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Abstract

Node localization is one of the essential requirements to most applications of wireless sensor networks. This
paper presents a detailed implementation of a centralized localization technique for WSNs based on Second
Order Cone Programming (SOCP). To allow scalability, it also proposes a clustered localization approach
for WSNs based on that centralized SOCP technique. The cluster solves the SOCP problem as a global
minimization problem to get positions of the cluster sensor nodes. To enhance localization accuracy, a cluster
level refinement step is implemented using Gauss-Newton optimization. The initial position for the Gauss-
Newton optimization is the position drawn from the preprocessor SOCP localization. The proposed approach
scales well for large networks and provides a considerable reduction in computation time while yielding good
localization accuracy.
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1. Introduction
A wireless sensor network (WSN) is a group of a few
to several hundreds or even thousands of sensor nodes
deployed over a significant area. WSNs have a wide
range of applications which include environmental
monitoring, target tracking, home automation, military
applications and others. To process sensor data in WSN,
it is imperative to know where the data is coming
from. So, knowledge of nodes locations is an essen-
tial requirement for many location-aware applications
including aforementioned applications, location-based
services (LBS) and location-based routing. Several sur-
veys discussed localization strategies and attempted to
classify different localization techniques like [1],[2],[3].
Localization techniques could be classified according
to all calculations being performed on a single node
or distributed on all the network sensor nodes to cen-
tralized localization technique (e.g. MDS-MAP [4] and
Semi-Definite programming (SDP) [5]) and distributed
localization technique (e.g. APIT [6]). Another new
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approach in this classification is called locally cen-
tralized or cluster-based localization techniques which
are distributed techniques that achieve a global goal
by communicating with nodes in some neighbourhood
only. According to the process of estimating node-to-
node distances or angles, the localization techniques
are classified to range-based and range-free localization
techniques. Range-based localization techniques are
based on distances measurements between the nodes
using Time of Arrival (TOA), time difference of arrival
(TDOA) and received signal strength (RSS) (e.g. Tri-
lateration) or based on angles between the nodes like
angle of arrival (AOA) (e.g. Triangulation) [7]. Range-
free localization techniques depend on network con-
nectivity (e.g. DV-HOP) [6] to indirectly obtain the
distances between the nodes. Also, localization tech-
niques can be classified to anchor-based or anchor-
free localization techniques. Anchor-based localization
techniques usually provide absolute positions for the
nodes whereas anchor-free localization techniques pro-
vide relative positions. Biswas and Ye who proposed
a semi-definite programming (SDP) relaxation of the
localization problem which has various nice proper-
ties [5]. SOCP-based localization technique was studied
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by Tseng [8] who provided a second order cone pro-
gramming (SOCP) relaxation of localization problem,
motivated by its simpler structure and its potential
to be solved faster than SDP. This paper proposes a
locally centralized technique for solving the sensor
network localization problem. It is a Refined Clustered
technique based on Second-Order Cone Programming
(RC-SOCP). The proposed approach divides the large
network into smaller sub networks. For each cluster, the
cluster solves the SOCP problem as a global minimiza-
tion problem to get initial positions of the cluster sensor
nodes. To enhance localization accuracy, a cluster level
refinement step is implemented using Gauss-Newton
optimization. The initial position for the GaussNewton
optimization is the position drawn from the preproces-
sor SOCP localization. Rest of the paper is organized
as follows: Section 2 introduces the centralized SOCP
localization technique. Proposed technique is presented
in section 3. Simulation results and evaluations are
presented in section 4 and we conclude in section 5.

2. Centralized SOCP localization technique
This section discuses a detailed description of SOCP
problem formulation for Castalia wireless sensor net-
works simulator, providing the formulation algorithm
and solver tools. It also investigates the results obtained.

2.1. Problem formulation
Second-order cone programming relaxation method for
wireless sensor network localization was first studied
by Tseng [8]. In this method n is the total number of
nodes in Rd (d ≥ 1), m are the nodes whose locations
xi ∈ R2 , i =1,...,m are to be determined given n-m nodes
called anchors with known locations and dij which is
the euclidean distance between nodes i and j where
(i,j) ∈ A. A is the undirected neighbour set defined
as A := {(i, j) : ||xi − xj || ≤ RadioRange}. The problem is
formulated as the non-convex minimization equation

υopt = min
∑

(i,j)∈A
|yij − d2

ij | (1)

s.t. yij = ||xi − xj ||2 ∀(i, j) ∈ A

Where || . || denotes the euclidean norm. Then
in order to yield a convex-problem, the equality
constraints are relaxed to non-equality constraints, the
problem becomes

