
EAI Endorsed Transactions
on Creative Technologies

1

Head pose estimation & TV Context: current technology

Francois Rocca1*, Matei Mancas1, Fabien Grisard1, Julien Leroy1, Thierry Ravet1 and Bernard Gosselin1

1University of Mons (UMONS), Faculty of Engineering (FPMs), 20, Place du Parc, 7000 Mons, Belgium

Abstract

 With the arrival of low-cost high quality cameras, implicit user behaviour tracking is easier and it becomes very interesting

for viewer modelling and content personalization in a TV context. In this paper, we present a comparison between three

common algorithms of automatic head direction extraction for a person watching TV in a realistic context. Those algorithms

compute the different rotation angles of the head (pitch, roll, yaw) in a non-invasive and continuous way based on 2D and/or

3D features acquired with low cost cameras. These results are compared with a reference based on the Qualisys motion

capture commercial system which is a robust marker-based tracking system. The performances of the different algorithms

are compared function of different configurations.

While our results show that full implicit behaviour tracking in real-life TV setups is still a challenge, with the arrival of next

generation sensors (as the new Kinect one sensor), accurate TV personalization based on implicit behaviour is close to

become a very interesting option.

Keywords: head pose estimation, viewer interest, face direction, Qualisys, Kinect, face tracking, 3D point cloud.

Received on 9 June 2014, accepted on 23 March 2015, published on 2 June 2015

Copyright © 2015 F. Rocca et al., licensed to ICST. This is an open access article distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any

medium so long as the original work is properly cited.

doi: 10.4108/ct.2.3.e2

1. Introduction

The analysis of people interest is crucial for number of

applications such as advertising, museums and public

spaces displays, gaming technologies, TV experience, etc.

Here we focus on context-aware TV experiences which can

highly benefit from knowledge about viewer interest.

Viewer interest can be extracted in various ways. In

computer vision there are two families of methods: one is

marker-based and the other markerless. Here we focus on

markerless face direction (or head pose) estimation

techniques which begin to provide results for real-world

applications at reasonable distances and illumination

conditions in a non-invasive and transparent way.

Moreover, more and more TV and home setups (such as

the XBOX) come with cameras. The acceptance of such

sensors inside homes watching the viewers is higher and

higher and people see less ethical issues in being observed

by sensors if they have enhanced experience in return and

if the data is processed locally in real-time without any

*Corresponding author. Email:francois.rocca@umons.ac.be

recording and audio/visual data transmission. The

conjunction of the arrival of new efficient low-cost sensors

and of their high degree of acceptance open new potential

applications in the TV domain. In this paper we thus focus

on TV and present a state for the art of the main face

direction estimation methods which can be used in TV

setups. In addition to the gesture/voice recognition which

can be now found on a lot of “smart” TVs, those setups can

help enhancing viewer TV experience by modelling

viewers behaviour to provide them with personalized media

or enrichments in a single or multi-screen environment.

In section 2, we present the different techniques for head

pose estimation and we describe markerless face direction

methods which are used in this study. In section 3, we

present the Qualisys system which was used to validate

these techniques along with the experimental validation

setup. Section 4 shows the validation results in our setup

and presents a discussion on the state-of-the-art methods

which allows to choose a method depending on the viewing

situations (in terms of illumination changes or distance

from the sensor for example) or analysis results (in terms of

precision and framerate constraints). We finally conclude

Research Article

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

http://creativecommons.org/licenses/by/3.0/

F. Rocca, et al.

2

in section 5 on the usability of the current and near future

methods.

2. Head pose estimation

Head pose estimation and head movements are mainly

captured with physical sensors and optical analysis as we

can see in the animation industry.

Physical sensors such as accelerometers, gyroscopes and

magnetometers are placed on the head to compute the head

rotation [1] [2].

Another way consists in marker-based optical motion

capture systems that are able to capture the subtlety of the

motion. In these methods, markers are placed on the head

of the actor and they are tracked through multiple cameras.

The markers are often coloured dots or infrared reflective

fiducials and the cameras depend on the markers type.

