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Abstract 

 With the arrival of low-cost high quality cameras, implicit user behaviour tracking is easier and it becomes very interesting 

for viewer modelling and content personalization in a TV context. In this paper, we present a comparison between three 

common algorithms of automatic head direction extraction for a person watching TV in a realistic context. Those algorithms 

compute the different rotation angles of the head (pitch, roll, yaw) in a non-invasive and continuous way based on 2D and/or 

3D features acquired with low cost cameras. These results are compared with a reference based on the Qualisys motion 

capture commercial system which is a robust marker-based tracking system. The performances of the different algorithms 

are compared function of different configurations. 

While our results show that full implicit behaviour tracking in real-life TV setups is still a challenge, with the arrival of next 

generation sensors (as the new Kinect one sensor), accurate TV personalization based on implicit behaviour is close to 

become a very interesting option. 
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1. Introduction

The analysis of people interest is crucial for number of 

applications such as advertising, museums and public 

spaces displays, gaming technologies, TV experience, etc. 

Here we focus on context-aware TV experiences which can 

highly benefit from knowledge about viewer interest. 

Viewer interest can be extracted in various ways. In 

computer vision there are two families of methods: one is 

marker-based and the other markerless. Here we focus on 

markerless face direction (or head pose) estimation 

techniques which begin to provide results for real-world 

applications at reasonable distances and illumination 

conditions in a non-invasive and transparent way.  

Moreover, more and more TV and home setups (such as 

the XBOX) come with cameras. The acceptance of such 

sensors inside homes watching the viewers is higher and 

higher and people see less ethical issues in being observed 

by sensors if they have enhanced experience in return and 

if the data is processed locally in real-time without any 

*Corresponding author. Email:francois.rocca@umons.ac.be 

recording and audio/visual data transmission. The 

conjunction of the arrival of new efficient low-cost sensors 

and of their high degree of acceptance open new potential 

applications in the TV domain. In this paper we thus focus 

on TV and present a state for the art of the main face 

direction estimation methods which can be used in TV 

setups. In addition to the gesture/voice recognition which 

can be now found on a lot of “smart” TVs, those setups can 

help enhancing viewer TV experience by modelling 

viewers behaviour to provide them with personalized media 

or enrichments in a single or multi-screen environment. 

In section 2, we present the different techniques for head 

pose estimation and we describe markerless face direction 

methods which are used in this study. In section 3, we 

present the Qualisys system which was used to validate 

these techniques along with the experimental validation 

setup. Section 4 shows the validation results in our setup 

and presents a discussion on the state-of-the-art methods 

which allows to choose a method depending on the viewing 

situations (in terms of illumination changes or distance 

from the sensor for example) or analysis results (in terms of 

precision and framerate constraints). We finally conclude 
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in section 5 on the usability of the current and near future 

methods.  

2. Head pose estimation

Head pose estimation and head movements are mainly 

captured with physical sensors and optical analysis as we 

can see in the animation industry. 

Physical sensors such as accelerometers, gyroscopes and 

magnetometers are placed on the head to compute the head 

rotation [1] [2]. 

Another way consists in marker-based optical motion 

capture systems that are able to capture the subtlety of the 

motion. In these methods, markers are placed on the head 

of the actor and they are tracked through multiple cameras. 

The markers are often coloured dots or infrared reflective 

fiducials and the cameras depend on the markers type. 

Accurate tracking requires multiple cameras and specific 

software to compute head pose estimation. These systems 

are very complex and expensive, they need calibration and 

precise positioning of markers (Optitrack [3], Qualisys [4]) 

and they remain invasive. While they cannot be used in 

real-life TV setups, we use marker-based methods to 

evaluate the markerless methods which can be low-cost, 

transparent (no calibration needed) and non-invasive. More 

precisely we use the Qualisys motion capture system. 