υopt = min
∑

(i,j)∈A
|yij − d2

ij | (2)

s.t. yij ≥ ||xi − xj ||2 ∀(i, j) ∈ A

Equation (2) can be rewritten as

min
∑
i,j∈A

Uij (3)

s.t. yij ≥ ||xi − xj ||2 ∀(i, j) ∈ A

uij ≥ |yij − d2
ij | ∀(i, j) ∈ A

uij ≥ 0

2.2. Centralized SOCP localization implementation
Given a wireless sensor network with size n sensors,
m are sensors with unknown locations, n −m are
sensors with known locations (anchors). To solve this
localization problem, the centralized SOCP localization
technique is performed in three phases. In the
first phase, nodes estimate their distances with
sensor and anchor neighbours which are within their
communication ranges. The second phase involves
wireless communication and routing between the
nodes. In the third phase, the positions matrix and
the lower triangle of the distances matrix are created
with sizes 2×n, n×n respectively and filled with their
relevant data received from the nodes.
Distances Matrix

0 0 0 .. 0
d10 0 0 .. 0
d20 d21 0 .. 0
.. .. .. .. 0
dn0 dn1 .. .. 0


where dij is the euclidean distance between nodes i,j.

Positions Matrix(
x0 x1 x2 .. xn
y0 y1 y2 .. yn

)

where xi ,yi are the x,y co-ordinates of an anchor node
or 0,0 if the sensor node is not an anchor. Algorithm
1 shows the pseudo-code of formulating the SOCP-
localization problem according to equation (3). For
a network of n total nodes and m non-positioned
nodes, there are Ω(m) variables and Ω(m) inequality
constraints using position and distance matrices [8].

2.3. Simulator and Solver Tools
Several surveys discussed various Simulators like [12,
14] that are used for simulation of ad-hoc networks
specially wireless sensor networks. Castalia is an
open-source simulator which is based on OMNet++
simulation environment and was developed at the
National ICT Australia, It was developed for networks
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Algorithm 1 : formulating the SOCP-localization
problem

1: procedure CREATEMODEL(distanceMatrix, positions-
Matrix)

2: Let model = model of the problem , vars = array of
variables

3: for all dij in distanceMatrix do
4: #Read positions of nodes i,j from positions

matrix
5: x1pos← positionsMatrix[0][i]
6: y1pos← positionsMatrix[1][i]
7: x2pos← positionsMatrix[0][j]
8: y2pos← positionsMatrix[1][j]
9: if x1pos! = 0 or y1pos! = 0 then #Check node i

being anchor
10: node i isAnchor
11: else
12: # Search for variables in vars array and if not

found create, add them
13: if variables of i in vars then
14: xi ← vars[i].x , yi ← vars[i].y
15: else
16: create vars xi , yi
17: vars.add(xi) , vars.add(yi)
18: end if
19: end if
20: Repeat steps 7-17 for the second node j
21: # If at least one of the nodes is not an anchor

complete model formulation
22: if node i isAnchor==false Or node j

isAnchor==false then
23: create variables uij , yij
24: vars.add(uij ) , vars.add(yij )
25: objectiveExpression←objectiveExpression+uij
26: create constraint c
27: c.expression← yij − uij
28: c.lowerbound ← 0
29: c.upperbound ← dij ∗ dij
30: model.add(c)
31: end if
32: # Create quadratic constraint. Substitue with

position values for anchor node(s) if found
33: if node i isAnchor==false And node j

isAnchor==false then
34: expr ← y − (xi − xj ) ∗ (xi − xj ) − (yi − yj ) ∗

(yi − yj )
35: else if node i isAnchor==true And node j

isAnchor==false then
36: expr ← y − (x1pos − xj ) ∗ (x1pos − xj ) −

(y1pos − yj ) ∗ (y1pos − xj )
37: else if node i isAnchor==false And node j

isAnchor==true then
38: expr ← y − (xi − x2pos) ∗ (xi − x2pos) − (yi −

y2pos) ∗ (yi − y2pos)
39: end if

Algorithm 1 Continue

40: create constraint q
41: q.expression← expr
42: q.lowerbound ← 0
43: q.upperbound ←∞
44: model.add(q)
45: end for
46: create objective obj
47: obj.f n← minimization
48: obj.expression← objExpression
49: model.add(obj)

of low power embedded devices such as wireless sensor
nodes [13]. Our simulation study is carried out using
version 3.2 of Castalia which build upon version 4.1 of
OMNet++.
The implementation of our SOCP-based localization
technique uses IBM ILOG CPLEX. IBM LOG Concert
Technology (modelling layer) C++ Interface Of OPL
was used to integrate our problem model in Castalia
with the CPLEX solver[15].