Accurate tracking requires multiple cameras and specific

software to compute head pose estimation. These systems

are very complex and expensive, they need calibration and

precise positioning of markers (Optitrack [3], Qualisys [4])

and they remain invasive. While they cannot be used in

real-life TV setups, we use marker-based methods to

evaluate the markerless methods which can be low-cost,

transparent (no calibration needed) and non-invasive. More

precisely we use the Qualisys motion capture system.

Markerless tracking is another approach to face motion

capture and a wide range of methods exists. Some

markerless equipment use infrared cameras to compute

tracking of characteristic points. For example, FaceLAB

gives the head orientation and the position of lips, eyes and

eyebrows [5]. But there are also algorithms using only a

webcam. We can cite FaceAPI [6] from the same company

as FaceLAB. Markerless systems use classical cameras or

infrared cameras to compute tracking of characteristic

points. We choose several freely accessible methods in this

paper for a fair comparison in a real-world TV context.

The first method that we use is based on the Microsoft

Kinect SDK [7]. The Kinect SDK is free, easy to use and

contains multiple tools for user tracking and behaviour

modelling such as face tracking and head pose estimation.

These tools combine 2D and 3D information obtained with

the Kinect sensor.

Secondly, a head pose estimation solution based on 2D

face tracking algorithm using the free library OpenCV [8].

The face tracking part of this method was developed by

Jason Saragih and it is known under the name of

“FaceTracker” [9]. The head pose estimation part was

developed separately and it is explained in a study of this

method for computer uses [10].

Finally we use a fully 3D method for real time head pose

estimation from depth images [11] based on a free library

called PCL (Point Cloud Library) [12].

2.1. MS Kinect solution (KinectSDK)

The Kinect sensor developed for the Xbox360 is a low-cost

depth and RGB camera. It contains two CMOS sensors, one

for the RGB image (640 x 480 pixels at 30 fps) and another

for the infrared image from which the depth map is

calculated, based on the deformation of an infrared

projected pattern (λ = 830nm). The depth sensor has an

optimal utilisation in a range of 1.2 meter (precision better

than 10 mm) to 3.5 m (precision better than 30 mm) [13]

and can be perturbed by other sources of infrared light.

Microsoft provides a Face Tracking module with the

SDK which works with the Kinect SDK since the version

1.5. These SDKs can be used together to “create

applications that can track human faces in real time” To

achieve face tracking, at least the upper part of the user's

Kinect skeleton has to be tracked in order to identify the

position of the head.

The Get3DPose method returns two tables of three float

numbers. The first one contains the Euler rotation angles in

degrees for the pitch, roll and yaw as described in Figure 1,

and the second contains the head position in meters. All the

values are calculated relatively to the sensor which is the

origin for the coordinates.

Figure 1. Three different degrees of freedom: pitch,
roll and yaw [14]. All head motion can be obtained by

combining these three basic movements.

The technique used to estimate the rotations and facial

features tracking of the head (Figure 2) is not described by

Microsoft, but the method uses the RGB image and depth

map. The head position is located using 3D skeleton only

on the depth map. The head pose estimation itself is mainly

achieved on the RGB images. Consequently, the face

tracking hardly works in bad light conditions (shadow, too

much contrast, etc.).

By using the SDK, we obtain a head orientation

measuring tool at 30 fps (frames per second). The

experiment computer is a laptop with an Intel i7 2.40GHz,

8GB of RAM and running Windows 8. For this paper, this

method will be called "KinectSDK".

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

Head pose estimation & TV Context: current technology

3

Figure 2. The Microsoft Kinect SDK provides facial
features tracking and head pose estimation thought

pitch yaw and roll.

2.2. Webcam solution (Facetracker)

This method is a combination of FaceTracker and a head

pose estimation based of the features extraction from the

face tracking part.

FaceTracker allows the identification and localization

landmarks on a RGB image. These points can be

assimilated to a facial mask allowing to track facial features

like the edge of lips, facial contours, nose, eyes and

eyebrows (Figure 3). Based on this, we apply the

perspective-n-point (PNP) methods [11] to find the rotation

matrix and 3D head pose estimation.

