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Abstract

Causality is an intriguing concept that once tamed, can have many applications. While having been widely
investigated in other domains, its relevance and usefulness in the cybersecurity domain has received little
attention. In this paper, we present a systematic investigation of a particular approach to causality, known as
Granger causality (G-causality), in cybersecurity. We propose a framework, dubbed Cybersecurity Granger
Causality (CGC), for characterizing the presence of G-causality in cyber attack rate time series and for
leveraging G-causality to predict (i.e., forecast) cyber attack rates. The framework offers a range of research
questions, which can be adopted or adapted to study G-causality in other kinds of cybersecurity time series
data. In order to demonstrate the usefulness of CGC, we present a case study by applying it to a particular
cyber attack dataset collected at a honeypot. From this case study, we draw a number of insights into the
usefulness and limitations of G-causality in the cybersecurity domain.
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1. Introduction

Cyber attacks have become a big threat against the
modern society in many aspects, such as critical
infrastructure, economy, and citizen privacy. According
to a 2019 report by Symantec [1], a compromised credit
card can be sold/purchased for up to US$45 in the
underground market, whereas compromised websites
can be sold/purchased for up to US$2.2 million each
month. According to a 2019 report by ForgeRock [2],
2.8 billion consumer data records are breached in 2018,
costing more than US$654 billion to U.S. organizations;
the report also states that in the first quarter of 2019,
cyber attacks against the U.S. financial services sector
cost more than US$6.2 billion. These huge damages
call for studies to understand and characterize cyber
attacks from various perspectives and at various levels
of abstractions.

∗Corresponding author. Email: sxu@uccs.edu

Most studies on cyber attacks focus on microscopic
levels of abstractions (e.g., how to defend against a
particular attack). These studies are absolutely impor-
tant because they provide the necessary building-block
solutions. However, understanding and characteriz-
ing cyber attacks from macroscopic levels of abstrac-
tions is equally important but much less investigated.
Such macroscopic-level studies are important because
they would offer insights towards holistic solutions to
defending cyber attacks.

One particular kind of macroscopic study is to
forecast (i.e., predict) cyber attacks at macroscopic
levels, so as to achieve what may be called predictive
situational awareness. There have been a number of
studies in both univariate time series analysis in the
cybersecurity domain (e.g., [3–14]) and multivariate
time series analysis in the cybersecurity domain
(e.g., [7, 15–17]). The present study belongs to this
category, but initiating a new perspective of research.
Specifically, we investigate the usefulness of causality in
cybersecurity. Since the notion of causality is elusive,
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we focus on a particular approach known as Granger
Causality (G-Causality) [18], which can be understood
as follows: If one time series can be leveraged to help
predict another time series more accurately than using
the historic data of the latter alone to predict it, then
the former is said to G-cause the latter. We call the
former time series a “helper” because it can used to help
predict the latter more accurately.

Our Contributions. This paper makes two contribu-
tions. First, we initiate the investigation on the use-
fulness and limitations of G-causality in cyber attack
rate time series. We propose a framework, dubbed
Cybersecurity Granger-Causality (CGC) with a range
of intuitive research questions, which can be adopted
or adapted to characterize and leverage G-causality in
other kinds of cybersecurity time series data. In order
to formalize research problems, we propose using a
graph-theoretic representation of G-causality between
time series. In particular, CGC aims to help achieve pre-
dictive cybersecurity situational awareness and there-
fore possibly proactive defense (e.g., allocating more
defense resources when predicting that there will be
more incoming attacks). To achieve this, we recognize
that one key research issue is to select an appropriate
number of good helpers at a proper network resolution
(e.g., /8 vs. /24), where a helper is, as mentioned above,
a time series that G-causes the time series in question.
This research issue goes beyond the original G-causality
framework [18]. We systematically address this issue by
considering multiple factors and models. To the best of
our knowledge, this is the first study in characterizing
the usefulness and limitations of G-causality in predic-
tive cybersecurity situational awareness.

Second, in order to demonstrate the usefulness of
the framework, we conduct a case study by applying
it to a dataset collected by a low-interaction honeypot.
This case study enables us to draw a number of
insights, such as the following. (i) For measuring
cyber attack situational awareness, network resolution
matters and using a higher resolution (e.g., /24)
would be better than using a lower resolution (e.g.,
/16 or /8). (ii) Cybersecurity posture at the /16 and
/24 network resolutions do change over a period
of time, albeit slowly. (iii) G-causality is widely
exhibited by cyber attack rate time series at multiple
network resolutions, hinting that cyber attacks are
not random. (iv) Bidirectional G-causality is widely
exhibited at multiple network resolutions, suggesting
that G-causality does not really capture the intuitive
notion of causality, which should be unidirectional.
(v) G-causality is widely exhibited across network
resolutions; this represents an aspect that also goes
beyond the original G-causality framework [18]. (vi)
Leveraging bidirectional G-causality leads to higher

prediction accuracy than leveraging unidirectional G-
causality, especially when the time series in question are
dense or correspond to low-resolution networks. This
suggests that G-causality is useful despite that it does
not really capture the intuitive notion of unidirectional
causality. (vii) When leveraging G-causality to predict
time series, using an excessive number of helpers
can decrease prediction accuracy. This highlights the
importance of selecting an appropriate number of
helpers. (viii) When time series are dense, a smaller
p-value incurred in the G-causality test, which hints
a stronger degree of G-causality, would lead to more
accurate predictions.

Related Work. The present study falls into the field of
cybersecurity data analytics [19–27], which is a sub-
field of the emerging Cybersecurity Dynamics [28–
38]. More specifically, the present study falls into the
sub-field of multivariate time series analysis [7, 15–
17] of cybersecurity data analytics. There are studies
on univariate time series analysis of cybersecurity data
analytics, such as [3–14, 39]. However, these studies do
not consider causality. In this paper we investigate a
new aspect of cybersecurity data analytics, namely G-
causality. Although G-causality is widely investigated
in many domains (e.g., finance and economics [40],
biology [41], social behaviors [42], and wireless
communications [43]), its relevance to the cybersecurity
domain is little investigated. The only exception we
are aware is [44], which applies G-causality to confirm
the presence of TCP flooding attacks. By contrast, we
initiate the study on the usefulness and limitations
of G-causality in predictive cybersecurity situational
awareness, which is different from what is studied in
[44]. Another related prior study is [45], which uses
Bayesian networks to predict next attack steps in the
context of intrusion detection. By contrast, we do not
consider Bayesian networks.

Paper Outline. Section 2 reviews preliminary knowl-
edge on the Auto-Regressive model and the notion of
G-causality. Section 3 presents the CGC framework.
Section 4 describes the case study. Section 5 discusses
the limitations of the present study. Section 6 concludes
the paper. Table 1 summarizes the main notations that
are used throughout the paper.

2. Preliminaries

2.1. The Auto-Regressive (AR) Model

AR is a widely used statistical model, which leverages
temporal correlations of a time series to predict its
future values [46]. AR uses linear regression to predict
future values as a function of ` past observation values
(indicating how far one looks back), where ` is the order
of the AR model or lag. Formally, the AR model for time
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Table 1. Notations

Notation Description
n the number of networks (at a resolution)

waging attacks
T the time horizon at a certain resolution

(e.g., days)
TC current time 1 ≤ TC ≤ T − 1
Xi(TC) the time series representing the number

of attacks waged from network i up to
time TC , with Xi(TC) = (xi,t)1≤t≤TC and
1 ≤ i ≤ n

X(TC) X(TC) = {X1(TC), . . . , Xn(TC)}
X ′(TC) the subset of stationary time series of

X(TC)
X ′′(TC) the subset of stationary time seriesX ′(TC)

that are also associated with G-causality
x̂i,t , ŷi,t predictions of xit and yit , respectively
` the lag value (i.e., time steps used in a

prediction model)
AXi ,Xi,t coefficients of time series Xi w.r.t. itself
AXi ,Xj,t coefficients of time series Xi w.r.t. Xj
err, ξ white noises
pij (TC) the p-value in the F-statistic that Xi(TC)

G-causes Xj (TC) when applicable; pij = ⊥
when not applicable

G(TC) G(TC) = (X(TC), E(TC),W (TC)) is G-
causality graph, where X(TC) is
the vertex set (representing time
series), (Xi(TC), Xj (TC)) ∈ E(TC)
means Xi(TC) G-causes Xj (TC), and
W (TC) = (pij (TC))1≤i,j≤n

G[r](TC) G-causality graph G(TC) at network
resolution r; e.g., r ∈ {/8, /16, /24}

series Xi = (xi,t)t=1,2,... is:

xi,t = β0 +
∑̀
k=1

βkxi,t−k + ξi,t , (1)

where β0, . . . , β` are coefficients and ξi,t is a white-
noise random variable (i.e., independent and identically
distributed normal random variable with mean 0). In
this paper, xi,t is the number of attacks that are waged
from network i at time t.

2.2. G-causality
The notion of G-causality is named after its inventor
Clive Granger and aims to capture causal relations
between time series [18]. It is introduced to predict time
series in the economics domain and later adapted to
other domains [47–50]. It is defined for stationary time
series, whose statistical properties (e.g., mean, variance,
co-variance) do not change with time (cf. e.g., [3, 5, 51]).