2.4. Performance Evaluation
We evaluate the performance of the centralized SOCP-
based localization by measuring localization accuracy,
computation time and problem size.
The mean error between the estimated and the true
location of the non-anchor nodes in the network is
adopted as the performance metric. It is defined as
follows

LE =
1
N
.
N∑
i=1

‖x̂i − xi‖

Where LE denotes a localization error, N denotes
the number of nodes in a network whose location is
estimated, xi is the true position of the node i in the
network , x̂i is estimated location of the node i (solution
of the location system).
Computation time is defined as the time spent for
formulating and solving the SOCP problem at the sink
node and it is measured using C++ std.clock() function.
The time needed for computing the relative distances
at the nodes and communication or message exchanges
time is excluded. Problem size corresponds to number
of variables and constraints for the SOCP-localization
problem formulated at the sink node.

We evaluate performance of the centralized SOCP-
based localization technique by studying the effect
of varying Network size (number of nodes), Anchors
percentage, Communication radio range and Noise
value added to distances measurements.
Anchors

Anchors are chosen to form a convex hull distribution
around the sensor nodes in the network. This

3 and Intelligent Systems 

09 2015 -01 2016 | Volume 

3 | Issue 6 | e5

EAI Endorsed Transactions on Industrial Networks 

 EAI
European Alliance
for Innovation



distribution was chosen to assure good localization
accuracy when non-anchor nodes are in the convex hull
of the anchors [11].
Radio range

Radio range is specified by replacing the path loss
parameter P L(d) of the log-normal shadowing model in
equation (4)

P L(d) = P L(d0) + 10.η.log(
d
d0

) + Xσ (4)

with its equivalent

P L(d) = PT x − PRx

Equation(4) calculates the average path loss in the chan-
nel model in Castalia [13]. Setting the random variable
Xσ to 0 for the case of no fading, thus simulating
general environment conditions where stationary WSN
is deployed in fairly static environments and fading
is not very significant, thus it is ignored. η is sub-
stituted with 2.4 which is typical default value that
will produce results similar to many outdoors (and
sometimes indoors) environments. d is the path length
allowing communications between two paired nodes,
thus representing the radio range. So, the radio range
can be specified by

RR = 10PT x−PRx−P L(d0)/24 (5)

PRx is inferred from ReceiverSensetivity value of the
radio card chosen (radio model for CC2420 chip by
Texas instrument) and is qual to -95 dBm. So the radio
range is mainly controlled by the transmit power and
the path loss at reference distance values specified
according to

RR = 10PT x+95−P L(d0)/24 (6)

The degree of connectivity is controlled by the
radio range specified. It is calculated as the average
connectivity of all the nodes which is equivalent to
the average number of neighbours for all of the sensor
nodes in the network for a specific radio range and
environment area.
Noise to distance
We added normally distributed measurement noise to
the true distance according to the equation

dij = ||xi − xj ||.max { 0, 1 + εij .nfd } ∀(i, j) ∈ A

Where εij is a normal random variable N(0, 1)
representing measurement noise and nf d ∈ [0, 1] is the
noise factor (standard deviation of the distance error in
percentage) for the distance measurements [9].

2.5. Simulation Results
Simulations are conducted for a randomly generated
500 nodes uniformly distributed on the unit square area

[-0.5, 0.5]2 with noise factor (nf d)=0.05, radio range
(rr)=0.17 and Degree of Connectivity=38. Anchors are
chosen to form a convex hull distribution around the
sensor nodes in the network with percentage (p) of 15%.
Simulations are averaged over 10 runs with confidence
level of 95%. Simulations were carried out on a PC with
2.4 GHz Quad-Core processor and 4 GB RAM using
Castalia simulator integrated with IBM CPLEX solver
using C++ interface.
Fig.?? shows a snapshot of the true sensor positions
and the estimated positions. True positions of the
sensors are depicted in blue coloured points and the
estimated node positions are depicted in red coloured
points, solid lines indicate the error between the
estimated and true sensor positions. A close match is
observed between the estimated and true positions. The
estimated positions become less accurate as we move
towards the boundary. Fig.1b shows the Commulative
distributive function (CDF) of localization errors. The

(a) Snapshot of the true vs estimated nodes locations

(b) CDF of localization errors

Figure 1. Centralized SOCP results for uniform topology: n =
500, RadioRange =0.17, p =0.15 and nf d =0.05.
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Fig.1 is 0.02 with confidence interval (-0.002 , 0.04) and
standard deviation 0.04 .

Effect of Varying Network Size. Fig.2 shows the CDF
of localization errors (log scale) for different network
sizes with the same radio range in the same area for a
network with nf d=0.05, rr=0.11 and anchor percentage
of 15%. Fig.2 shows that when the network size
increases in the same area, the degree of connectivity
is increased and this leads to larger communications
between nodes. Consequently, more distances are
obtained between nodes which directly improves the
localization accuracy. On the other hand, it must
be noted that increasing node density and hence
communications between nodes increases network
overhead and energy consumption.

The mean localization errors (LEs), and their

Figure 2. CDF of localization errors (log scale) for different
network sizes

confidence intervals are listed in table 1 which shows a
decrease in mean localization error when increasing the
network size. Table 2 shows the number of variables,
number of constraints, and the computation runtime
spent for solving the networks in Fig.2. Computation
runtime grows with increasing network size, thus limits
the scalability of the technique for large networks.