FaceTracker is a CLM-based C/C++ API for real-time

generic non-rigid face alignment and tracking. The

approach is an instance of the constrained local model with

the subspace constrained mean-shifts algorithm as an

optimization strategy [10].

The advantage is that FaceTracker does not require

specific manipulation before the utilization and the

algorithm makes an automatic detection of the user face

based on a pre-trained model on database. FaceTracker is

based on the OpenCV library [9]. It is compatible with any

camera. In our setup we use a 480X640 pixel webcam. The

initialization of the algorithm is based on the Haar

classifiers [15], thus the face tracking is optimal if the face

is centred in front of the camera and straight. We can also

observe significant perturbations when an object starts

occluding some landmarks or when head rotation is rapidly

done with a wide angle.

To find the Euler angles of the rotation of the head we

use 2D Points from Facetracker, 3D points from a 3D head

model and we compute the rotation matrix based on the

perspective-n-point method.

Figure 3. FaceTracker detects in real-time a set of 66
points. Points 0 to 16: lower facial contours, 17 to 21
and 22 to 26: right and left eyebrows, 27 to 35: nose,
36 to 41 and 42 to 47: right and left eyes, 48 to 65:

edge of lips.

A Set of 7 points are taken among the 66 points from

FaceTracker. These points were chosen because they are far

enough and stable regardless of the expressions and

movements of the face. In parallel to this, we use a 3D head

model on which we extract 3D points corresponding to 2D

previous points.

Once the seven 2D and 3D coordinates are set, and the

camera matrix found, we can calculate the matrix of

rotation and translation of 3D model by reporting the data

from the face tracking (Figure 4). The pitch, roll and yaw

can directly be extracted from the rotation matrix in real

time about 24fps (from 19 to 28fps). The computing time

per frame is about 50ms by single thread on a Linux OS

with Intel Core i7 2.3GHz and 8GB of RAM. For the next

steps of this analysis, this method is named "Facetracker".

Figure 4. We have the projection of the 3D head
model correctly superposed on the points from the

face tracking.

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

F. Rocca, et al.

4

 2.3. Use of 3D point clouds (3DCloud)

The method used here is based on the approach developed

in [16][17]. The implementation used in this case [18] is the

version based on the PCL library. The main differences

between the Fanelli method and the PCL implementation

are the parameters of the algorithm and the training. The

PCL implementation was online earlier, it is further

maintained and was used for head pose estimation in TV

context [11]. This solution relies on the use of random

forest regression applied on a 3D cloud. This cloud is

obtained with a RGB-D camera, such as MS Kinect or Asus

Xtion. Random forests [19] are capable of handling large

training sets, of generalization and fast computing time. In

our case the random forests are extended by using a

regression to simultaneously detect faces but also to

estimate their orientations on the depth map.

The method consists of a training stage during which we

build the random forest and an on-line detection stage

where the patches extracted from the current frame are

classified using the trained forests. The training process is

done once and it is not requested for any user. The training

stage is based on the BIWI dataset [20] containing over

15000 images of 20 people (6 females and 14 males). This

dataset covers a large set of head pose (+-75 degrees yaw

and +-60 degrees pitch) and generalizes the detection step.

A leaf of the trees composing the forest stores the ratio of

face patches that arrived to it during training as well as two

multi-variate Gaussian distributions voting for the location

and orientation of the head. A second processing step

consists in registering a generic face cloud over the region

corresponding to the estimated position of the head. This

refinement can greatly increase the accuracy of the head

tracker but requires more computing resources. A real-time

mode is possible to use but it works at around 1 fps that is

why we decided to run the system off-line (Figure 5). This

allows a full processing of data corresponding to a

recording of 20 fps with the refinement step.

Figure 5. 3D rendering of the system. We can
observe the 3D point cloud obtained with the depth
camera and the application of the head pose
estimation algorithm. When a face is detected, we
retrieve a vector of the head direction.

The advantage of such a system is that it uses only

geometric information from the 3D point cloud extracted

by a RGB-D sensor, and is independent of the brightness.