Markerless tracking is another approach to face motion 

capture and a wide range of methods exists. Some 

markerless equipment use infrared cameras to compute 

tracking of characteristic points. For example, FaceLAB 

gives the head orientation and the position of lips, eyes and 

eyebrows [5]. But there are also algorithms using only a 

webcam. We can cite FaceAPI [6] from the same company 

as FaceLAB. Markerless systems use classical cameras or 

infrared cameras to compute tracking of characteristic 

points. We choose several freely accessible methods in this 

paper for a fair comparison in a real-world TV context. 

The first method that we use is based on the Microsoft 

Kinect SDK [7]. The Kinect SDK is free, easy to use and 

contains multiple tools for user tracking and behaviour 

modelling such as face tracking and head pose estimation. 

These tools combine 2D and 3D information obtained with 

the Kinect sensor.  

Secondly, a head pose estimation solution based on 2D 

face tracking algorithm using the free library OpenCV [8]. 

The face tracking part of this method was developed by 

Jason Saragih and it is known under the name of 

“FaceTracker” [9]. The head pose estimation part was 

developed separately and it is explained in a study of this 

method for computer uses [10].  

Finally we use a fully 3D method for real time head pose 

estimation from depth images [11] based on a free library 

called PCL (Point Cloud Library) [12]. 

2.1. MS Kinect solution (KinectSDK) 

The Kinect sensor developed for the Xbox360 is a low-cost 

depth and RGB camera. It contains two CMOS sensors, one 

for the RGB image (640 x 480 pixels at 30 fps) and another 

for the infrared image from which the depth map is 

calculated, based on the deformation of an infrared 

projected pattern (λ = 830nm). The depth sensor has an 

optimal utilisation in a range of 1.2 meter (precision better 

than 10 mm) to 3.5 m (precision better than 30 mm) [13] 

and can be perturbed by other sources of infrared light. 

Microsoft provides a Face Tracking module with the 

SDK which works with the Kinect SDK since the version 

1.5. These SDKs can be used together to “create 

applications that can track human faces in real time” To 

achieve face tracking, at least the upper part of the user's 

Kinect skeleton has to be tracked in order to identify the 

position of the head.  

The Get3DPose method returns two tables of three float 

numbers. The first one contains the Euler rotation angles in 

degrees for the pitch, roll and yaw as described in Figure 1, 

and the second contains the head position in meters. All the 

values are calculated relatively to the sensor which is the 

origin for the coordinates.  

Figure 1. Three different degrees of freedom: pitch, 
roll and yaw [14]. All head motion can be obtained by 

combining these three basic movements. 

The technique used to estimate the rotations and facial 

features tracking of the head (Figure 2) is not described by 

Microsoft, but the method uses the RGB image and depth 

map. The head position is located using 3D skeleton only 

on the depth map. The head pose estimation itself is mainly 

achieved on the RGB images. Consequently, the face 

tracking hardly works in bad light conditions (shadow, too 

much contrast, etc.). 

By using the SDK, we obtain a head orientation 

measuring tool at 30 fps (frames per second). The 

experiment computer is a laptop with an Intel i7 2.40GHz, 

8GB of RAM and running Windows 8. For this paper, this 

method will be called "KinectSDK". 
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Figure 2. The Microsoft Kinect SDK provides facial 
features tracking and head pose estimation thought 

pitch yaw and roll. 

2.2. Webcam solution (Facetracker) 

This method is a combination of FaceTracker and a head 

pose estimation based of the features extraction from the 

face tracking part. 

FaceTracker allows the identification and localization 

landmarks on a RGB image. These points can be 

assimilated to a facial mask allowing to track facial features 

like the edge of lips, facial contours, nose, eyes and 

eyebrows (Figure 3). Based on this, we apply the 

perspective-n-point (PNP) methods [11] to find the rotation 

matrix and 3D head pose estimation.  

FaceTracker is a CLM-based C/C++ API for real-time 

generic non-rigid face alignment and tracking. The 

approach is an instance of the constrained local model with 

the subspace constrained mean-shifts algorithm as an 

optimization strategy [10].  

