basel,
165-180 (2016).

[6] RedMonk: The RedMonk programming languages
rankings: January 2015,
http://redmonk.com/sogrady/2015/01/14/language-
rankings-1-15/, last accessed 2018/05/15.

[7] Davis, F. D.: Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology. In:
MIS Quarterly 13(3): 319-340 (1989).

[8] Marangunić, N. and Granić A.: Technology acceptance
model: a literature review from 1986 to 2013. Universal
Access in the Information Society 14(1): 81-95 (2015).

[9] Lund, A. M.: Measuring Usability with the USE
Questionnaire. STC Usability SIG Newsletter (2001).

[10] Furneaux, B.: Task-Technology Fit Theory: A Survey and
Synopsis of the Literature. In: Information Systems
Theory: Explaining and Predicting Our Digital Society,
Vol. 1. Y. K. Dwivedi, M. R. Wade and S. L.
Schneberger. New York, NY, Springer New York: 87-
106. (2012).

[11] Bangor, A., et al.: Determining what individual SUS
scores mean: adding an adjective rating scale. J. Usability
Studies 4(3): 114-123 (2009).

[12] Siegmund, J., et al.: Measuring and modeling
programming experience. In: Empirical Software
Engineering 19(5): 1299-1334 (2014).

[13] W3Techs: Usage statistics and market share of Java for
websites, https://w3techs.com/technologies/details/pl-
java/all/all/, last accessed 2018/05/15.

[14] Cronbach, L. J.: Coefficient alpha and the internal
structure of tests. In: Psychometrika, 16, 297-334 (28,307
citations in Google Scholar as of 4/1/2016). (1951).

[15] Tavakol, M. and Dennick R.: Making sense of Cronbach's
alpha. Int J Med Educ 2: 53-55. (2011).

[16] Microsoft: Character Encoding in .NET,
https://docs.microsoft.com/en-us/dotnet/standard/base-
types/character-encoding, (2017).

[17] Microsoft: Convert Methods,
https://msdn.microsoft.com/en-
us/library/system.convert_methods(v=vs.110).aspx, last
accessed 2018/05/15.

[18] Lacovara, R.: How To Create XML in C# with UTF-8
Encoding, (2011),

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
https://msdn.microsoft.com/en-us/library/system.convert_methods(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.convert_methods(v=vs.110).aspx

8

http://rlacovara.blogspot.nl/2011/02/how-to-create-xml-
in-c-with-utf-8.html, last accessed 2018/05/15.

[19] Unity: Unity Blog: Unity 2018.1,
https://blogs.unity3d.com/2018/05/02/2018-1-is-now-
available/, last accessed 2018/05/15.

[20] Saveski, G., Westera, W., Yuan, L., Hollins, P.,
Fernández Manjón, B., Moreno Ger, P. and Stefanov, K.:
What serious game studios want from ICT research:
identifying developers’ needs. In: Games and Learning
Alliance Conference 2015, Rome (2015).

[21] Nystrom, B.: Game Programming Patterns. Genever
Benning (2014).

[22] NuGet Gallery, https://www.nuget.org/, last accessed
2018/09/18.

[23] Unity3D, https://unity3d.com/, last accessed 2018/10/22.
[24] MonoGame, http://www.monogame.net/, last accessed

2018/10/22.

[25] Cocos2D, http://www.cocos2d.org/, last accessed
2018/10/22.

[26] Xamarin, https://visualstudio.microsoft.com/xamarin/, last
accessed 2018/10/22

[27] Bazzanella, B., Casagranda, M., Molinari, A.,
Humphreys, S., Sleightholme, G., Lepoivre, O., ...
Kommeren, R. (2018). D5.4 – Pilots quality report round
2. RAGE project.
https://research.ou.nl/en/publications/d54-pilots-quality-
report-round-2, last accessed June 24, 2019.

[28] Steiner, C., Gaisbachgrabner, K., Nussbaumer, A.,
Mertens, J., Hemmje, M., Nadolski, R. J., ... Santos, P. A.
(2018). D8.4 – Second RAGE Evaluation Report. RAGE
project. https://research.ou.nl/en/publications/d84-second-
rage-evaluation-report, last accessed June 24, 2019.

Wim van der Vegt et al.

EAI Endorsed Transactions on
Serious Games

09 2018 - 07 2019 | Volume 5 | Issue 17 | e4

http://rlacovara.blogspot.nl/2011/02/how-to-create-xml-in-c-with-utf-8.html
http://rlacovara.blogspot.nl/2011/02/how-to-create-xml-in-c-with-utf-8.html
https://blogs.unity3d.com/2018/05/02/2018-1-is-now-available/
https://blogs.unity3d.com/2018/05/02/2018-1-is-now-available/
https://unity3d.com/
https://research.ou.nl/en/publications/d54-pilots-quality-report-round-2
https://research.ou.nl/en/publications/d54-pilots-quality-report-round-2
https://research.ou.nl/en/publications/d84-second-rage-evaluation-report
https://research.ou.nl/en/publications/d84-second-rage-evaluation-report