It can operate in the dark, which is rarely possible with face

tracking systems working on colour image which are highly

dependent on the illumination. This approach was chosen

because it fits well in the scenario of TV interaction [11].

In addition, the use of 3D data will simplify the integration

of future contextual information about the scene. For the

analysis, this method is named "3DCloud".

3. A comparison: experimental setup

In this section we will first describe how we obtained the

reference values with the Qualisys system.

3.1. Qualisys setup

System description
Every result of the experiments presented in this study was

compared with an accurate measurement of the head

movements. This ground truth was obtained thanks to an

optical motion capture system from Qualisys [4]. The setup

consists of eight cameras, which emit infrared light and

which track the position of reflective markers placed on the

head. Qualisys Track Manager Software (QTM) provides

the possibility to define a rigid body and to characterize the

movement of this body with six degrees of freedom (6DOF:

three Cartesian coordinates for its position and three Euler

angles - roll, pitch and yaw - for its orientation).

We used seven passive markers: Four markers were

positioned on the TV screen and three markers were fixed

to a rigid part of a hat (the three markers were placed with

a distance of 72mm, 77mm and 86mm between them)

(Figure 6 and Figure 7). Both TV screen and hat were

defined as rigid bodies in QTM. The framerate tracking is

constant at 150 fps, so it gives the values of the 6 degrees

of freedom (DOF) each 0.007 seconds.

Figure 6. Qualisys Track Manager displays tracking
of two rigid bodies (TV screen in blue on the left and
head in red on the right).

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

5

Figure 7. Infrared reflectors on viewer hat sitting in
front of the TV.

System calibration
Before each recording session, a calibration procedure was

made: the subject, who wears the hat, sat in front of the

screen and QTM nullified the 6DOF values for this head

position. By this means, all the head movements were

measured relatively to this initial starting position. To

check the quality of the tracking data, QTM computes the

different residuals of the 3D points compared to the rigid

body definition. Over all the experiments, the average error

of each head marker about 0.62mm.

3.2. Experimental setup

Qualisys produces marker-based accurate data in real-time

for object tracking at about 150 frames per second. The

infrared light and marker do not interfere with RGB image

and with infrared pattern from the Kinect. The choice of

Qualisys as reference has been done especially in order to

compare markerless methods without interferences.

Figure 8. Kinect for KinectSDK in green, Webcam
for the facetracker in red, Kinect for 3DCloud in blue,

2D camera synchronized with Qualisys in yellow.

We perform the recording of the KinectSDK and the

Facetracker during the same time under normal conditions

and correct face lighting. And we have chosen to perform

the 3DCloud method separately from the first record

because interferences are observed between 2 running

Xbox360 Kinects heading in the same direction. This

positioning is shown on Figure 8. The angles computed

from the different methods are the Euler angles.

We made several recordings with 10 candidates. Each

one does head movement sequence at 5 different distances

from the screen: 1.20m, 1.50m, 2m, 2.5m and 3m.

Movements performed are conventional rotations when we

are facing a screen (pitch, roll, and yaw; combination of

these movements; slow and fast rotation).

Six of them had light skin, others have dark skin. Three

of them wear glasses and six of them wear beard or

mustache. Table 1 summarizes these facial characteristics.

Table 1. Facial characteristics for the 10 candidates.

Candidates 1 2 3 4 5 6 7 8 9 10

Glasses X X X

Light skin X X X X X X

Beard X X X X X X

A preliminary test showed that the optimal position of

the camera for Facetracker and KinectSDK is on top of the

screen, while for 3DCloud which uses the shape of the jaw,

is at the bottom. We thus decided to keep this two different

positions in the following tests to maximize each method

results. This does not change anything to the distances or

viewing conditions and both positions could be valid in a

real-life setup. However, we can notice that the top position

would be more practical to avoid obstacles in people room

such as objects on a table, etc.

4. Experiments results

After having synchronized the results obtained by all

systems and the reference (temporal alignment and start

offset suppression), as the sampling frequencies are

different, we have interpolated the reference values to

obtain similar data sampling for the different systems that

we compare. To make the comparison between systems and

the reference computed with Qualisys, we use two metrics:

the Root Mean Square Error (RMSE) and the correlation

score.