The advantage is that FaceTracker does not require 

specific manipulation before the utilization and the 

algorithm makes an automatic detection of the user face 

based on a pre-trained model on database. FaceTracker is 

based on the OpenCV library [9]. It is compatible with any 

camera. In our setup we use a 480X640 pixel webcam. The 

initialization of the algorithm is based on the Haar 

classifiers [15], thus the face tracking is optimal if the face 

is centred in front of the camera and straight. We can also 

observe significant perturbations when an object starts 

occluding some landmarks or when head rotation is rapidly 

done with a wide angle. 

To find the Euler angles of the rotation of the head we 

use 2D Points from Facetracker, 3D points from a 3D head 

model and we compute the rotation matrix based on the 

perspective-n-point method.  

Figure 3. FaceTracker detects in real-time a set of 66 
points. Points 0 to 16: lower facial contours, 17 to 21 
and 22 to 26: right and left eyebrows, 27 to 35: nose, 
36 to 41 and 42 to 47: right and left eyes, 48 to 65: 

edge of lips. 

A Set of 7 points are taken among the 66 points from 

FaceTracker. These points were chosen because they are far 

enough and stable regardless of the expressions and 

movements of the face. In parallel to this, we use a 3D head 

model on which we extract 3D points corresponding to 2D 

previous points. 

Once the seven 2D and 3D coordinates are set, and the 

camera matrix found, we can calculate the matrix of 

rotation and translation of 3D model by reporting the data 

from the face tracking (Figure 4). The pitch, roll and yaw 

can directly be extracted from the rotation matrix in real 

time about 24fps (from 19 to 28fps). The computing time 

per frame is about 50ms by single thread on a Linux OS 

with Intel Core i7 2.3GHz and 8GB of RAM. For the next 

steps of this analysis, this method is named "Facetracker". 

Figure 4. We have the projection of the 3D head 
model correctly superposed on the points from the 

face tracking. 
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 2.3. Use of 3D point clouds (3DCloud) 

The method used here is based on the approach developed 

in [16][17]. The implementation used in this case [18] is the 

version based on the PCL library. The main differences 

between the Fanelli method and the PCL implementation 

are the parameters of the algorithm and the training. The 

PCL implementation was online earlier, it is further 

maintained and was used for head pose estimation in TV 

context [11]. This solution relies on the use of random 

forest regression applied on a 3D cloud. This cloud is 

obtained with a RGB-D camera, such as MS Kinect or Asus 

Xtion. Random forests [19] are capable of handling large 

training sets, of generalization and fast computing time. In 

our case the random forests are extended by using a 

regression to simultaneously detect faces but also to 

estimate their orientations on the depth map.  

The method consists of a training stage during which we 

build the random forest and an on-line detection stage 

where the patches extracted from the current frame are 

classified using the trained forests. The training process is 

done once and it is not requested for any user. The training 

stage is based on the BIWI dataset [20] containing over 

15000 images of 20 people (6 females and 14 males). This 

dataset covers a large set of head pose (+-75 degrees yaw 

and +-60 degrees pitch) and generalizes the detection step. 

A leaf of the trees composing the forest stores the ratio of 

face patches that arrived to it during training as well as two 

multi-variate Gaussian distributions voting for the location 

and orientation of the head. A second processing step 

consists in registering a generic face cloud over the region 

corresponding to the estimated position of the head. This 

refinement can greatly increase the accuracy of the head 

tracker but requires more computing resources. A real-time 

mode is possible to use but it works at around 1 fps that is 

why we decided to run the system off-line (Figure 5). This 

allows a full processing of data corresponding to a 

recording of 20 fps with the refinement step.  

Figure 5. 3D rendering of the system. We can 
observe the 3D point cloud obtained with the depth 
camera and the application of the head pose 
estimation algorithm. When a face is detected, we 
retrieve a vector of the head direction. 

The advantage of such a system is that it uses only 

geometric information from the 3D point cloud extracted 

by a RGB-D sensor, and is independent of the brightness. 