Table 1. Mean localization errors for different network sizes

network mean standard confidence
size error deviation interval
300 0.01 0.022 ( -0.001 , 0.025)
500 0.006 0.015 ( -0.003 , 0.016)
1000 0.002 0.018 ( -0.009 , 0.014)

Effect of Varying Anchors Percentage. Fig.3 shows the
effect of changing anchor percentage on the localization
accuracy for a network of 500 nodes, rr=0.17 and
nf d=0.05. We changed number of anchor nodes while
maintaining number of non-positioned nodes the

Table 2. Performance and computation runtime comparison of
different network sizes.

network |A| # of # of comp.
size variables constraints run time

(sec.)
300 1498 3472 1481 1.279
500 4388 9460 4305 5.936
1000 17051 35132 16716 152.044

Figure 3. CDF of localization errors (log scale) for different
percentage of anchors

same (500 non-positioned nodes). Fig.3 shows that
increasing anchor percentage considerably increases
the localization accuracy. For a network of 20% of
anchors, 80% of the nodes have error less than
0.0017. For anchor percentage greater than 20%, slight
improvement in localization accuracy is achieved. This
means that the implemented technique requires a
proper setting of percentage of anchors to achieve
good localization accuracy. The mean localization errors
(LEs) and their confidence intervals are listed in table 3.
However, increasing anchors percentage increases the

Table 3. Mean localization errors for different anchor percentages

anchor mean standard confidence
percentage error deviation interval
10% 0.003 0.006 (-0.001 , 0.006)
20% 0.002 0.005 (-0.001 , 0.005)
30% 0.0018 0.0045 (-0.001 , 0.0048)
40% 0.0015 0.0046 (-0.001 , 0.0044)

total complexity of the computations. This is shown in
table 4.

Effect of Varying Communication Radio Range. To study
the effect of changing radio range on localization
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Table 4. Performance and computation runtime comparison of
different anchor percentages.

anchor |A| # of # of comp.
percentage variables constr- run time

aints (sec.)
10% 12590 25970 12485 35.32
20% 15013 30370 14685 66.39
30% 17611 34566 16783 94.56
40% 20198 38306 18653 124.71

accuracy, we set rr to 0.08, 0.1 and 0.15. Fig.4

Figure 4. CDF of localization errors (log scale) for different radio
ranges

shows that networks with lower radio range have
higher localization error. This is due to less inter-
node communications and hence distances information
between nodes. It must be noted that for rr=0.08,
97% of total nodes are localized (413 node) whereas
100% of total nodes are localized for rr=0.1, 0.15.
However, increasing radio range increases power
consumption and adds more communication overhead
to the network. The mean localization errors (LEs)
and their confidence intervals are listed in table 5.
Performance and computation runtime comparison is
shown in table 6.

Table 5. Mean localization errors and computation time for
different radio ranges

radio mean standard confidence
range error deviation interval
0.08 4.2 16.7 ( -6.15 , 14.5)
0.1 0.015 0.034 ( -0.006 , 0.036)
0.15 0.004 0.009 ( -0.002 , 0.01)

Effect of Varying Noise Value Added to Distances
Measurements. Fig.5 shows the effect of changing nf d
on the localization accuracy. Fig.5 shows that there is no

Table 6. Performance and computation runtime comparison of
different radio ranges.

radio |A| # of # of comp.
range variables constraints run time

(sec.)
0.08 982 2750 965 0.62
0.1 3668 8052 3601 4.58
0.15 7819 16172 7661 29.82

Figure 5. CDF of localization errors (log scale) for different nf d

significant improvement in localization accuracy when
decreasing nf d. Thus, the implemented localization
technique solves the localization problem with good
localization accuracy in the presence of inaccuracies in
distance measurements. The mean localization errors
(LEs) and their confidence intervals for the networks in
Fig.5 are listed in table 7.

Table 7. Mean localization errors for different nf d

nf d mean standard confidence
error deviation interval

0.05 0.003 0.007 ( -0.001 , 0.007)
0.1 0.005 0.009 ( -0.0008 , 0.01)
0.15 0.006 0.01 ( -0.0005 , 0.012)
0.2 0.007 0.012 (-0.0001 , 0.014)

3. RC-SOCP: Proposed refined clustered SOCP
localization approach
RC-SOCP is a refined clustered SOCP localization
technique to allow scalability of the centralized SOCP-
localization technique for large dense networks with
thousands of nodes. This technique achieves better
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performance by reducing computation time, energy
consumption, and communication overhead resulting
from numerous communications overhead between
the nodes in centralized localization approach. Its
architecture is divided into three phases as shown
in Fig.6: clustering phase, localization phase and
refinement phase. In the first phase, Min-Max d
clustering algorithm is used to divide the network and
select the CH according to the IDs of the nodes. In
the second phase, each cluster implements SOCP-based
localization technique to localize the member nodes
including the CH itself. In the third phase, each cluster
implements Gauss Newton local algorithm to refine the
estimated locations obtained.