The Root Mean Square Error is given by:

√∑
(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑟𝑒𝑓)2

𝑁
 (1)

With the predicted values obtained by one system ypred,

the values from the reference yref and the total number of

values N.

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

Head pose estimation & TV Context: current technology

F. Rocca, et al.

6

The correlation, based on the Pearson’s coefficient, is

given by:

∑(𝑦𝑟𝑒𝑓 − �̅�𝑟𝑒𝑓)(𝑦𝑝𝑟𝑒𝑑 − �̅�𝑝𝑟𝑒𝑑)

√∑(𝑦𝑟𝑒𝑓 − �̅�𝑟𝑒𝑓)
2

 √∑(𝑦𝑝𝑟𝑒𝑑 − �̅�𝑝𝑟𝑒𝑑)
2

 (2)

4.1. Raw data visualization

The Figures below show the results with the superposition

of values from the different algorithms with the reference

for one random recording session. The first series of three

graphics show the KinectSDK, the Facetracker and the

reference for pitch, yaw and roll (Figure 9). The second

series show the 3DCloud method compared with the

reference (Figure 10).

Each recording session contains a head movement

sequence at 5 different distances. Figure 11 shows part of a

session for the pitch, roll and yaw at the distance of 1m20

for KinectSDK. The sequence is: first a yaw movement

follows by a pitch and a roll movement. Next movements

are combination of previous basic movements.

The holes in the green plots on the Figure 11 come from

loss of tracking by the KinectSDK. The algorithm provides

no point when tracking is lost. The 3Dcloud method does

not provide point in case of loss of tracking as the

KinectSDK, but the Facetracker based method gives results

even in case of loss of tracking, based on the latest detection

(Figure 12).

We observe tracking losses in large and rapid angular

movements. This is often due to the fact that part of the head

is less visible or the brightness is reduced, and therefore the

tracking based on features points from RGB image is more

difficult to do. Figure 13 below shows angular errors with

KinectSDK and the Facetracker

Figure 9. Reference: blue, KinectSDK: green, Facetracker: red. First row: pitch, second row: yaw, third row: roll.

Figure 10. Reference: blue, 3DCloud: red. First row: pitch, second row: yaw, third row: roll. Tracking is lost for a
distance greater than 2 meters for 3DCloud.

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

7

Figure 11. Head movement sequence for a distance of 1m20. Errors appear like holes in the green plots.
Reference is in blue and KinectSDK is green.

Figure 12. Results given by Facetracker (red) in
case of loss of tracking.

Figure 13. Errors are observed with some angular
movement due to loss of tracking. The reference is
blue, KinectSDK is green and Facetracker is red.

In addition to errors on large angles, we observed that

3DCloud achieves significant errors in the roll movement

(Figure 14). This is caused by the shape of 3D head model

used in this method. The model is mainly flat with nose

prominent and it is good for pitch and yaw but less good for

the roll rotation.

Figure 14. Errors observed on Roll: 3DCloud in red,
reference in blue.

4.2. Head pose estimation: a comparison

Based on the raw data we compute the Root Mean Square

Error (RMSE) and the correlation of the three methods

compared to the Qualisys reference. The results are

summarized in Figures 15 to 20.

Correlation and RMSE function of the distance
The correlation is a good indicator used to establish the link

between a set of given values and its reference. It is

interesting to analyse the correlation value obtained for

each distance, with average for all candidates, to know

which methods are better correlated with the reference data.

If the correlation value is equal to 1, the two signals are

totally correlated. If the correlation is between 0.5 and 1,

we consider a strong dependence. The 0 value shows that

the two signals are independent and de -1 value correspond

to the opposite of the signal. Figure 15 shows the

correlation for pitch, Figure 16 for yaw and Figure 17 for

roll. The three plots from KinectSDK, Facetracker and

3DCloud are compared with the Qualisys reference.

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

Head pose estimation & TV Context: current technology

F. Rocca, et al.

8

Figure 15. Mean correlation for the pitch function of
the viewer distance from TV (in m).