It can operate in the dark, which is rarely possible with face 

tracking systems working on colour image which are highly 

dependent on the illumination. This approach was chosen 

because it fits well in the scenario of TV interaction [11]. 

In addition, the use of 3D data will simplify the integration 

of future contextual information about the scene. For the 

analysis, this method is named "3DCloud". 

3. A comparison: experimental setup

In this section we will first describe how we obtained the 

reference values with the Qualisys system. 

3.1. Qualisys setup 

System description 
Every result of the experiments presented in this study was 

compared with an accurate measurement of the head 

movements. This ground truth was obtained thanks to an 

optical motion capture system from Qualisys [4]. The setup 

consists of eight cameras, which emit infrared light and 

which track the position of reflective markers placed on the 

head. Qualisys Track Manager Software (QTM) provides 

the possibility to define a rigid body and to characterize the 

movement of this body with six degrees of freedom (6DOF: 

three Cartesian coordinates for its position and three Euler 

angles - roll, pitch and yaw - for its orientation). 

We used seven passive markers: Four markers were 

positioned on the TV screen and three markers were fixed 

to a rigid part of a hat (the three markers were placed with 

a distance of 72mm, 77mm and 86mm between them) 

(Figure 6 and Figure 7). Both TV screen and hat were 

defined as rigid bodies in QTM. The framerate tracking is 

constant at 150 fps, so it gives the values of the 6 degrees 

of freedom (DOF) each 0.007 seconds. 

Figure 6. Qualisys Track Manager displays tracking 
of two rigid bodies (TV screen in blue on the left and 
head in red on the right). 
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Figure 7. Infrared reflectors on viewer hat sitting in 
front of the TV. 

System calibration 
Before each recording session, a calibration procedure was 

made: the subject, who wears the hat, sat in front of the 

screen and QTM nullified the 6DOF values for this head 

position. By this means, all the head movements were 

measured relatively to this initial starting position. To 

check the quality of the tracking data, QTM computes the 

different residuals of the 3D points compared to the rigid 

body definition. Over all the experiments, the average error 

of each head marker about 0.62mm. 

3.2. Experimental setup 

Qualisys produces marker-based accurate data in real-time 

for object tracking at about 150 frames per second. The 

infrared light and marker do not interfere with RGB image 

and with infrared pattern from the Kinect. The choice of 

Qualisys as reference has been done especially in order to 

compare markerless methods without interferences.  

Figure 8. Kinect for KinectSDK in green, Webcam 
for the facetracker in red, Kinect for 3DCloud in blue, 

2D camera synchronized with Qualisys in yellow. 

We perform the recording of the KinectSDK and the 

Facetracker during the same time under normal conditions 

and correct face lighting. And we have chosen to perform 

the 3DCloud method separately from the first record 

because interferences are observed between 2 running 

Xbox360 Kinects heading in the same direction. This 

positioning is shown on Figure 8. The angles computed 

from the different methods are the Euler angles. 

We made several recordings with 10 candidates. Each 

one does head movement sequence at 5 different distances 

from the screen: 1.20m, 1.50m, 2m, 2.5m and 3m. 

Movements performed are conventional rotations when we 

are facing a screen (pitch, roll, and yaw; combination of 

these movements; slow and fast rotation).  

Six of them had light skin, others have dark skin. Three 

of them wear glasses and six of them wear beard or 

mustache. Table 1 summarizes these facial characteristics. 

Table 1. Facial characteristics for the 10 candidates. 

Candidates 1 2 3 4 5 6 7 8 9 10 

Glasses X X X 

Light skin X X X X X X 

Beard X X X X X X 

A preliminary test showed that the optimal position of 

the camera for Facetracker and KinectSDK is on top of the 

screen, while for 3DCloud which uses the shape of the jaw, 

is at the bottom. We thus decided to keep this two different 

positions in the following tests to maximize each method 

results. This does not change anything to the distances or 

viewing conditions and both positions could be valid in a 

real-life setup. However, we can notice that the top position 

would be more practical to avoid obstacles in people room 

such as objects on a table, etc. 