In practice, stationarity may be tested based on the
first and second moments, sometimes known as wide-
sense stationarity. There are many methods for testing
whether a time series is stationary or not (e.g., Phillips-
Perron [52] and Augmented Dickey-Fuller [53]).

As mentioned above, in this paper Xi = (xi,t)t=1,2,...
represents cybersecurity time series, such as the cyber
attack rate time series [3]. Intuitively, Xi is said to
Granger-cause or G-cause Xj , where i , j, if the past
observation values of Xi contain some information that
can be leveraged to predict future values of Xj more
accurately than predicting Xj by only leveraging its
past observation values [18]. Similar to the lag ` in the
AR model, the number of the past observation values
of Xi , which are leveraged to predict future values
of Xj , is also called lag and denoted by `. Since a
large ` may cause over-fitting and a small ` may cause
auto-correlation errors [54], it is important to select
an appropriate ` via some criterion, such as Bayesian
Information Criterion (BIC) [55] or Akaike Information
Criterion (AIC) [56], meaning that the optimal ` is the
one that minimizes the AIC or BIC function.

Formally, G-causality is defined using the linear
Vector Auto-Regressive model (VAR) over multivariate
time series. In order to highlight the idea, let us consider
the example of bi-variate VAR model, while noting that
the idea is equally applicable to other multivariate time
series. The bi-variate VAR model (or 2VAR) involves two
time series Xi and Xj with lag ` and is described as:

xi,t = αi +
∑̀
k=1

AXi ,Xj,t−kxj,t−k +
∑̀
k=1

AXi ,Xi,t−kxi,t−k + erri,t ,

(2)

xj,t = αj +
∑̀
k=1

AXj ,Xi,t−kxi,t−k +
∑̀
k=1

AXj ,Xj,t−kxj,t−k + errj,t .

(3)
where the A∗,∗’s are regression coefficients and erri,t
and errj,t are white-noise errors (i.e., independent and
identically distributed normal random variables with
mean 0).

The VAR model is used to test G-causality between
Xi and Xj as follows. The null hypothesis is that Xi does
not G-cause Xj , namely that AXj ,Xi,t−k = 0 for 1 ≤ k ≤ `
or Xi has no impact on predicting Xj [18]. To test this,
one may use the F-statistic hypothesis test [57]. Time
series Xi is said to G-cause Xj if the null hypothesis is
rejected, meaning that the p-value in the F-statistic is
less than 0.05, which is a widely-used significant level.
The same method is used to test whether Xj G-causes
Xi or not. G-causality is not necessarily symmetric,
meaning that Xi G-causing Xj does not necessarily
mean Xj G-causing Xi .
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2.3. Prediction Accuracy Metric
In order to evaluate prediction accuracy, we propose
adopting the standard metric known as Symmetric
Mean Absolute Percentage Error (SMAPE) [58]. Let
(xi,t , . . . , xi,t+δ) be the observation values of a time series
and (x̂i,t , . . . , x̂i,t+δ) be their respective prediction values,
where t is the time at which prediction starts. Then,
SMAPE = 1

δ+1
∑t+δ
z=t

|xi,z−x̂i,z |
(|x̂i,z |+|xi,z |)/2

. This metric is chosen
because of its robustness in accommodating xi,t = 0,
which is often encountered in cybersecurity.

3. The Cybersecurity Granger-Causality (CGC)
Framework
The CGC framework aims to characterize the presence
and utility of G-causality in the context of cybersecurity
time series, as illustrated by cyber attack rate time
series. The framework is designed with the mindset that
it can be adopted or adapted to study G-causality in
other kinds of cybersecurity time series data of a similar
nature. As highlighted in Figure 1, CGC has 4 modules.
As elaborated below, these modules are associated with
a unique set of Research Questions (RQs).

G-causality Analysis

Basic Statistical Analysis

Leveraging G-causality

Data Pre-processing

Figure 1. The CGC framework

3.1. Data Pre-processing
The input to the framework is some cybersecurity data,
such as the cyber attacks observed by cyber defense
instruments (e.g., honeypots [59, 60] or network
telescope [4]) over a period of time. In order to represent
the data as time series, we propose considering a
discrete time horizon t = 1, 2, . . . , T at some time
resolution (e.g., hour or day). The dataset contains
the attacking IP addresses that wage attacks against
some victims. Depending on the semantic richness of
the dataset, the attacks may be further divided into,
for example, different types (e.g., denial-of-service or
not). The basic CGC framework focuses on coping
with cyber attack rates, while leaving the treatment of
richer information to its extensions (partly because we
have no such semantically rich datasets). We propose
grouping the attacking IP addresses into networks at

some resolution, such as /8, /16 or /24 networks. Recall
that a /8, /16, and /24 network consists of 224, 216,
and 28 IPv4 addresses, respectively. Let n denote the
number of networks at a resolution in question (e.g., n =
28 at the /8 network resolution). For network i (1 ≤ i ≤
n) at a resolution, an appropriate pre-process is often
needed to derive a time series Xi(TC) = (xi,t)1≤t≤TC ,
where TC (1 ≤ TC ≤ T ) is the current time and xi,t is
the number of attacks that are waged from network i
at time t.

3.2. Basic Statistical Analysis
Given the pre-processed set of n time series at a network
resolution, denoted by X(TC) = {X1(TC), . . . , Xn(TC)}, we
propose conducting some basic analyses to deepen the
understanding of the dataset. We propose associating
this module with the following Research Questions
(RQs):

• RQ1: What is the overall cyber attack situational
awareness?

• RQ2: What is the evolution of the situational
awareness?

• RQ3: What is the tensity of attacks (e.g., the
number of attacks per time interval, the sparsity
of the time series?

• RQ4: What are the characteristics of the time
series?

The preceding basic statistical analysis is both necessary
and important. This is because, for model-fitting
purposes, when a time series is sparse (i.e., containing
many zeros in its observation values), it should be
eliminated from further analysis because state-of-the-
art statistical techniques cannot cope with such sparse
time series data. (Nevertheless, we note that innovative
methods are emerging in order to deal with such sparse
time series [16], which is orthogonal to the purpose of
the present study.)

For the time series that are not sparse, we analyze
their basic statistics (e.g., mean, median, max, and
variance). In order to see how the basic statistical
analysis can deepen our understanding of the data in
question and guide us in modeling the data, we mention
the following. If a time series has a mean value that
is much smaller than its variance, then the time series
cannot be modelled by the Poisson process but should
be fitted with another appropriate model. If several
time series exhibit a similar pattern (i.e., all increasing,
decreasing, simultaneously changing), then they may be
correlated with each other.

3.3. G-causality Analysis
Given a set of pre-processed time series at a network
resolution (with sparse ones eliminated), namely
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X(TC) = {X1(TC), . . . , Xn(TC)}, this module proceeds as
follows. First, test the stationarity of Xi(TC) ∈ X(TC)
because G-causality is defined over stationary time
series. For this purpose, there are many methods
(e.g., Phillips-Perron [52] or Augmented Dickey-Fuller
[53]). Second, test the G-causality for every pair of
stationary time series (Xi(TC), Xj (TC)) in X(TC) with
i , j, while recalling that Xi(TC) G-causes Xj (TC) if the
null hypothesis that Xi(TC) does not G-cause Xj (TC) is
rejected in the F-statistic test. Let pi,j (TC) denote the
p-value in the F-statistic. Then, we only consider the
time series with associated p-values that are smaller
than 0.05, because such p-values indicate that the null
hypothesis is not rejected.

Now we propose the notion of G-causality
graph, which is a simple, directed, weighted
graph representation of the G-causality relations
between the time series. A G-causality graph is
denoted by G(TC) = (X(TC), E(TC),W (TC)), where
X(TC) = {X1(TC), . . . , Xn(TC)} is the vertex or node
set that corresponds to the set of networks and
represent their respective cyber attack rate time series,
an arc (Xi(TC), Xj (TC)) ∈ E(TC) means a stationary
time series Xi(TC) G-causes time series Xj (TC),
each (Xi(TC), Xj (TC)) ∈ E(TC) is associated with a
weight pi,j (TC) which is the p-value mentioned
above, and the p-values formulates a weight matrix
W (TC) = (pi,j (TC))1≤i,j≤n. With this graph-theoretic
representation,N (Xj (TC)) = {Xi(TC) : (Xi(TC), Xj (TC)) ∈
E(TC)} represents the set of neighbor nodes that G-
cause Xj (TC), and the in-degree of a node Xj (TC) is
deg(Xj (TC), G(TC)) = |N (Xj (TC))|. Note that an isolated
vertex or node means (i) the corresponding time series
is not stationary or (ii) it has no G-causality relation to
any other node. We propose associating this module
with the following RQs:

• RQ5: What are the characteristics of G-causality
at a single network resolution?

• RQ6: Is G-causality unidirectional or bidirec-
tional?

• RQ7: Is the G-causality relation exhibited
between network resolutions?