On Figure 15, we observe that the pitch (up-down

movement) of the KinectSDK has a good correlation (0.84)

at a distance of 1m20. The Facetracker and 3DCloud are

lower with values about 0.6. We observe that the

facetracker stays stable with the distance between 0.5 to

0.73. But KinectSDK and 3Dcloud decrease with the

distance under the correlation value of 0.5 for KinectSDK

at 2m50 with 0.32, and for the 3DCloud at 2m with 0.34.

Figure 16. Mean correlation for the yaw function of
the viewer distance from TV (in m).

For the second angle, the yaw, corresponding to a right-

left movement, we have on the Figure 16 good results for

the KinectSDK with values upper than 0.9 for 1m20, 1m50

and 2m. Then de values decrease from 0.85 for 2m50 to

0.76 for 3m. The plot of the Facetracker is similar but less

good with values around 0.75. 3DCloud achieves the worse

performance with 0.61 at the beginning and less after.

As mentioned in Section 4.1, the 3DCloud provides bad

values for the roll. The KinectSDK have good correlation

as for the yaw curve (0.93 to 0.7). Facetracker correlation

is also good but with lower result than KinectSDK with

about 0.65 (Figure 17).

Figure 17. Mean correlation for the roll function of
the viewer distance from TV (in m).

After watching the correlation values, it is also

interesting to look at the mean error made by each system.

Indeed, a method with a big correlation and low RMSE is

considered very well for head pose estimation. Figure 18

shows the RMSE for pitch, Figure 19 for yaw and Figure

20 for roll.

We observe a RMSE similar for the pitch about 10 to 15

degrees for each method (Figure 18). But the KinectSDK is

good at 1m20 with 5.9 degrees. The error logically grows

with the ditance.

Figure 18. Mean RMSE (in degrees) for the pitch
function of the viewer distance from TV (in m).

Figure 19. Mean RMSE (in degrees) for the yaw
function of the viewer distance from TV (in m).

0

0,25

0,5

0,75

1

1m20 1m50 2m 2m50 3m

KinectSDK Facetracker 3DCloud

0

0,25

0,5

0,75

1

1m20 1m50 2m 2m50 3m

KinectSDK Facetracker 3DCloud

0

0,25

0,5

0,75

1

1m20 1m50 2m 2m50 3m

KinectSDK Facetracker 3DCloud

0

5

10

15

20

25

1m20 1m50 2m 2m50 3m

Kinect SDK Facetracker 3DCloud

0

5

10

15

20

25

1m20 1m50 2m 2m50 3m

Kinect SDK Facetracker 3DCloud

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

9

On the yaw, we observe on Figure 19 a slight increase of

the error with the distance. But the KinectSDK is better

with RMSE from 10 to 12 degrees, 15 to 18 degrees for

Facetracker and around 20 for 3DCloud.

Figure 20. Mean RMSE (in degrees) for the roll
function of the viewer distance from TV (in m).

In the case of roll, the RMSE is similar for Facetracker

and KinectSDK (around 10 degrees with a smaller error at

3m for KinectSDK). The error of 3DCloud is arround 13

degrees (Figure 20). This error can be put in perspective

because the correlation for the roll was poor.

Correlation and RMSE function of the viewer
After watching the values of the root means square error

and correlation according to the different distances, it is

interesting to look at the average values of these two

indicators for each individual to link some observation to

candidates facial features previously described in Table 1.

Below, we have all three graphs (Figures 21, 22 and 23) for

the test according to the correlation, followed by the three

graphs of the RMSE (Figures 24, 25 and 26).

Figure 21. Mean correlation for the pitch for each
candidate.

In Figure 21, we observe that the correlation for each

individual is about 0.6. All these values are similar. But a

correlation about 0 is observed for the candidate number 5

for the 3DCloud method which means that the pitch did not

work at all.

Figure 22. Mean correlation for the yaw for each
candidate.

In Figure 22, the KinectSDK gives a coorelation higher

than 0.75 for each candidate followed by Facetracker with

values higher than 0.5. 3DCloud method gives the worse

correlation with values between 0.1 and 0.64. For this

method, candidate number 5 gives also the worse

correlation for the 3DCloud.