Figure 6. Refined Clustered SOCP Architecture

3.1. Clustering
Min-Max d clustering algorithm is used to divide the
network and select the cluster head CH according to the
IDs of the nodes. It was chosen because it is a simple,
less computationally demanding and thus doesn’t add
extra complexity to the localization technique. This
clustering algorithm runs asynchronously eliminating
overhead of synchronizing the clocks of the nodes. Also,
a low variance in cluster sizes leads to better load
balancing among the cluster-heads [10].

3.2. Implementing SOCP on cluster-head
At the end of the clustering phase, the network
is divided into multiple independent clusters. Each
cluster of size CN sensors, CM sensors with unknown
locations and CN − CM sensors with known locations
(anchors). Member nodes send their relevant distance
information with their neighbours to their elected

CHs. Each CH constructs the positions matrix and the
lower triangle of the distance matrix of sizes 2×CN,
CN×CN respectively as in centralized technique then
formulates SOCP localization problem for its cluster
member nodes according to algorithm 1 and uses
CPLEX optimization solver to estimate the positions of
the nodes.

3.3. Refinement phase
To enhance localization accuracy of clustered SOCP (C-
SOCP), a cluster level refinement step is implemented.
Each cluster head solves the network localization
problem using Gauss-Newton (iterative least-squares)
algorithm [11]. The initial position guess for the Gauss-
Newton optimization is the positions drawn from the
preprocessor SOCP solver which is close to the global
solution. Given m residual functions r = (r1, ..., rm) of
n variables X = (X1, ..., Xn), with m ≥ n, a non-linear
least square problem is an unconstrained optimization
problem of the form

min
m∑
i=1

ri(X)2. (7)

The Gauss-Newton algorithm iteratively finds the
minimum of the sum of the squares in equation(7).
For implementing the Gauss-Newton method as a
refinement step, where X refers to the position
coordinates of the sensor node (x,y), and hence n is set
to 2. m is the number of residuals, and is equal to the
number of anchor neighbours to that sensor node. The
residual function ri is defined as

ri = ||X − a||2 − d2 (8)

Where a represents the positions of the anchor node
(ax, ay) and d is the estimated distance between the
sensor node and the non-positioned node. Starting with
an initial guess X (0) for the minimum, the method
proceeds by the iterations

X (s+1) = X (s) −
(
Jr

TJr
)−1

Jr
Tr(X (s)) (9)

Where the symbol T denotes the matrix transpose. If r
and X are column vectors, the entries of the Jacobian
matrix are

(Jr)ij =
∂ri(X (s))
∂Xj

(10)

The derivative of the residual function to the first
variable x is:

∂ri(X (s))
∂x

=
(x − x0)

ri(X (s))
And the derivative of the residual function to the

second variable y is:

∂ri(X (s))
∂y

=
(y − y0)

ri(X (s))
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Algorithm 2 : Gauss-Newton Algorithm

1: procedure GAUSSNEWTON(distanceMatrix, positions-
Matrix)

2: Let iters = number of iterations , neighbours = array
of anchor neighbours

3: for all nodei do
4: ix ← initial guess of x coordinate for node i
5: iy ← initial guess of y coordinate for node i
6: n← number of neighbours of node i
7: neighbours← getNeighboursOfNode(i)
8: Let distanceEstimate = array of distances

estimations with anchor neighbours of size n × 1
9: Let distanceNoise = array of distances noises

between estimated distances and distances of initial
guess n × 1

10: Let J = jaccobian matrix of size n × 2
11: Let JT = transpose Jacobian matrix of size 2 × n
12: Let delta = matrix of size 2 × 1 of values for

updating x,y coordinates of node i
13: for j = 0 to iters do
14: for k = 0 to n do
15: xdif f ← ix − neighbours[k].x
16: ydif f ← iy − neighbours[k].y
17: distance← pow(xdif f , 2) +

pow(ydif f , 2)
18: distanceEstimate(k, 0)← sqrt(distance)
19: J(k, 0)← xdif f /distanceEstimate(k, 0)
20: J(k, 1)← ydif f /distanceEstimate(k, 0)
21: distance← distanceMatrix[i, k]
22: distanceEstimate(k,0)← distanceNoise(k,0)

- distance
23: end for
24: delta← ( ( ( ( JT J )JT ).inverse() )JT ) distanceNoise
25: ix ← ix − delta(0, 0)
26: iy ← iy − delta(1, 0)
27: end for
28: end for

Algorithm 2 shows the pseudo-code of the Gauss-
Newton algorithm for refining the locations obtained
from C-SOCP.