In order to simplify notations, we may omit the
mentioning of TC when discussing general concepts
that are applicable to any TC , such as the in-
degree of node Xj in graph G, or when TC is clear
from the context. This leads to G = (X, E,W ) and
simplifies notation deg(Xj (TC), G(TC)) as deg(Xj , G). We
may further use X ′ ⊆ X to denote the set of nodes
corresponding to stationary time series and useX ′′ ⊆ X ′
to denote the set of nodes associated with a G-causality
relation.

3.4. Leveraging G-causality
One important utility of G-causality is to leverage
it to predict cyber attack rate time series to achieve
predictive situational awareness and possibly proactive
defense. Therefore, we propose associating this module
with the following RQ:

• RQ8: How should one leverage G-causality to
predict cyber attack rates?

The key research issue is to select an appropriate number
of good helpers at the proper network resolution(s); this
research issue goes beyond the notion of G-causality. In
order to address this issue, we propose considering 4
factors: direction of G-causality (i.e., unidirectional vs.
bidirectional), the number of helpers that are leveraged
for prediction, p-value (i.e., small vs. medium vs. large),
and layers of network resolutions (e.g., one vs. multiple
layers). For either empirical or theoretical comparison
purposes, these factors can be tied to any prediction
model of interest. As examples, we propose considering
4 classes of models:

• AR: It leveragesXj itself to predictXj . This model,
as reviewed above, does not leverage G-causality
(or helpers) at all and serves as the baseline model.

• GC(z + 1)VAR: This a family of models that
are inherent to the notion of G-causality, by
leveraging z time series (helpers), which G-cause
Xj (i.e., neighbor nodes pointing to Xj in the
G-causality graph), to predict Xj , where 1 ≤ z ≤
deg(Xj , G) with deg(Xj , G) being the in-degree of
node Xj in G-causality graph G. These models are
elaborated in Algorithm 1 below.

• PenVAR: This model is elaborated below and aims
to avoid overfitting and overparameterization of
the standard VAR model without leveraging G-
causality.

• GCPenVAR: This is a hybrid of PenVAR and
GC(m + 1)VAR where m = deg(Xj , G), by leverag-
ing all of the times series that G-cause Xj (i.e., all
neighbors pointing to Xj in the G-causality graph)
to predict Xj .

GC(z + 1)VARmodels. Algorithm 1 leverages z helpers,
namely z neighbors that G-cause Xj to predict Xj ,
where 1 ≤ z ≤ m andm = deg(Xj , G). The heuristic used
in Algorithm 1 is to leverage the z helpers with the
smallest p-values in the G-causality test, so as to avoid
the combinatorial explosion of

(m
z

)
where m can be

large. The heuristic corresponds to the greedy algorithm
because pi,j may be interpreted as the degree of G-
causality, meaning that the smaller the pi,j , the stronger
the G-causality. Specifically, suppose we sort the p-
values corresponding to Xj ’s neighbors increasingly as
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Algorithm 1 The GC(z + 1)VAR algorithm for predict-
ing xj,TC+1, 1 ≤ j ≤ n, by leveraging z (z ≥ 1) of the Xi ’s
in that G-cause Xj as helpers

INPUT: G-causality graph
G(TC) = (X(TC), E(TC),W (TC)) where
X(TC) = {X1(TC), . . . , Xn(TC)} and
W (TC) = (pi,j (TC))1≤i,j≤n
OUTPUT: Predictions x̂j,TC+1 for 1 ≤ j ≤ n

1: for j = 1 to n do
2: N (Xj (TC ))← {Xi (TC ) : (Xi (TC ), Xj (TC )) ∈ E(TC )} and

denote its cardinality by m for ease of reference
/* m = deg(Xj (TC), G(TC)) */

3: if m ≥ z then
4: Use the (z + 1)-variate VAR model to fit
Xj (TC) by leveraging Xj and the z helpers
corresponding to the z smallest p-values, according
to Eq.(3) and an appropriate model selection
criterion

5: Use the fitted model to predict x̂j,TC+1
6: else
7: x̂j,TC+1 ← ⊥ /* Xj is not stationary or

does not have enough G-causality helpers */
8: end if
9: end for

10: Return x̂j,TC+1 for 1 ≤ j ≤ n.

p1,j , . . . , pm,j , where j < {1, . . . , m}. Figure 2 illustrates
4 scenarios of GC(z + 1)VAR for predicting Xj , where
z ∈ {1, 2, 3, m}:

• GC2VAR: Leverage X1 with the smallest p-value
as helper to predict Xj via the bivariate VAR
model.

• GC3VAR: Leverage X1 and X2 as helpers to
predict Xj via the 3-variate VAR model.

• GC4VAR: Leverage X1, X2 and X3 as helpers to
predict Xj via the 4-variate VAR model.

• GC(m + 1)VAR: Leverage all of the m neighbor
X1,j , . . . , Xm,j as helpers to predict Xj via the (m +
1)-variate VAR model.

(a) GC2VAR (b) GC3VAR

2 3

j

1

j

1

(c) GC4VAR

2

j

1

(d) GC(m+1)VAR

2

j

1 … m

Figure 2. Illustration of GC(z + 1)VAR, where prefix “GC”
indicates leveraging G-causality and arrows are colored to
indicate their respective p-values with p1,j ≤ p2,j ≤ . . . ≤ pm,j .

PenVAR and GCPenVAR models. The PenVAR
model can predict d-variate time series altogether,
meaning 1 ≤ d ≤ n where n is the number of networks
at a resolution. Without loss of generality, let
{xt = (x1,t , . . . , xd,t , xj,t)>}t=1,2,... denote the (d + 1)-
dimensional vector time series. The standard VAR
model can be represented as

xt = ν +
∑̀
l=1

Φ (l)xt−l + ut (4)

where ` is the lag, ν represents a (d + 1) × 1 intercept
vector, Φ (l) denotes a (d + 1) × ` coefficient matrix, and
ut is a (d + 1) × 1 white noise vector (i.e., independent
and identically distributed normal random vector with
mean 0 and covariance matrix Σµ, namely a diagonal
matrix with elements representing variances). The
model fitting is to minimize the least square errors

min
ν,Φ (l)

∥∥∥∥∥∥∥xt − ν − ∑̀
l=1

Φ (l)xt−l

∥∥∥∥∥∥∥
2

F

(5)

which involves (d + 1) + `(d + 1)2 regression parame-
ters, where || · ||2F represents the Frobenius norm. This
means that the standard VAR model is likely unstable or
infeasible when d is large (i.e., high dimensions), which
motivates PenVAR.

Let Φ =
(
Φ (1), . . . ,Φ (`)

)
. The PenVAR model reduces

the parameter space and has the following optimization
objective [61]:

min
ν,Φ (l)

∥∥∥∥∥∥∥xt − ν − ∑̀
l=1

Φ (l)xt−l

∥∥∥∥∥∥∥
2

F

+ λ||Φ ||1, (6)

where λ > 0 is the penalty parameter and ||Φ ||1
represents the L1 norm. The penalty parameter λ̂ is
selected to minimize the one-step ahead mean square
prediction error (MSPE) [61]:

MSPE(λ) =
1
b

k+b∑
t=k+1

‖x̂t − xt‖2 , (7)

where || · ||2 is the L2 norm.
The GCPenVAR model is obtained by incorporating

G-causality into the PenVAR model. Unlike the PenVAR
models that predict a vector of d-variate time series
simultaneously, the GCPenVAR model, like GC(z +
1)VAR, leverages z helpers only, where 1 ≤ z ≤ d.

4. Case Study
Now we present a case study by applying the
framework to analyze a specific dataset collected by
a low-interaction honeypot. A honeypot is a cyber
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defense instrument that emulates real-world Internet-
based vulnerable services at a number of IP addresses.
Since these services are exclusively set up for attracting
attacks (i.e., no legitimate services are associated with
these IP addresses), it is a widely-accepted practice
to treat the incoming, unsolicited network traffic as
attacks [4, 5, 7, 62–69]. The honeypot in question
monitors 1,024 IP addresses and runs a number of low-
interaction honeypot programs, including Honeyd [70]
and Nepenthes [71]. The notion of low-interaction means
that the honeypot only partly emulates the services
in question, which explains why the dataset is only
used for analyzing the cyber attack rate (rather that
cybersecurity semantically richer analyses). The dataset
is collected between 2/6/2014 and 5/13/2014 (i.e.,
T = 97 days). Although the dataset is six years old, it
is sufficient for demonstrating the usefulness of CGC
(while noting that it is often difficult for academic
researchers to have access to such data). Researchers
with newer datasets can adopt or adapt CGC to analyze
their own datasets.

4.1. Data Pre-processing

The raw data collected by the honeypot is in the
standard PCAP format, which is converted into the flow
format to represent attacks. A flow is described by a
tuple of five fields: source (i.e., attacker in this paper)
IP address, destination (i.e., victim or honeypot in this
paper) IP address, source port number, destination port
number, and protocol [72]. For converting PCAP data
into flow data, a widely-used tool, known as the Yet
Another Flowmeter (YAF) with super_mediator [72], is
used. This process involves two parameters: the flow
idle time and the flow lifetime. We use a widely-used
combination of them: 60 seconds for the flow idle time
and 300 seconds for the flow lifetime [3–5, 69].