4. Experiments results

After having synchronized the results obtained by all 

systems and the reference (temporal alignment and start 

offset suppression), as the sampling frequencies are 

different, we have interpolated the reference values to 

obtain similar data sampling for the different systems that 

we compare. To make the comparison between systems and 

the reference computed with Qualisys, we use two metrics: 

the Root Mean Square Error (RMSE) and the correlation 

score. 

The Root Mean Square Error is given by: 

√∑
(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑟𝑒𝑓)2

𝑁
 (1) 

With the predicted values obtained by one system ypred, 

the values from the reference yref and the total number of 

values N. 
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The correlation, based on the Pearson’s coefficient, is 

given by: 

∑(𝑦𝑟𝑒𝑓 − 𝑦̅𝑟𝑒𝑓)(𝑦𝑝𝑟𝑒𝑑 − 𝑦̅𝑝𝑟𝑒𝑑)

√∑(𝑦𝑟𝑒𝑓 − 𝑦̅𝑟𝑒𝑓)
2

 √∑(𝑦𝑝𝑟𝑒𝑑 − 𝑦̅𝑝𝑟𝑒𝑑)
2

 (2) 

4.1. Raw data visualization 

The Figures below show the results with the superposition 

of values from the different algorithms with the reference 

for one random recording session. The first series of three 

graphics show the KinectSDK, the Facetracker and the 

reference for pitch, yaw and roll (Figure 9). The second 

series show the 3DCloud method compared with the 

reference (Figure 10). 

Each recording session contains a head movement 

sequence at 5 different distances. Figure 11 shows part of a 

session for the pitch, roll and yaw at the distance of 1m20 

for KinectSDK. The sequence is: first a yaw movement 

follows by a pitch and a roll movement. Next movements 

are combination of previous basic movements. 

The holes in the green plots on the Figure 11 come from 

loss of tracking by the KinectSDK. The algorithm provides 

no point when tracking is lost. The 3Dcloud method does 

not provide point in case of loss of tracking as the 

KinectSDK, but the Facetracker based method gives results 

even in case of loss of tracking, based on the latest detection 

(Figure 12).  

We observe tracking losses in large and rapid angular 

movements. This is often due to the fact that part of the head 

is less visible or the brightness is reduced, and therefore the 

tracking based on features points from RGB image is more 

difficult to do. Figure 13 below shows angular errors with 

KinectSDK and the Facetracker 

Figure 9. Reference: blue, KinectSDK: green, Facetracker: red. First row: pitch, second row: yaw, third row: roll. 

Figure 10.  Reference: blue, 3DCloud: red. First row: pitch, second row: yaw, third row: roll. Tracking is lost for a 
distance greater than 2 meters for 3DCloud. 
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Figure 11. Head movement sequence for a distance of 1m20. Errors appear like holes in the green plots. 
Reference is in blue and KinectSDK is green. 

Figure 12. Results given by Facetracker (red) in 
case of loss of tracking. 

Figure 13. Errors are observed with some angular 
movement due to loss of tracking. The reference is 
blue, KinectSDK is green and Facetracker is red. 

In addition to errors on large angles, we observed that 

3DCloud achieves significant errors in the roll movement 

(Figure 14). This is caused by the shape of 3D head model 

used in this method. The model is mainly flat with nose 

prominent and it is good for pitch and yaw but less good for 

the roll rotation. 

Figure 14. Errors observed on Roll: 3DCloud in red, 
reference in blue. 

4.2. Head pose estimation: a comparison 

Based on the raw data we compute the Root Mean Square 

Error (RMSE) and the correlation of the three methods 

compared to the Qualisys reference. The results are 

summarized in Figures 15 to 20.  

Correlation and RMSE function of the distance 
The correlation is a good indicator used to establish the link 

between a set of given values and its reference. It is 

interesting to analyse the correlation value obtained for 

each distance, with average for all candidates, to know 

which methods are better correlated with the reference data. 