3.4. Performance evaluation of RC-SOCP
RC-SOCP performance is evaluated by measuring
localization accuracy and computation time. The
localization accuracy is calculated as defined in
section 2.4. To calculate RC-SOCP computation
time, we calculate C-SOCP runtime and Gauss-
Newton refinement algorithm runtime on each CH.
The computation time metric is measured as the
maximum RC-SOCP computation time among CHs.
C-SOCP runtime is the time spent for formulating
and solving the SOCP problem on the CH using C++
std.clock() function. The time needed for computing
the relative distances at the nodes and communication
or message exchanges time is excluded. We evaluate

the performance of RC-SOCP localization technique
by studying the effect of varying: cluster size , anchor
percentage, communication radio range, noise value
added to distances measurements.

4. Simulation results
Simulations are conducted for a randomly generated
500 nodes uniformly distributed on the unit square
area [-0.5, 0.5]2 with noise factor(nf d) = 0.05, radio
range(rr) = 0.17, d = 3 and Degree of Connectivity
= 37. Anchors are chosen to be uniformly distributed
throughout the network with percentage(p) of 30%.
Number of Gauss-Newton iterations is 25. Simulations
are averaged over 10 runs with confidence level of 95%.
Figs. (7a) and (7b) show a snapshot of the true
sensor positions and the estimated positions of the
C-SOCP and RC-SOCP respectively. True positions
of the sensors are depicted in blue colored points
and the estimated node positions are depicted in
red colored points, solid lines indicate the error
between the estimated and true sensor positions. An
improvement in localization accuracy is observed for
RC-SOCP compared to C-SOCP. It is also observed
that the estimated positions become less accurate as
we move towards the boundaries of the clusters in
C-SOCP which is greatly refined in RC-SOCP. The
mean localization error (LE) for the network in fig.
7 using C-SOCP is 0.02 and standard deviation 0.04,
and LE is 0.01 and standard deviation 0.04 for RC-
SOCP. This clarifies that the mean error is reduced
by 50% using RC-SOCP. Fig.7c shows a comparison
between the Commulative distributive function (CDF)
of localization errors resulting from centralized-SOCP
localization implemented in section 2, C-SOCP and RC-
SOCP. The detailed CDF of localization errors for the
results in fig. 7c are listed in table 8.

Fig.7c shows that RC-SOCP and centralized-SOCP
lead to improved results for localization error compared
to C-SOCP. Table 8 shows that, in RC-SOCP, a high
percentage of nodes ( 90%) have a small localization
error (<0.006), while the corresponding percentage
of nodes is 59.9% in C-SOCP. However, due to the
increase in the localization error of some of boundary
nodes (outliers) of the network in RC-SOCP, the
maximum localization error for both C-SOCP and RC-
SOCP is the same(<0.35). It is worthy noting that
RC-SOCP and centralized-SOCP has almost the same
localization accuracy for most of nodes (>90%) which
is (<0.006). For less than 10% of the nodes, there
is a slight improvement in accuracy for centralized-
SOCP. RC-SOCP provides a considerable reduction
in computation time compared to centralized-SOCP
due to clustering while still yielding good localization
accuracy and scalability.
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(a) Snapshot of real vs estimated nodes locations of C-SOCP
localization

(b) Snapshot of real vs estimated nodes locations of RC-SOCP
localization

(c) CDF results of localization errors(log scale) of centralized SOCP,
C-SOCP and RC-SOCP sizes

Figure 7. C-SOCP and RC-SOCP results for uniform topology:
n = 500, rr = 0.17, p = 0.15, d = 3andnf d = 0.05.

Table 8. CDF results of localization errors

Locali- technique nodes mean stand.
zation perce- error dev.
error tage

< 0.004
C-SOCP 55.5% 0.001 0.001
RC-SOCP 70% 0.002 0.0009
centralized-SOCP 87% 1.07e-1 0.0001

< 0.006
C-SOCP 59.9% 0.001 0.0016
RC-SOCP 90% 0.0029 0.0013
centralized-SOCP 90% 0.001 0.121

< 0.07
C-SOCP 91% 0.01 0.016
RC-SOCP 95% 0.0039 0.005
centralized-SOCP 99.5% 0.0025 0.118

< 0.2
C-SOCP 98% 0.019 0.03
RC-SOCP 98% 0.0077 0.02
centralized-SOCP 100% 0.0026 0.118

< 0.35
C-SOCP 100% 0.02 0.038
RC-SOCP 100% 0.01 0.04
centralized-SOCP 100% 0.0026 0.118