The source (i.e., attacker) IP addresses are grouped
into networks at three resolutions: (i) /8 networks,
with each consisting of 224 IP addresses; (ii) /16
networks, with each consisting of 216 IP addresses;
and (iii) /24 networks, with each consisting of 28 IP
addresses. Since the framework is equally applicable to
any network resolution, we extend the notation G(TC) =
(X(TC), E(TC),W (TC)) to accommodate network resolu-
tions as subscripts [r] where r ∈ {/8, /16, /24}. For exam-
ple, X[/8](TC) denotes the set of nodes (i.e., the attack
rate time series) at the /8 network resolution, X ′[/8] ⊆
X[/8] denotes the corresponding subset of stationary
time series, and X ′′[/8] ⊆ X

′
[/8] denotes the corresponding

subset of stationary time series that are associated with
at least one G-causality.

In order to indicate cross-network-resolution analy-
ses, we associate lower-resolution networks with their
belonging higher-resolution networks. For example,

X ′[/16∈/8](TC) denotes the stationary time series corre-
sponding to the /16 networks that belong to a /8
network in question; X ′′[/16∈/8](TC), X ′[/24∈/16](TC), and
X ′′[/24∈/16](TC) are similarly defined.

4.2. Basic Statistical Analysis
Characterizing the Overall Cyber Attack Situational Awareness
(Answering RQ1). In order to draw insights into the
network resolution(s) that would be more appropriate
for characterizing the overall cyber threat situational
awareness, Figure 3 plots the time series |X[r](97)|,
namely the number of attacking networks at a
resolution during the time horizon of T = 97 days. We
make three observations.

First, on average over the T = 97 days, the hon-
eypot observed: |X[/8](97)| = 188 or 188/28 = 73.44%
/8 attacking networks per day; |X[/16](97)| = 12, 292 or
12, 292/216 = 18.76% /16 attacking networks per day;
and |X[/24](97)| = 40, 840 or 40, 840/(224 − 4) = 0.24%
/24 attacking networks per day where “−4” is to exclude
the 4 /24 networks corresponding to the honeypot
itself. In other words, the attacking networks observed
by the honeypot on a daily basis concentrate at a
small percentage (0.24%) of /24 networks, which are
scattered in a significant number of /16 networks and
even more so in a large number of /8 networks. These
metrics reflect the average cyber threat landscape sit-
uational awareness, especially that some networks are
better managed than others and that network resolution
matters when measuring the percentage of attacking
networks.

Second, cumulatively over the T = 97 days, the hon-
eypot observed: 204 or 204/28 = 79.69% /8 attack-
ing networks; 27, 019 or 27, 019/216 = 41.23% /16
attacking networks; and 842, 642 or 842, 642/(224 − 4) =
5.02% /24 attacking networks. These metrics reflect
that as time goes by, more networks get compromised
and then wage attacks against others. Nevertheless,
within a significant period of time (T = 97 days), the
attacking computers still concentrate at a relatively
small number of /24 networks (5.02%), which are scat-
tered in large numbers of /16 and /8 networks. This
further suggests that some networks are much better
managed than others because the honeypot does not
observe any attack from 94.08% of /24 networks over
T = 97 days.

Third, by contrasting the network resolutions, we
observe that there is a substantial drop at t = 41 (or
3/18/2014) in terms of the numbers of /16 and /24
attacking networks. However, this substantial drop is
at most slightly reflected in the number of /8 attacking
networks. This means that the /16 and /24 networks
that stop waging attacks at t = 41 belong to a small
number of /8 attacking networks. Unfortunately, it is
not clear what caused this drop at t = 41. One may
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(a) |X[/8](97)| (b) |X[/16](97)| (c) |X[/24](97)|

Figure 3. Time series |X[r](97)|, where the x-axis represents time (unit: day) and the y-axis represents |X[r](97)| (i.e., the number
of networks at resolution r ∈ {/8, /16, /24} that wage at least one attack during a day).

speculate that there is an Internet-wide operation in
cleaning up botnets residing in a small number of
/8 networks, we cannot find any information on such
operations (one source of botnet takedown operations
is https://en.wikipedia.org/wiki/Botnet). Another
possible, perhaps less likely, scenario is that the
honeypot does not capture most attacks in the Internet
because it only has 1,024 IP addresses; this is less
likely because the drop starting at t = 41 seems to be
consistent for t ∈ [41, 97].

Insight 1. For measuring cyber threat situational aware-
ness, network resolution matters and /24 resolution
would be more appropriate than /16 and /8, because
attacking computers often belong to a small percentage
of /24 networks that are scattered in many /8 networks.

Characterizing the Evolution of Cyber Threat Situational
Awareness (Answering RQ2). In order to characterize the
evolution of situational awareness, Figure 4a plots the
percentage of the attacking /16 networks with respect
to the /8 networks to which they belong, where time
is divided into t ∈ [1, 40] and t ∈ [41, 97] because of
the significant difference at t = 41 (cf. Figures 3b and
3c). We make two observations. First, there are 204
/8 attacking networks for t ∈ [1, 40]. Among them,
70 (or 34.31%) networks have no more than 25%
of their belonging /16 networks waging attacks; 111
(or 54.41%) networks have more than 50% of their
belonging /16 networks waging attacks; 64 (or 31.37%)
networks have more than 75% of their belonging /16
networks waging attacks. On the other hand, there
are also 204 /8 attacking networks for t ∈ [41, 97],
and a similar phenomenon is exhibited. This explains
why Figure 3a does not show a significant drop at
t = 41. Second, when compared with the percentage
of attacking /16 networks during t ∈ [1, 40], the
percentage during t ∈ [41, 97] exhibits the following:
45 (or 22.06%) /8 networks have more belonging /16
attacking networks; 20 (or 9.80%) /8 networks have
the same number of belonging /16 attacking networks;
139 (or 68.14%) /8 networks have fewer belonging /16

attacking networks. This also explains why Figure 3a
does not show a significant drop at t = 41.
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(b) Percentage of /24 networks waging attacks.

Figure 4. Plots of the percentage of attacking networks at higher
vs. lower network resolution during t ∈ [1, 40] vs. t ∈ [41, 97].

Figure 4b plots the percentage of attacking /24
networks with respect to the /16 networks to which
they belong, with time t ∈ [1, 40] vs. t ∈ [41, 97]. We
make two observations. First, among the 27, 009
/16 attacking networks during t ∈ [1, 40], 24, 948 (or
92.37%) networks have no more than 25% of their
belonging /24 networks waging attacks; 450 (or 1.67%)
networks have more than 50% of their belonging /24
networks waging attacks; 112 (or 0.41%) networks have
more than 75% of their belonging /24 networks waging
attacks. On the other hand, there are also 27, 009 /16
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attacking networks during t ∈ [41, 97]. Among them,
25, 586 (or 94.73%) networks have no more than 25%
of their belonging /24 networks waging attacks; 349
(or 1.29%) networks have more than 50% of their
belonging /24 networks waging attacks; 79 (or 0.29%)
networks have more than 75% of their belonging
/16 networks waging attacks. Second, when compared
with the percentage of /24 attacking networks during
t ∈ [1, 40], the percentage during t ∈ [41, 97] exhibits
the following: 7, 427 (or 27.50%) /16 networks have
more /24 attacking networks; 1, 641 (or 6.08%) /16
networks have the same number of /24 attacking
networks; 17, 941 (or 66.48%) /16 networks have fewer
/24 attacking networks. This explains why Figure 3b
exhibits a significant drop at t = 41.

Insight 2. For most /16 and /24 networks, their security
posture do change significantly during the T = 97 days.

Insight 2 hints that defenders have been active in
detecting and cleaning up attacking computers, albeit
it may take a long period of time (e.g., at least 40 days
as shown by this dataset) in having a globally visible
effect.

Characterizing the Tensity of Attacks (Answering RQ3).
Figure 5 plots the number of networks waging attacks
(y-axis, in log scale) during how many of the T = 97
days (x-axis). From Figure 5a, we observe that among
the 28 possible /8 attacking networks during the T = 97
days, 52 (or 20.31%) networks do not wage attacks;
59 (or 23.05%) wage attacks for less than 7 days; 191
(or 74.61%) wage attacks at least for (not necessarily
consecutive) 30 days; 181 (or 70.70%) wage attacks
for more than 90 days; and 135 (or 52.73%) wage
attacks during the entire T = 97 days. From Figure 5b,
we observe that among the 216 possible /16 attacking
networks during the T = 97 days, 38, 517 (or 58.77%)
networks do not wage any attacks; 43, 259 (or 66.01%)
wage attacks for less than 7 days; 15, 577 (or 23.77%)
wage attacks at least for 30 days; 4, 316 (or 6.59%)
wage attacks more than 90 days; and 292 (or 0.45%)
wage attacks during the entire T = 97 days. From Figure
5c, we observe that among the 224 − 4 possible /24
attacking networks during the T = 97 days, 15, 934, 570
(or 94.98%) networks do not wage attacks as per the
honeypot; 16, 647, 331 (or 99.23%) wage attacks for less
than 7 days; 19, 962 (or 0.12%) wage attacks at least
for 30 days; 1, 280 (or 0.007%) wage attacks more than
90 days; and 51 (or 0.0003%) wage attacks during the
entire T = 97 days.