If the correlation value is equal to 1, the two signals are 

totally correlated. If the correlation is between 0.5 and 1, 

we consider a strong dependence. The 0 value shows that 

the two signals are independent and de -1 value correspond 

to the opposite of the signal. Figure 15 shows the 

correlation for pitch, Figure 16 for yaw and Figure 17 for 

roll. The three plots from KinectSDK, Facetracker and 

3DCloud are compared with the Qualisys reference. 
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Figure 15. Mean correlation for the pitch function of 
the viewer distance from TV (in m). 

On Figure 15, we observe that the pitch (up-down 

movement) of the KinectSDK has a good correlation (0.84) 

at a distance of 1m20. The Facetracker and 3DCloud are 

lower with values about 0.6. We observe that the 

facetracker stays stable with the distance between 0.5 to 

0.73. But KinectSDK and 3Dcloud decrease with the 

distance under the correlation value of 0.5 for KinectSDK 

at 2m50 with 0.32, and for the 3DCloud at 2m with 0.34. 

Figure 16. Mean correlation for the yaw function of 
the viewer distance from TV (in m). 

For the second angle, the yaw, corresponding to a right-

left movement, we have on the Figure 16 good results for 

the KinectSDK with values upper than 0.9 for 1m20, 1m50 

and 2m. Then de values decrease from 0.85 for 2m50 to 

0.76 for 3m. The plot of the Facetracker is similar but less 

good with values around 0.75. 3DCloud achieves the worse 

performance with 0.61 at the beginning and less after. 

As mentioned in Section 4.1, the 3DCloud provides bad 

values for the roll. The KinectSDK have good correlation 

as for the yaw curve (0.93 to 0.7). Facetracker correlation 

is also good but with lower result than KinectSDK with 

about 0.65 (Figure 17). 

Figure 17. Mean correlation for the roll function of 
the viewer distance from TV (in m). 

After watching the correlation values, it is also 

interesting to look at the mean error made by each system. 

Indeed, a method with a big correlation and low RMSE is 

considered very well for head pose estimation. Figure 18 

shows the RMSE for pitch, Figure 19 for yaw and Figure 

20 for roll. 

We observe a RMSE similar for the pitch about 10 to 15 

degrees for each method (Figure 18). But the KinectSDK is 

good at 1m20 with 5.9 degrees. The error logically grows 

with the ditance. 

Figure 18. Mean RMSE (in degrees) for the pitch 
function of the viewer distance from TV (in m). 

Figure 19. Mean RMSE (in degrees) for the yaw 
function of the viewer distance from TV (in m). 
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On the yaw, we observe on Figure 19 a slight increase of 

the error with the distance. But the KinectSDK is better 

with RMSE from 10 to 12 degrees, 15 to 18 degrees for 

Facetracker and around 20 for 3DCloud. 

Figure 20. Mean RMSE (in degrees) for the roll 
function of the viewer distance from TV (in m). 

In the case of roll, the RMSE is similar for Facetracker 

and KinectSDK (around 10 degrees with a smaller error at 

3m for KinectSDK). The error of 3DCloud is arround 13 

degrees (Figure 20). This error can be put in perspective 

because the correlation for the roll was poor. 

Correlation and RMSE function of the viewer 
After watching the values of the root means square error 

and correlation according to the different distances, it is 

interesting to look at the average values of these two 

indicators for each individual to link some observation to 

candidates facial features previously described in Table 1. 

Below, we have all three graphs (Figures 21, 22 and 23) for 

the test according to the correlation, followed by the three 

graphs of the RMSE (Figures 24, 25 and 26). 

Figure 21. Mean correlation for the pitch for each 
candidate. 

In Figure 21, we observe that the correlation for each 

individual is about 0.6. All these values are similar. But a 

correlation about 0 is observed for the candidate number 5 

for the 3DCloud method which means that the pitch did not 

work at all.  