4.1. The effect of varying cluster Size
To study the effect of varying cluster size on localization
error and computation time, we set the number of
consecutive hops (d) to 1, 2, 3 and 4. Fig.8 shows
CDF of localization errors (log scale) for C-SOCP and
RC-SOCP with different d. Table 9 shows number
of clusters, C-SOCP runtime, Gauss-Newton run-
time and RC-SOCP runtime of networks. Fig.8 shows
that the refinement phase of RC-SOCP enhances the
result of the preprocessor C-SOCP. C-SOCP is highly
dependent on cluster size compared to RC-SOCP. As
the cluster size increases, the localization accuracy
is improved since more nodes distances information
is obtained at the CH. These distances information
directly affect and enhance the formulation of the
sub problems and hence improve the result of the
SOCP problem solver. However, increasing cluster
size increases the problem size and computation time
and communication overhead of the cluster. For RC-
SOCP, the localization accuracy is increased when
d is increased from 1 to 2. For d ≥ 2, there is
not significant difference in localization accuracy for
different cluster size (d), since refinement algorithm
reaches the optimal solution for the estimate of
locations of the nodes. So, adjusting cluster size using
d = 2 which is approximated to number of clusters
around 11 in this network size(500 nodes) as shown
in table 9 yields good accepted localization accuracy.
Table 9 shows that incrementing the cluster size d
reduces the number of clusters approximately to the
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Figure 8. CDF reaults of localization errors (log scale) for
different cluster sizes
half. As a result of increasing cluster sizes, C-SOCP
and RC-SOCP run times are increased while Gauss-
Newton runtime has no significant change. Table 10

Table 9. Performance and computation runtime comparison of
different cluster sizes.

d # of C-SOCP Gauss-Newton RC-SOCP
clusters runtime runtime runtime

(sec.) (sec.)
1 24 2.117 0.014 2.128
2 11 6.468 0.011 6.475
3 7 14.761 0.019 14.791
4 5 20.554 0.016 20.57

Table 10. Mean localization errors for different cluster sizes for
C-SOCP and RC-SOCP

d technique mean standard confidence
error deviation interval

1
C-SOCP 0.03 0.04 ( 0.009 , 0.06 )
RC-SOCP 0.02 0.13 (-0.05 , 0.11 )

2
C-SOCP 0.028 0.04 ( 0.002 , 0.05 )
RC-SOCP 0.015 0.05 ( -0.016 , 0.047 )

3
C-SOCP 0.02 0.038 ( -0.002 , 0.045 )
RC-SOCP 0.013 0.04 ( -0.01 , 0.04 )

4
C-SOCP 0.016 0.033 ( -0.004 , 0.037)
RC-SOCP 0.01 0.036 ( -0.01 , 0.03)

also shows that increasing the cluster size reduces LE
in C-SOCP significantly for all d whereas it leads to
slightly improved LE in RC-SOCP for d ≥ 2.

4.2. The effect of varying anchors percentage
To investigate the effect of varying anchors percentage
on localization error and computation time, we change
number of anchor nodes to 10%, 20%, 30% and

Figure 9. CDF results of localization errors(log scale) for
different anchors percentage
40% of the number of non-positioned nodes while
maintaining the number of non-positioned nodes the
same (500 non-positioned nodes), rr = 0.11 , d =
2 and nf d = 0.05 for C-SOCP and RC-SOCP. Fig.9
shows that increasing anchors percentage considerably
increases the localization accuracy for both C-SOCP
and RC-SOCP; and RC-SOCP has good localization
accuracy compared to C-SOCP. Appropriate percentage
of anchors ensures that each cluster has an acceptable
number of anchors to perform the localization problem.
However, increasing number of anchors often imposes
additional costs. Table 11 shows that the number of
clusters and computation runtime time are increased
with increasing the number of anchors. This happens
due to the increase of the total number of nodes in
the network. Table 12 shows a reduction in LE when
increasing anchors percentages in both C-SOCP and
RC-SOCP.

Table 11. Performance and computation runtime comparison of
different anchors percentages.

anchor # of C-SOCP Gauss-New RC-SOCP
percen- clust- runtime ton runtime runtime
tage ers (sec.) (sec.) (sec.)
10% 20 0.356 0.011 0.365
20% 24 0.393 0.016 0.405
30% 26 0.465 0.012 0.476
40% 27 1.693 0.022 1.71

4.3. The effect of varying communication radio range
To study the effect of changing radio range on localiza-
tion accuracy, we set rr to 0.08, 0.1, 0.15 and 0.17. Fig.10
shows that for C-SOCP and RC-SOCP, higher radio
range leads to higher degree of connectivity and hence
results in higher localization accuracy. It is noticed in
table 14 that for the network with rr =0.08, C-SOCP has
a better localization accuracy for 50% of the nodes (LE
=0.032) than in RC-SOCP (LE=0.038). This refers to low
degree of connectivity for rr=0.08 and less distances
information for C-SOCP resulting in bad initial guess
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Table 12. Mean localization errors for different anchors
percentages for C-SOCP and RC-SOCP

anchor technique mean standard confidence
percentage error deviation interval

10%
C-SOCP 0.08 0.06 ( 0.042 , 0.118 )
RC-SOCP 0.083 0.07 ( 0.035 , 0.1 )