If we define intense attacking networks as those
which wage attacks more than 90 days of the
entire T = 97 days, we observe 70.70% /8 attacking
networks, 6.59% /16 attacking networks and 0.007%
/24 attacking networks. This means that the intensity
of attacking networks at different resolutions can be
different at orders of magnitudes, which resonates

Insight 1, which however copes with all attacking
networks.

Insight 3. The percentages of intense attacking networks at
different network resolutions are orders-of-magnitude
different, which means that network resolution matters
when characterizing the evolution of intense attacking
networks.

Characterizing the Time Series (Answering RQ4). The
preceding characteristics are made over the entire
time horizon of the dataset. Since a core value of
studying cyber attack data is to conduct prediction (i.e.,
forecasting). In the real world, a defender would use
the data collected up to current time TC to predict
future cyber attack rates for time t > TC . This means
that for prediction purposes, we should characterize
the time series in X(TC). Given that T = 97 days is
the time horizon of the dataset, we propose starting
prediction at TC = 90 (i.e., predicting cyber attack rates
for t ∈ [91, 97]). For model-fitting purposes, we propose
considering the time series that have at least 30 (not
necessarily consecutive) non-zero observations among
the first 90 days, where 30 is rule-of-thumb in statistic
modeling of time series data. This leads to |X[/8](90)| =
190 (/8 networks), |X[/16](90)| = 15, 244 (/16 networks),
and |X[/24](90)| = 18, 565 (/24 networks).

Table 2. Basic statistics of times series X[r](90)’s, where
LB (UB) stands for lower-bound or minimum (upper-bound or
maximum) value of a statistic among the networks at resolution
r ∈ {/8, /16, /24}.

Network Mean Median Variance MAX
resolution LB UB LB UB LB UB LB UB
r = /8 0.689 186.9 0 223.5 0.473 10,608 3 255
r = /16 0.333 97.656 0 103.5 0 4,939.17 1 231
r = /24 0.333 83.844 0 65.0 0 1,623.504 1 189

Table 2 presents the summary statistics of the
time series. By taking /8 networks as an example,
we make the following observations. The 190 mean
values of the |X[/8](90)| = 190 time series, namely∑90
t=1 xi,t/90 for Xi(90) where 1 ≤ i ≤ 190, fall into

interval [0.689, 186.900] (unit: attacks per day); their
medians fall into [0, 223.500] attacks per day (where
fraction is caused by that TC = 90 is an even number);
their variances fall into [0.473, 10, 608]; and their
maximum numbers of attacks per day fall into [3, 255],
perhaps because the honeypot is small (i.e., 1,024 IP
addresses). Note that the medians of some /8, /16,
and /24 networks are 0, because these networks do
not wage attacks for at least 45 days (50% of the 90
days). The variances of some /16 and /24 networks are
0 because a constant number of attacks are waged from
these networks. Specifically, one /16 network wages 1
attack per day for the first 90 days; one /16 network
wages 2 attacks per day for the first 90 days; and 31
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(a) Tensity of /8 attacking networks (b) Tensity of /16 attacking networks (c) Tensity of /24 attacking networks

Figure 5. Plots of attack tensity: the number of networks (y-axis, in log scale) that waged attacks during x of the T = 97 days.

/24 networks wage 1 attack per day for the first 90
days. These time series are not interesting in statistic
sense and are eliminated from our study, leading to
the updated |X[/8](90)| = 190, |X[/16](90)| = 15, 242, and
|X[/24](90)| = 18, 534 for G-causality analyses.

We further observe that most variances are larger
than their respective means. By looking into the
individual time series, we observe that among the
|X[/8](90)| = 190 time series corresponding to the /8
resolution, 181 time series have a variance that is
larger than their respective mean (including 132 with
a variance that is at least one order of magnitude
larger than the mean); no time series have a variance
that equals the respective mean; 9 time series
have a variance that is smaller than the respective
mean. Among the |X[/16](90)| = 15, 242 time series
corresponding to the /16 resolution, 9, 953 have a
variance that is larger than their respective mean
(including 233 with a variance that is at least one
order of magnitude larger than their respective mean);
14 have a variance that equals their respective mean;
and 5, 275 have a variance that is smaller than their
respective mean. Among the |X[/24](90)| = 18, 534 time
series corresponding to the /24 resolution, 2, 434 have
a variance that is larger than their respective mean
(including 9 with a variance that is at least one order of
magnitude larger than their respective mean); 28 have a
variance that equals their respective mean; and 16, 099
have a variance that is smaller than their respective
mean. The fact that a time series has a variance that
is much larger than its mean hints that the time series
cannot be modelled by the Poisson process, which
means that other kinds of models should be used to fit
them.

Insight 4. Most cyber attack rate time series cannot
possibly be modeled by the Poisson process because
their variance is (much) larger than their respective
mean.

4.3. Characterizing G-causality
Guided by the framework, we now analyze G-causality
between the time series at a certain resolution and

across network resolutions. The first step is to test
the stationarity of the cyber attack rate time series.
Since we will use the time series in X(90) to start
making protection, we test stationarity of these time
series rather than those which belong to X[r](97). Table
3 summarizes the test results on |X ′[r](90)|, namely the
number of stationary time series at network resolution
r ∈ {/8, /16, /24}. For example, among the |X[/8](90)| =
190 time series at the /8 network resolution, only
|X ′[/8](90)| = 75 are stationary. Note that a time series
corresponding to a low network resolution (e.g., /8)
is stationary does not necessarily mean that the time
series corresponding to its sub-networks (i.e., /16) are
stationary, and vice versa. In total, 74 of the X ′[/8](90) =
75 stationary time series at the /8 network resolution
contain at least one stationary time series at the /16
network resolution; 2, 360 of the X ′[/16](90) = 8, 007
stationary time series at the /16 network resolution
contain at least one stationary time series at the /24
network resolution.

Table 3. Stationarity and G-causality test results of the time
series with at least 30 non-zero observations up to time TC = 90,
where |X[r](90)| is the number of time series at a network
resolution r ∈ {/8, /16, /24} that are tested, and |X ′[r](90)| is
the number of time series that are stationary, |X ′′[r](90)| is the
number of time series that have at least one G-causality arc, and
|E[r](90)| is the total number of G-causality arcs.

Net. Res. |X[/r](90)| |X′[/r](90)| |X′′[/r](90)| |E[/r](90)|
r = /8 190 75 75 2,452
r = /16 15,242 8,007 8,006 27,415,799
r = /24 18,534 12,990 12,926 69,832,290

G-causality Analysis at a Single Network Resolution
(Answering RQ5). We conduct the G-causality test for
all pairs of time series up to time TC = 90. Recall that
the G-causality test result for a pair of stationary time
series (Xi(90), Xj (90)) is a p-value, denoted by pi,j (90). If
pi,j (90) < 0.05, the null hypothesis that Xi(90) does not
G-cause Xj (90) is rejected.
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Figure 6. Visualizing G-causality sub-graph G[/8](90) =
(X[/8](90), E[/8](90),W[/8](90)) after eliminating the isolated
nodes that correspond to non-stationary time series (note: each
stationary time series has associated G-causality in this case).

Figure 6 plots the G-causality connections (i.e., arcs)
between the stationary time series at the /8 network
resolutions for TC = 90, namely the sub-graph of
G[/8](90) = (X[/8](90), E[/8](90),W[/8](90)) corresponding
to X ′′[/8](90), by eliminating the nodes in X[/8](90) that
correspond to non-stationary time series (while noting
that each stationary time series has associated G-
causality connection in this particular case), where
a node’s size and color encodes its in-degree (i.e.,
the larger and darker the node, the larger the in-
degree), E[/8](90) represents the G-causality connections
between the nodes, W[/8](90) is encoded into the color
such that a smaller pi,j (90) is indicated as a darker
color (albeit the differences are too small to be visually
noticeable). The 30 nodes at the outer circle have the
highest in-degrees, meaning that they are G-caused
by many nodes. Note that we are unable to visualize
G[/16](90) and G[/24](90) because they have too many
nodes.

Insight 5. G-causality is widely exhibited by cyber attack
behaviors, hinting that cyber attacks are not random.

Characterizing the Direction of G-causality (Answering RQ6).
Recall that unidirectional G-causality means that
(Xi , Xj ) ∈ E implies (Xj , Xi) < E; whereas, bidirectional
G-causality relation means that (Xi , Xj ) ∈ E implies
(Xj , Xi) ∈ E. Figure 7a plots the density of the
nodes’ in-degrees at the /8 resolution, by separating
unidirectional from bidirectional G-causality. Among

the |X ′′[/8]| = 75 nodes associated with G-causality,
their in-degrees vary between 1 and 54. This means
that some models are not applicable to some nodes
(e.g., a node with in-degree 1 can only be applied
to GC2VAR, but not GC3VAR because the latter
requires 2 helpers). There are |E[/8](90)| = 2, 452 pairs
of stationary time series at the /8 resolution that
have associated G-causality. Among them, 1, 011
(41.24%) are unidirectional, and 1, 441 (58.76%) are
bidirectional. Figure 7b plots the density of the
nodes’ in-degrees at the /16 resolution. Among
the |X ′′[/16]| = 8, 006 time series with associated G-
causality, their in-degrees vary between 1 and 4, 926.
There are |E[/16](90)| = 27, 415, 799 pairs of stationary
time series that have associated G-causality. Among
them, 14, 216, 880 (51.86%) are unidirectional and
13, 198, 919 (48.14%) are bidirectional. Figure 7c plots
the density of the in-degrees at the /24 resolution.
Among the |X ′′[/24]| = 12, 926 time series, their in-degrees
vary between 1 and 6, 281. There are |E[/24](90)| =
69, 832, 290 pairs of stationary time series that
have associated G-causality. Among them, 39, 256, 780
(56.22%) are unidirectional and 30, 575, 510 (43.78%)
are bidirectional.