Figure 22.  Mean correlation for the yaw for each 
candidate. 

In Figure 22, the KinectSDK gives a coorelation higher 

than 0.75 for each candidate followed by Facetracker with 

values higher than 0.5. 3DCloud method gives the worse 

correlation with values between 0.1 and 0.64. For this 

method, candidate number 5 gives also the worse 

correlation for the 3DCloud. 

Figure 23. Mean correlation for the pitch for each 
candidate. 

In Figure 23, we observe that the KinectSDK and the 

Factracker method give good values higher than 0.5, with a 

better coorelation for KinectSDK. Results for the 3DCloud 

are worse, as already seen on other graphics regarding the 

roll (Figure 17). 

Figure 24. Mean RMSE (in degrees) for the pitch for 
each candidate. 
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RMSE is about 10 for the KinectSDK and 3DCloud for 

all candidates in Figure 24. We observe that the error on the 

pitch for the Facetracker method is higher for candidates 

5,7,8 and 9, these candidates have darker skin (Table 1). 

The KinectSDK has more homogenous results. 

Figure 25. Mean RMSE (in degrees) for the yaw for 
each candidate. 

In Figure 25, the 3DCloud gives worse results than 

KinectSDK and Facetracker. We also observe bigger error 

for darker skin for the Facetracker method. Again 

KinectSDk seems to be less sensitive to the viewer skin 

color. 

Figure 26. Mean RMSE (in degrees) for the roll for 
each candidate. 

On this roll graph (Figure 26), the error is about 10 

degrees for KinectSDK and Facetracker and greater for the 

3DCloud method. 

4.3. Face direction methods analysis 

After analyzing all data obtained by the three different 

methods we are able to establish the advantage and the 

drawbacks for each method in a TV context. 

These results show that the better correlation values are 

obtained with the KinectSDK. The Facetracker based 

method also gives good result. We also have similar errors 

for these methods. A previous study has shown that the 

Facetracker method gives very good result for a distance 

under 1 meter [10]. At this distance the KinectSDK is not 

able to track the head because on one hand the sensor had a 

blind zone up to 60cm [21] and on the other hand the field 

of view is too small and it is hard to detect correctly a user 

under a distance of 1 meter. Concerning the third method, 

3DCloud, the RMSE and the correlation are worse than the 

two other methods and do not work at a distance of more 

than 2m from the screen. The estimation of roll is also of 

poor quality. Concerning skin color, KinectSDK seems to 

be the most homogenous methods while the two others 

(mostly FaceTracker) might work less well in case of dark 

skin.  

For all these methods, errors are mainly due to face 

tracking errors and tracking losses. If we cut all sections 

with bad detection of the head and the characteristics point 

of the face, the RMSE will decline significantly and the 

correlation will increase. But in our context, we want to get 

results without post-processing corrections. We can also 

say that from a distance of 1.50m, an error of 10 degrees 

generates a gaze tracking error on the screen of 26cm ( 

150sin(26°) ). This is quite acceptable for whether a person 

looks at a screen, or any other object. However, this error 

let us hope to be able to detect the screen which is attended 

and not precisely what region of the screen is attended.  

About the benefits of these different methods, we can say 

that the Facetracker method requires a basic camera while 

the two other work with a 3D sensor. The advantage of the 

3D sensor for the KinectSDK is in the robust people and 

head tracking. Thanks to this, KinectSDK rarely loses the 

head position, provided being able to detect and track the 

user skeleton. The 3DCloud method allows head pose 

estimation in all kind of illumination and also in darkness 

because it works only on the point cloud obtained by the 3D 

sensor. Facetracker and KinectSDK work in real-time while 

the 3DCloud requires about 1 second per frame. 

The pitch and the yaw are the two important rotations in 

a context on TV watching because we are generally straight 

face at the TV, so roll is generally close to 0. In this case 

the Pitch describes the up-down movement. This movement 

is important to know if the viewer looks at the main TV 

screen or if he watches a second screen on his knees like a 

smartphone or a tablet. The yaw corresponds to a left-right 

movement, usable to know if the viewer watches the main 

TV screen or if his attention is drawn on the sides of the 

screen, for example to talk with somebody else. 