20%
C-SOCP 0.05 0.048 ( 0.02 , 0.08 )
RC-SOCP 0.052 0.137 ( -0.03 , 0.137 )

30%
C-SOCP 0.03 0.04 ( 0.01 , 0.06 )
RC-SOCP 0.038 0.1 ( -0.036 , 0.1 )

40%
C-SOCP 0.02 0.03 ( 0.007 , 0.04 )
RC-SOCP 0.02 0.07 ( -0.02 , 0.06 )

Figure 10. CDF results of localization errors (log scale) for
different radio ranges
for Gauss-Newton iterations. Large radio ranges lead to
higher localization accuracy. However, increasing radio
range increases power consumption, and adds more
communication overhead. Average degree of connectiv-
ity (doc), number of clusters and run-times of networks
in fig. 10 are shown in table 13.

Table 13. Performance and computation runtime comparison of
different radio ranges.

radio doc # of SOCP Gauss- RC-SOCP
range clust- runtime Newton runtime

ers (sec.) run time (sec.)
(sec.)

0.08 3 63 0.148 0.013 0.162
0.1 12 48 0.595 0.013 0.601
0.15 28 14 1.592 0.013 1.605
0.17 37 11 6.468 0.011 6.475

4.4. The effect of varying noise value added to
distances measurements
Fig.11 shows that RC-SOCP is highly affected by nf d
compared to C-SOCP while RC-SOCP has a good
localization accuracy compared to C-SOCP for all nf ds.

Table 14. Mean localization errors for different radio ranges for
C-SOCP and RC-SOCP

radio technique mean stand- confidence
range error ard dev- interval

iation

0.08
C-SOCP 0.032 0.02 ( 0.02 , 0.05)
RC-SOCP 0.038 0.08 ( -0.01 , 0.09)

0.1
C-SOCP 0.032 0.04 ( 0.017 , 0.07)
RC-SOCP 0.025 0.13 ( -0.04 , 0.12)

0.15
C-SOCP 0.032 0.04 ( 0.005 , 0.06 )
RC-SOCP 0.02 0.05 ( -0.01 , 0.05 )

0.17
C-SOCP 0.028 0.04 ( 0.002 , 0.05 )
RC-SOCP 0.015 0.05 ( -0.02 , 0.05 )

A slight improvement in localization accuracy for C-
SOCP is noticed when decreasing nf d while significant
improvement in localization accuracy is noticed when
decreasing nf d in RC-SOCP. The localization accuracy
of RC-SOCP for nf d = 0.05 , nf d =0.1 gives the same
results. This means that Gauss-Newton was able to get
the same localization accuracy when nf d is increased
from 0.05 to 0.1, but was unable to do same for nf ds
greater that 0.1. The mean localization errors (LEs) for
the network in fig. 11 are listed in table 15.

Figure 11. CDF results of localization errors (log scale) for
different nfd

5. Conclusion
This paper presented an implementation of localization
technique for WSNs based on Second Order Cone
Programming (SOCP) to solve the localization problem
in WSNs. We used our own experience trying to
provide a detailed description of SOCP problem
formulation for Castalia wireless sensor networks
simulator. To allow scalability, it also proposed a
refined clustered localization approach based on the
centralized SOCP technique (RC-SOCP). An extensive
simulation study of the approach under different
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Table 15. Mean localization errors for different nf d for C-SOCP
and RC-SOCP

nf d technique mean stand. confidence
error dev. interval

0.05
C-SOCP 0.028 0.04 ( 0.002 , 0.05 )
RC-SOCP 0.015 0.05 ( -0.016 , 0.047 )

0.1
C-SOCP 0.029 0.04 ( 0.0037 , 0.052)
RC-SOCP 0.0196 0.06 ( -0.018 , 0.058 )

0.15
C-SOCP 0.030 0.04 ( 0.0048 , 0.056)
RC-SOCP 0.022 0.046 ( -0.0068 , 0.051 )

0.2
C-SOCP 0.032 0.04 ( 0.0052 , 0.059 )
RC-SOCP 0.026 0.047 ( -0.003 , 0.051)

scenarios and with varying several networks parameters
has been investigated. Simulation results show that
RC-SOCP achieves good performance and acceptable
localization accuracy with controlling cluster size
(number of hops between the CH and gateway node),
communication radio range of the sensor nodes and
anchors percentage. Moreover, it shows that the
proposed approach solves the localization problem
with good localization accuracy in the presence of
inaccuracies in distance measurements. The proposed
refined clustered SOCP-based localization approach
performs almost as well as the centralized-SOCP while
providing a considerable reduction in computation
time. However, it still yields good localization accuracy
and scalability.
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