Insight 6. Bidirectional G-causality is widely exhibited at
a single network resolution.

G-causality Analysis across Network Resolutions (Answering
RQ7). For cross-resolution G-causality analysis, we
want to know for example, whether or not a large
number of cyber attacks waged from a /8 network
are mainly caused by the cyber attacks waged from
which of its belonging /16 networks; in order words,
we want to know if G-causality can be leveraged to
identify the /16 networks that are responsible for the
/8 network attack behaviors. As mentioned above, there
are 74 /8 networks, 2, 360 /16 networks, and 6, 017
/24 networks that are applicable for this analysis. To
make the discussion succinct, let |X ′′[/16∈/8](90)| denote
the number of nodes (i.e., time series) at the /8
network resolution that have associated G-causality
arc(s) between a /8 network and its belonging /16
networks, and |E[/16∈/8](90)| denote the total number
of such G-causality arcs. We have |X ′′[/16∈/8](90)| =
66 and |E[/16∈/8](90)| = 3, 706. Similarly, we have
|X ′′[/24∈/16](90)| = 1, 351 and |E[/24∈/16](90)| = 3, 783. For
cross-resolution G-causality analysis, we observe that
among the |E[/16∈/8](90)| = 3, 706 G-causality arcs, 1, 011
(27.28%) are unidirectional and 2, 695 (72.72%) are
bidirectional; among the |E[/24∈/16](90)| = 3, 783 G-
causality arcs, 1, 133 (29.95%) are unidirectional and
2, 650 (70.05%) are bidirectional. That is, cyber attack
rates at a lower network resolution are strongly
indicative of the cyber attack rates corresponding
to its belonging higher-resolution sub-network. This
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Figure 7. Plot of the density (i.e., frequency) of the nodes’ in-degrees in the G-causality graph G[r](90) for r ∈ {/8, /16, /24}.

is reasonable because a lower resolution network is
composed of a number of higher resolutions networks.

Insight 7. G-causality across network resolution is widely
observed, with most being bidirectional.

4.4. Leveraging G-causality (Answering RQ8)
As described in the framework, the key issue is to
select an appropriate number of good helpers at the
proper network resolution(s). The framework suggests
to investigate at least the following 4 factors: direction
of G-causality (i.e., unidirectional vs. bidirectional), the
number of helpers that are leveraged for prediction,
the p-value (i.e., small vs. medium vs. large), and
the layers of network resolutions (e.g., one vs. two
layers). In order to distinguish predictions leveraging
bidirectional vs. unidirectional, G-causality, we use
suffix “2” to indicates the former (e.g., GC3VAR2 vs.
GC3VAR).

Owing to the limited length of time series, we
use rolling forecast, namely using X[r](TC) to predict
X[r](TC + 1), where 90 ≤ TC ≤ 96 and r ∈ {/8, /16, /24}.
In order to build prediction models for PenVAR and
GCPenVAR with TC = 90, we divide the attack data into
three parts: 40 observations for model initialization,
50 observations for training, and the rest 7 for
forecast evaluation. For fitting the PenVAR model,
we need to select the model with the parameter λ̂
that minimizes the one-step ahead MSPE given by
Eq. (7), namely MSPE(λ) = 1

50
∑90
t=41 ‖x̂t − xt‖2, where

|| · ||2 is the L2 norm. For this purpose, we use the
grid search method to identify the optimal λ̂. At
each network resolution r, we set lag ` = 2 to balance
model parsimony and fitting performance. This is
because a large ` will lead to more variables in the
model, which will impose a higher computational
cost. Moreover, we observe that ` = 2 leads to good
prediction accuracy. PenVAR is only conducted at the
/8 network resolution because the compute resources
available to makes it is infeasible to apply it to the /16
and /24 resolutions, where n is very large or extremely

high dimensions (i.e., |X ′′[/16]90| = 8, 006 and |X ′′[/24]90| =
12, 926). Nevertheless, GCPenVAR does not suffer from
this computational problem because it only considers
(m + 1)-variate time series where m = deg(Xj , G) is the
in-degree of node Xj and m << n. In what follows we
characterize the impact of the four factors.

Factor 1: Direction of G-causality. At each network
resolution, we apply the applicable models described
in the framework to predict Xj (TC + 1) for Xj (TC) ∈
X(TC) and TC ∈ [90, 96], except that PenVAR is only
conducted at the /8 network resolution (owing to
the computational feasibility issue mentioned above).
In our experiments, we further encounter that many
predictions cannot succeed because of the singularity
problem associated with the GC(z + 1)VAR models,
namely that inverse of a matrix does not exist when its
determinant is zero. (It is worth mentioning that it may
be technically possible to prune the list of independent
variables to alleviate the singularity problem. However,
we do not consider this because we aim at fair
comparison between the models, which means that the
input to these models should be the same. Nevertheless,
developing new models to cope with the singularity
problem in general is certainly an interesting problem
for future research.) As a consequence, predictions are
successful only for 31 /8 networks, 1, 820 /16 networks,
and 2, 159 /24 networks. In order to compare the
effect of unidirectional vs. bidirectional G-causality,
we propose separating the unidirectional G-causality
relations from the the bidirectional ones. This also
means that we separately sort the p-values associated
with the unidirectional G-causality relations and the p-
values corresponding to the bidirectional ones.

Table 4 presents the summary statistics of prediction
SMAPEs incurred by the same set of models leveraging
unidirectional vs. bidirectional G-causality, while
recalling that AR is the baseline model and PenVAR
is only feasible at the /8 network resolution. Figure
8 further presents the boxplots of the SMAPEs of the
models. From Table 4 and Figure 8, we make the
following observations.
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Table 4. Summary statistics of the SMAPE values of predictions
by different models at /8, /16, and /24 resolutions, where bold-
font highlights the smallest SMAPE values or the most accurate
predictions among all the models at a resolution.

31 /8 networks with predictions
Model Min Q1 Q2 Mean SD Q3 Max
GCPenVAR 0.035 0.176 0.330 0.377 0.284 0.480 1.192
GC(m + 1)VAR 0.065 0.177 0.566 1.042 0.878 2.000 2.000
GC5VAR 0.077 0.142 0.269 0.345 0.284 0.394 1.110
GC4VAR 0.017 0.086 0.230 0.339 0.398 0.422 2.000
GC3VAR 0.070 0.129 0.273 0.329 0.273 0.379 1.111
GC2VAR 0.032 0.126 0.255 0.340 0.286 0.444 1.058

GCPenVAR2 0.056 0.152 0.311 0.358 0.282 0.451 1.117
GC(m + 1)VAR2 1.089 2.000 2.000 1.961 0.170 2.000 2.000
GC5VAR2 0.012 0.056 0.083 0.165 0.210 0.157 0.924
GC4VAR2 0.033 0.100 0.192 0.256 0.214 0.336 0.938
GC3VAR2 0.060 0.112 0.262 0.327 0.272 0.420 1.139
GC2VAR2 0.060 0.111 0.219 0.349 0.400 0.359 2.000

PenVAR 0.035 0.177 0.330 0.377 0.284 0.480 1.190
AR 0.029 0.160 0.287 0.340 0.251 0.390 1.030

1,820 /16 networks with predictions
Model Min Q1 Q2 Mean SD Q3 Max
GCPenVAR 0.025 0.410 0.762 0.859 0.512 1.267 2.000
GC(m + 1)VAR 0.045 0.378 0.758 0.860 0.536 1.281 2.000
GC5VAR 0.034 0.381 0.755 0.854 0.533 1.281 2.000
GC4VAR 0.020 0.248 0.680 0.757 0.538 1.200 2.000
GC3VAR 0.034 0.366 0.738 0.845 0.534 1.267 2.000
GC2VAR 0.022 0.373 0.740 0.845 0.533 1.265 2.000

GCPenVAR2 0.006 0.415 0.766 0.858 0.512 1.272 2.000
GC(m + 1)VAR2 0.286 1.143 1.714 1.459 0.566 2.000 2.000
GC5VAR2 0.054 0.857 1.465 1.397 0.584 2.000 2.000
GC4VAR2 0.034 0.226 0.634 0.734 0.539 1.197 2.000
GC3VAR2 0.030 0.344 0.729 0.828 0.537 1.271 2.000
GC2VAR2 0.005 0.380 0.769 0.876 0.555 1.339 2.000