Combination of pitch and yaw indicate the direction of the 

face allowing to know where the user look on the TV, but 

given the error of 26 cm at a distance of 1m50, by using the 

current technique one can hardly get usable screen position 

information and only the attended screen can be extracted 

in real TV setups. 

Although our tests present the viewer properly sited on 

a classical chair, we produced some preliminary tests in 

much more relaxed position on a sofa and daylight in the 

back (Figure 27). The first results show that while 3DCloud 

and FaceTracker perform poorly, the KinectSDK performs 

less well, but still the data extracted using the facial mask 

makes sense. 
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Figure 27. Preliminary test in relaxed positions on 
a sofa with a tablet as second screen (KinectSDK). 

5. Head pose estimation in a TV context:
a conclusion 

This study aims to show the advantages and weaknesses of 

three markerless head pose estimation methods in a TV 

context. This assessment is achieved using a highly 

accurate marker-based MOCAP system (Qualisys). These 

three methods were chosen because they are easy to use, 

low-cost and the codes are freely available.  

The study of accuracy is made on individuals with 

different facial characteristic. As we work in the context of 

TV watching for user attention detection, we worked over 

distances from 1.20m to 3m and we analyzed the rotation 

of the head along three angles: pitch, roll and yaw. 

This study focuses on Facetracker a method operating on 

RGB image, the 2D-3D method from the KinectSDK and a 

full 3D method based on Point Cloud Library (3DCloud). 

The results proved that the most accurate method is the 

KinectSDK with the best correlation and the smaller mean 

error. These accuracy is due to the 3D user and skeleton 

detection which provides precisely the head position. Based 

on this robust head position, the estimation of angles of 

rotation is made easier. The second best result is obtained 

by the Facetracker method. The error is a bit higher and 

correlation slightly lower than KinectSDK due to wrong 

face detection. These two methods have weaknesses in face 

illumination variations and occlusions. Concerning the full 

3D method we observed the worse results. But this method 

has a major advantage because it works only on the point 

cloud and it is insensitive to brightness changes and also 

works in complete darkness. We also notice that the 

methods are sensitive to facial characteristic for head pose 

estimation. Glasses and beard create minor errors. Only the 

color of the skin has a slight effect with the method for face 

tracking which was less stable. 

The choice of one of these methods is therefore based on 

the context of use. If the illumination is bad or if it must 

operate in the dark, the chosen method will be 3DCloud. 

This method however has the disadvantage that requires 

more computation time while the other two methods work 

perfectly in real time. In the case of a classical TV setup, 

the user attention is better computed by the KinectSDK. If 

we are interested in head pose estimation with straight face 

in front of a computer screen (like a webcalm computer 

setup) the KinectSDK is better if it is possible to track the 

user skeleton (not too close to the camera). Otherwise the 

FaceTracker will be the best method for computer uses. 

Our tests show that the current technologies can provide 

a first prototype of implicit viewer behavior in the context 

of a TV setup. However, reaching good extraction quality 

in real-life setups with natural positions and lightning are 

only possible by using a robust sensor as a RGB-D camera. 

Nevertheless, with the arrival of second generation RGB-D 

sensors as the Kinect one (second version of the Kinect 

sensor which provides better depth sensor, better RGB 

definition and operates in more complex illumination 

conditions), the implicit viewer behavior acquisition in 

real-life TV setups becomes possible.    

The head pose estimation allows to know the user 

interest (or disinterest) on the media displayed on the screen 

which is of crucial importance in TV content 

personalization. In addition to one viewer head pose 

estimation, other features as body movements, postures or 

joint attention can be extracted from the skeleton to provide 

additional features to the TV viewer behavior analysis. 

Joint attention appears when two individual share the focus 

on the same object, in this case the object is the screen.  
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