Figure 23. Mean correlation for the pitch for each
candidate.

In Figure 23, we observe that the KinectSDK and the

Factracker method give good values higher than 0.5, with a

better coorelation for KinectSDK. Results for the 3DCloud

are worse, as already seen on other graphics regarding the

roll (Figure 17).

Figure 24. Mean RMSE (in degrees) for the pitch for
each candidate.

0

5

10

15

20

25

1m20 1m50 2m 2m50 3m

Kinect SDK Facetracker 3DCloud

0

0,25

0,5

0,75

1

1 2 3 4 5 6 7 8 9 10

Kinect SDK Facetracker 3DCloud

0

0,25

0,5

0,75

1

1 2 3 4 5 6 7 8 9 10

Kinect SDK Facetracker 3DCloud

-0,25

0

0,25

0,5

0,75

1

1 2 3 4 5 6 7 8 9 10

Kinect SDK Facetracker 3DCloud

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Kinect SDK Facetracker 3DCloud

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

Head pose estimation & TV Context: current technology

F. Rocca, et al.

10

RMSE is about 10 for the KinectSDK and 3DCloud for

all candidates in Figure 24. We observe that the error on the

pitch for the Facetracker method is higher for candidates

5,7,8 and 9, these candidates have darker skin (Table 1).

The KinectSDK has more homogenous results.

Figure 25. Mean RMSE (in degrees) for the yaw for
each candidate.

In Figure 25, the 3DCloud gives worse results than

KinectSDK and Facetracker. We also observe bigger error

for darker skin for the Facetracker method. Again

KinectSDk seems to be less sensitive to the viewer skin

color.

Figure 26. Mean RMSE (in degrees) for the roll for
each candidate.

On this roll graph (Figure 26), the error is about 10

degrees for KinectSDK and Facetracker and greater for the

3DCloud method.

4.3. Face direction methods analysis

After analyzing all data obtained by the three different

methods we are able to establish the advantage and the

drawbacks for each method in a TV context.

These results show that the better correlation values are

obtained with the KinectSDK. The Facetracker based

method also gives good result. We also have similar errors

for these methods. A previous study has shown that the

Facetracker method gives very good result for a distance

under 1 meter [10]. At this distance the KinectSDK is not

able to track the head because on one hand the sensor had a

blind zone up to 60cm [21] and on the other hand the field

of view is too small and it is hard to detect correctly a user

under a distance of 1 meter. Concerning the third method,

3DCloud, the RMSE and the correlation are worse than the

two other methods and do not work at a distance of more

than 2m from the screen. The estimation of roll is also of

poor quality. Concerning skin color, KinectSDK seems to

be the most homogenous methods while the two others

(mostly FaceTracker) might work less well in case of dark

skin.

For all these methods, errors are mainly due to face

tracking errors and tracking losses. If we cut all sections

with bad detection of the head and the characteristics point

of the face, the RMSE will decline significantly and the

correlation will increase. But in our context, we want to get

results without post-processing corrections. We can also

say that from a distance of 1.50m, an error of 10 degrees

generates a gaze tracking error on the screen of 26cm (

150sin(26°)). This is quite acceptable for whether a person

looks at a screen, or any other object. However, this error

let us hope to be able to detect the screen which is attended

and not precisely what region of the screen is attended.

About the benefits of these different methods, we can say

that the Facetracker method requires a basic camera while

the two other work with a 3D sensor. The advantage of the

3D sensor for the KinectSDK is in the robust people and

head tracking. Thanks to this, KinectSDK rarely loses the

head position, provided being able to detect and track the

user skeleton. The 3DCloud method allows head pose

estimation in all kind of illumination and also in darkness

because it works only on the point cloud obtained by the 3D

sensor. Facetracker and KinectSDK work in real-time while

the 3DCloud requires about 1 second per frame.