AR 0.006 0.345 0.637 0.739 0.444 1.064 1.714
2,159 /24 networks with predictions

Model Min Q1 Q2 Mean SD Q3 Max
GCPenVAR 0.007 0.589 1.104 1.059 0.547 1.530 2.000
GC(m + 1)VAR 0.022 0.571 1.143 1.128 0.581 1.714 2.000
GC5VAR 0.015 0.571 1.121 1.072 0.571 1.558 2.000
GC4VAR 0.006 0.427 0.925 0.920 0.556 1.445 2.000
GC3VAR 0.018 0.602 1.017 1.001 0.468 1.382 2.000
GC2VAR 0.008 0.544 1.068 1.033 0.566 1.527 2.000

GCPenVAR2 0.009 0.586 1.112 1.064 0.552 1.538 2.000
GC(m + 1)VAR2 0.039 0.857 1.143 1.243 0.566 1.714 2.000
GC5VAR2 0.018 0.646 1.143 1.154 0.574 1.714 2.000
GC4VAR2 0.286 2.000 2.000 1.913 0.262 2.000 2.000
GC3VAR2 0.286 2.000 2.000 1.906 0.286 2.000 2.000
GC2VAR2 0.004 0.568 1.086 1.048 0.568 1.525 2.000

AR 0.001 0.514 0.950 0.923 0.472 1.313 1.714

First, at the /8 network resolution, all of the
bidirectional GC(z + 1)VAR models with z ∈ [1, m] have
at least five statistic values that are lower than their
unidirectional counterparts. Consider GC5VAR vs.
GC5VAR2 as an example, we observe the following:
the minimum SMAPE value of GC5VAR vs. GC5VAR2
G-causality is 0.077 vs. 0.012; the 25% quantile
(Q1) of the SMAPE values is 0.142 vs. 0.056; the
50% quantile (Q2 or median) is 0.269 vs. 0.083;
the mean is 0.345 vs. 0.165; the standard deviation
is 0.284 vs. 0.210; the 75% quantile (Q3) is 0.394
vs. 0.157; and the maximum is 1.110 vs. 0.924.
That is, all of the 7 summary statistics show that
bidirectional G-causality leads to lower SMAPE values
(i.e., higher prediction accuracy) when compared with
unidirectional G-causality. This phenomenon is also
exhibited by GC3VAR and GC4VAR, but not by
GC2VAR, GC(m + 1)VAR, or GCPenVAR. At both /16

and /24 network resolutions, we observe that each
GC(z + 1)VAR2 has no or a few statistics that are lower
than its GC(z + 1)VAR counterpart and that the GC(z +
1)VAR2 models are not necessarily more accurate than
the baseline AR model.

Insight 8. Leveraging bidirectional G-causality at a
single network resolution achieves a higher prediction
accuracy than leveraging unidirectional G-causality.

Insight 8 may be partly attributed to that the time
series corresponding to lower network resolutions are
denser (i.e., on average among all of the time series
during the TC = 90 days, there are 60.17%, 71.67%, and
97.94% non-zero observations at the /24, /16, and /8
network resolutions, respectively).

Second, AR is indeed less accurate than the models
that leverage G-causality at the /8 network resolution,
but is surprisingly more accurate for 546 time series at
the /16 network resolution and 272 time series at the
/24 network resolution. By looking into the data, we
notice that these time series have high variations. On
the other hand, GCPenVAR is more accurate than AR
and the other models that leverage G-causality for 72
time series at the /16 network resolution and 47 time
series at the /24 network resolution. By looking into the
data, we notice that these time series are low variations
and relatively sparse (typically having no more than
50 non-zero observations over the TC = 90 days). This
suggests that GCPenVAR may be better at dealing with
sparse time series. Nevertheless, GCPenVAR is less
accurate than AR and the other models that leverage G-
causality for 77 time series at the /16 resolution and 12
time series at the/24 resolution.

Insight 9. G-causality is not always useful in predicting
time series with variations, and GCPenVAR may be
better at predicting sparse time series, perhaps because
it can leverage more information (i.e., all, rather than
some, neighbors).

Factor 2: The number of “helpers”. From the
perspective of whether more “helpers” would lead
to more accurate predictions, Table 4 shows that the
prediction accuracy increases with the number z of
helpers when z ∈ [1, 4]. We observe that all of the 7
summary statistics show that GC5VAR2 has a lower
SMAPE value (i.e., higher prediction accuracy) than
GC4VAR2, which in turn has a lower SMAPE value
than GC3VAR2. While the Min of GC3VAR2 equals that
of GC2VAR2, the Mean, SD (Standard Deviation), Max
of GC3VAR2 are lower than that of the GC2VAR2’s.
This suggests that GC3VAR2 offers a higher prediction
accuracy than GC2VAR2. That is, GC(z + 1)VAR2 for
z ∈ [1, 4] suggests that more helpers would lead to more
accurate predictions. However, when z > 4 Table 4
shows that the prediction accuracy decreases with z.
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(a) /8 networks (b) /16 networks (c) /24 networks

Figure 8. Box plots of the SMAPE values of different models.

Insight 10. While leveraging G-causality can improve
prediction accuracy at a single network resolution,
using too many helpers might reduce prediction
accuracy because GC5VAR is more accurate than
GC(m + 1)VAR when m > 4.

Insight 10 suggests that there may be a threshold,
below which using more helpers (i.e., the number of time
series that G-causes the target time series) can improve
prediction accuracy, but above which the prediction
accuracy actually decreases. This may or may not be
attributed to over-fitting.

Factor 3: The magnitude of p-values. We propose
classifying the pi,j (TC)’s into three categories: small
( pi,j (TC) < 0.01); medium (0.01 ≤ pi,j (TC) < 0.03); and
large (0.03 ≤ pi,j (TC) < 0.05). Since leveraging bidirec-
tional G-causality leads to more accurate predictions
than leveraging unidirectional G-causality (Factor 1),
we only consider the former.

Table 5 presents the summary statistics of prediction
accuracy of GC(z + 1)VAR2 for z ∈ [1, 4]. Note that we
only consider these four models because they contain
the three categories of p-values (i.e., small vs. medium
vs. large) and therefore permit comparison between
them. We observe that all of the 7 statistics show
that small p-values correspond to small SMAPE values.
However, this phenomenon is not exhibited at the /16
and /24 network resolutions. This discrepancy may
be attributed to the matter of data sparsity. To see
this, we observe that among the /8 networks, the
time series in the small vs. medium vs. large p-value
categories on average have 1.19% vs. 1.17% vs. 3.64%
observation 0’s, respectively. By contrast, among the /16
networks, the time series in small vs. medium vs. large
p-value categories on average have 28.35% vs. 27.68%
vs. 27.79% observation 0’s; among the /24 networks, the
time series in the small vs. medium vs. large p-values on
average have 40.05% vs. 39.73% vs. 39.71% 0’s.

Insight 11. When time series are dense, a smaller p-value
in the G-causality test (roughly speaking, stronger G-
causality) leads to a higher prediction accuracy.

Factor 4: Layers of network resolutions. In order
to see the usefulness of G-causality across network
resolutions, we perform predictions by the same set
of models, while making a time series corresponding
to a low-resolution network the target node and
leveraging its sub-networks as helpers for prediction
purposes. Table 6 presents the summary statistics of
the prediction accuracy of leveraging peer networks
vs. sub-networks as helpers. At the /8 resolution, we
observe that all models, except GCPenVAR, achieve
a higher prediction accuracy when leveraging peer
networks at the /8 resolution as helpers than leveraging
sub-networks at the /16 resolution as helpers. At the
/16 resolution, we observe that GCPenVAR, GC3VAR2,
GC2VAR, and GC2VAR2 achieve a higher prediction
accuracy when leveraging sub-networks at the /24
resolution as helpers than leveraging peer networks at
the /16 resolution as helpers.

Insight 12. In terms of leveraging information across net-
work resolutions for prediction, GCPenVAR leveraging
G-causality across network resolutions is particularly
useful.

5. Discussion
Causality vs. G-causality. Intuitively, causality should
be asymmetric, meaning that “A causes B” would imply
that “B does not cause A”. However, our empirical
analysis shows that G-causality does not satisfy this
property because bidirectional G-causality relation is
widely exhibited at the /8, /16, and /24 network
resolutions. These bidirectional G-causality relations
highlight a gap between the intuitive notion of causality
and the G-causality approach.
Limitations. Our CGC framework has four limitations.
(i) We assume away the sparse time series because
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Table 5. Summary statistics of the SMAPE values for /8, /16 and /24 networks (#net is the # of networks involved), where bold-font
highlights the most accurate predictions among the different p-values with respect to a specific model.

Model p-value #net Min Q1 Median Mean SD Q3 Max
/8 networks

small 71 0.012 0.064 0.099 0.209 0.238 0.276 1.188
GC5VAR2 medium 7 0.165 0.304 0.857 0.784 0.538 1.214 1.429

large 3 0.104 0.553 1.003 0.845 0.676 1.216 1.429
small 71 0.001 0.109 0.202 0.300 0.315 0.368 2.000

GC4VAR2 medium 12 0.145 0.269 0.478 0.628 0.451 0.891 1.429
large 3 0.145 0.580 1.015 0.863 0.655 1.222 1.429
small 71 0.001 0.111 0.222 0.315 0.292 0.452 1.358

GC3VAR2 medium 21 0.139 0.245 0.452 0.534 0.387 0.717 1.429
large 9 0.126 0.389 0.474 0.797 0.584 1.429 1.714
small 70 0.060 0.134 0.265 0.458 0.507 0.590 2.000

GC2VAR2 medium 53 0.067 0.170 0.383 0.719 0.690 0.898 2.000
large 32 0.080 0.155 0.658 0.881 0.754 1.610 2.000

/16 networks
small 7807 0.054 0.857 1.430 1.394 0.563 2.000 2.000

GC5VAR2 medium 7808 0.043 0.759 1.310 1.262 0.598 1.910 2.000
large 7765 0.021 0.791 1.340 1.272 0.596 2.000 2.000
small 7995 0.025 0.254 0.704 0.784 0.560 1.220 2.000

GC4VAR2 medium 7840 0.009 0.637 1.140 1.201 0.602 1.710 2.000
large 7803 0.021 0.645 1.140 1.206 0.602 1.710 2.000
small 6816 0.030 0.376 0.781 0.869 0.555 1.302 2.000

GC3VAR2 medium 7897 0.009 0.571 1.140 1.129 0.601 1.710 2.000
large 7849 0.011 0.571 1.140 1.136 0.602 1.710 2.000
small 7956 0.027 0.774 1.180 1.174 0.516 1.590 2.000

GC2VAR2 medium 7903 0.022 0.780 1.200 1.196 0.530 1.640 2.000
large 7887 0.011 0.770 1.180 1.192 0.532 1.640 2.000

/24 networks
small 12408 0.006 0.857 1.290 1.243 0.572 1.710 2.000

GC5VAR2 medium 5642 2.000 2.000 2.000 2.000 0.000 2.000 2.000
large 5412 2.000 2.000 2.000 2.000 0.000 2.000 2.000
small 68 0.069 0.160 0.299 0.641 0.704 0.781 2.000

GC4VAR2 medium 6810 2.000 2.000 2.000 2.000 0.000 2.000 2.000
large 6619 2.000 2.000 2.000 2.000 0.000 2.000 2.000
small 10249 0.202 2.000 2.000 1.889 0.306 2.000 2.000

GC3VAR2 medium 7735 2.000 2.000 2.000 2.000 0.000 2.000 2.000
large 7578 2.000 2.000 2.000 2.000 0.000 2.000 2.000
small 12652 0.001 0.849 1.270 1.233 0.535 1.710 2.000

GC2VAR2 medium 12583 0.005 0.857 1.270 1.232 0.539 1.710 2.000
large 12549 0.001 0.857 1.270 1.233 0.542 1.710 2.000

Table 6. Summary statistics of SMAPE values of leveraging peer networks vs. sub-networks as helpers, where a indicates models
leveraging sub-networks (i.e., time series data across multiple network resolutions), and bold-font highlights the more accurate prediction
when comparing the prediction leveraging time series across network resolutions (i.e., leveraging sub-networks) and the prediction
leveraging time series at a single network resolution (leveraging peer networks).

Leveraging peer /8 networks vs. /16 sub-networks as helpers Leveraging peer /16 networks vs. /24 sub-networks as helpers
Model net Min Q1 Q2 Mean SD Q3 Max Model net Min Q1 Q2 Mean SD Q3 Max
GCPenVAR 66 0.035 0.155 0.309 0.389 0.292 0.540 1.192 GCPenVAR 677 0.028 0.311 0.561 0.721 0.510 1.028 2.000
GCPenVAR a 66 0.026 0.154 0.273 0.388 0.301 0.525 1.209 GCPenVAR a 677 0.027 0.220 0.336 0.431 0.321 0.524 2.000

GCPenVAR2 67 0.056 0.167 0.311 0.390 0.307 0.518 1.424 GCPenVAR2 1350 0.006 0.334 0.609 0.796 0.555 1.185 2.000
GCPenVAR2 a 67 0.069 0.397 0.589 0.748 0.527 1.009 1.980 GCPenVAR2 a 1350 0.073 0.806 1.210 1.181 0.476 1.560 2.000

GCnVAR 54 0.065 0.402 2.000 1.373 0.829 2.000 2.000 GCnVAR 275 0.027 0.280 0.485 0.702 0.544 1.051 2.000
GCnVAR a 54 0.364 0.688 1.164 1.284 0.669 2.000 2.000 GCnVAR a 275 0.039 0.273 0.429 0.827 0.732 1.714 2.000

GCnVAR2 67 0.198 2.000 2.000 1.914 0.311 2.000 2.000 GCnVAR2 1292 0.167 1.143 1.714 1.557 0.548 2.000 2.000
GCnVAR2 a 67 0.391 2.000 2.000 1.946 0.249 2.000 2.000 GCnVAR2 a 1292 0.003 0.581 1.772 1.373 0.715 2.000 2.000

GC5VAR 39 0.077 0.155 0.284 0.396 0.307 0.558 1.110 GC5VAR 474 0.027 0.287 0.486 0.686 0.522 1.017 2.000
GC5VAR a 39 0.110 0.262 1.714 1.211 0.839 2.000 2.000 GC5VAR a 474 0.039 0.254 0.439 0.831 0.732 1.714 2.000

GC5VAR2 68 0.012 0.064 0.096 0.207 0.238 0.274 1.188 GC5VAR2 1302 0.088 1.140 1.710 1.501 0.579 2.000 2.000
GC5VAR2 a 68 0.068 0.196 0.401 0.791 0.751 1.571 2.000 GC5VAR2 a 1302 0.003 0.287 0.545 0.875 0.713 1.714 2.000

GC4VAR 54 0.017 0.134 0.254 0.562 0.647 0.641 2.000 GC4VAR 52 0.040 0.082 0.168 0.354 0.437 0.371 2.000
GC4VAR a 54 0.077 0.280 2.000 1.279 0.836 2.000 2.000 GC4VAR a 52 0.040 0.143 0.185 0.629 0.801 0.748 2.000

GC4VAR2 63 0.033 0.105 0.184 0.282 0.300 0.357 2.000 GC4VAR2 2 0.001 0.009 0.018 0.018 0.025 0.027 0.035
GC4VAR2 a 63 0.069 0.159 0.298 0.632 0.703 0.748 2.000 GC4VAR2 a 2 2.000 2.000 2.000 2.000 0.000 2.000 2.000

GC3VAR 45 0.061 0.136 0.219 0.357 0.290 0.491 1.111 GC3VAR 112 0.024 0.190 0.340 0.503 0.460 0.628 2.000
GC3VAR a 45 0.078 0.142 0.328 0.854 0.821 2.000 2.000 GC3VAR a 112 0.031 0.170 0.249 0.736 0.815 2.000 2.000

GC3VAR2 58 0.060 0.117 0.227 0.317 0.257 0.437 1.139 GC3VAR2 192 0.066 0.189 0.376 0.638 0.580 0.924 2.000
GC3VAR2 a 58 0.074 0.116 0.221 0.464 0.547 0.569 2.000 GC3VAR2 a 192 0.047 0.164 0.221 0.511 0.663 0.364 2.000

GC2VAR 47 0.032 0.132 0.209 0.318 0.265 0.392 1.058 GC2VAR 26 0.102 0.260 0.404 0.830 0.706 1.490 2.000
GC2VAR a 47 0.074 0.153 0.288 0.650 0.711 0.812 2.000 GC2VAR a 26 0.072 0.195 0.240 0.589 0.712 0.502 2.000

GC2VAR2 65 0.060 0.129 0.219 0.442 0.518 0.533 2.000 GC2VAR2 438 0.024 0.281 0.528 0.795 0.623 1.247 2.000
GC2VAR2 a 65 0.072 0.126 0.276 0.631 0.733 0.746 2.000 GC2VAR2 a 438 0.017 0.190 0.304 0.594 0.665 0.511 2.000
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the state-of-the-art statistical techniques do not permit
sound statistical models of sparse time series. (ii)
We assume away the non-stationary time series,
which is inherited from the notion of G-causality.
Addressing these limitations is an important open
problem. Our case study has two limitations that are
imposed by the particular dataset. (iii) The dataset
only lasts for 97 days. Although it is sufficient to
demonstrate the usefulness of the framework, it would
be better if we have access to a dataset with a longer
period of time. (iv) The dataset is collected by low-
interaction honeypots and therefore does not present
rich semantic information about the attacks. Using
datasets collected from high-interaction honeypots or
production networks would resolve this issue, for which
the framework is equally applicable.

6. Conclusion
We presented the CGC framework for characterizing
the usefulness of G-causality in cybersecurity, espe-
cially its usefulness in predicting cyber attack rates. We
investigated a number of models and drew a number
of insights, which can be leveraged as a stepping-stone
towards fully understanding the usefulness and limi-
tations of G-causality in cybersecurity. There are many
open problems for future research, including: How can
we rigorously, rather than empirically, characterize the
usefulness and limitations of G-causality? What are the
utilities of other kinds of causality (e.g., Pearl-causality)
in the cybersecurity domain? How can we model sparse
and non-stationary time series in a principled fashion?
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