The pitch and the yaw are the two important rotations in

a context on TV watching because we are generally straight

face at the TV, so roll is generally close to 0. In this case

the Pitch describes the up-down movement. This movement

is important to know if the viewer looks at the main TV

screen or if he watches a second screen on his knees like a

smartphone or a tablet. The yaw corresponds to a left-right

movement, usable to know if the viewer watches the main

TV screen or if his attention is drawn on the sides of the

screen, for example to talk with somebody else.

Combination of pitch and yaw indicate the direction of the

face allowing to know where the user look on the TV, but

given the error of 26 cm at a distance of 1m50, by using the

current technique one can hardly get usable screen position

information and only the attended screen can be extracted

in real TV setups.

Although our tests present the viewer properly sited on

a classical chair, we produced some preliminary tests in

much more relaxed position on a sofa and daylight in the

back (Figure 27). The first results show that while 3DCloud

and FaceTracker perform poorly, the KinectSDK performs

less well, but still the data extracted using the facial mask

makes sense.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Kinect SDK Facetracker 3DCloud

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Kinect SDK Facetracker 3DCloud

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

11

Figure 27. Preliminary test in relaxed positions on
a sofa with a tablet as second screen (KinectSDK).

5. Head pose estimation in a TV context:
a conclusion

This study aims to show the advantages and weaknesses of

three markerless head pose estimation methods in a TV

context. This assessment is achieved using a highly

accurate marker-based MOCAP system (Qualisys). These

three methods were chosen because they are easy to use,

low-cost and the codes are freely available.

The study of accuracy is made on individuals with

different facial characteristic. As we work in the context of

TV watching for user attention detection, we worked over

distances from 1.20m to 3m and we analyzed the rotation

of the head along three angles: pitch, roll and yaw.

This study focuses on Facetracker a method operating on

RGB image, the 2D-3D method from the KinectSDK and a

full 3D method based on Point Cloud Library (3DCloud).

The results proved that the most accurate method is the

KinectSDK with the best correlation and the smaller mean

error. These accuracy is due to the 3D user and skeleton

detection which provides precisely the head position. Based

on this robust head position, the estimation of angles of

rotation is made easier. The second best result is obtained

by the Facetracker method. The error is a bit higher and

correlation slightly lower than KinectSDK due to wrong

face detection. These two methods have weaknesses in face

illumination variations and occlusions. Concerning the full

3D method we observed the worse results. But this method

has a major advantage because it works only on the point

cloud and it is insensitive to brightness changes and also

works in complete darkness. We also notice that the

methods are sensitive to facial characteristic for head pose

estimation. Glasses and beard create minor errors. Only the

color of the skin has a slight effect with the method for face

tracking which was less stable.

The choice of one of these methods is therefore based on

the context of use. If the illumination is bad or if it must

operate in the dark, the chosen method will be 3DCloud.

This method however has the disadvantage that requires

more computation time while the other two methods work

perfectly in real time. In the case of a classical TV setup,

the user attention is better computed by the KinectSDK. If

we are interested in head pose estimation with straight face

in front of a computer screen (like a webcalm computer

setup) the KinectSDK is better if it is possible to track the

user skeleton (not too close to the camera). Otherwise the

FaceTracker will be the best method for computer uses.

Our tests show that the current technologies can provide

a first prototype of implicit viewer behavior in the context

of a TV setup. However, reaching good extraction quality

in real-life setups with natural positions and lightning are

only possible by using a robust sensor as a RGB-D camera.

Nevertheless, with the arrival of second generation RGB-D

sensors as the Kinect one (second version of the Kinect

sensor which provides better depth sensor, better RGB

definition and operates in more complex illumination

conditions), the implicit viewer behavior acquisition in

real-life TV setups becomes possible.

The head pose estimation allows to know the user

interest (or disinterest) on the media displayed on the screen

which is of crucial importance in TV content

personalization. In addition to one viewer head pose

estimation, other features as body movements, postures or

joint attention can be extracted from the skeleton to provide

additional features to the TV viewer behavior analysis.

Joint attention appears when two individual share the focus

on the same object, in this case the object is the screen.

Acknowledgements
This work is supported by the Integrated Project LinkedTV

(www.linkedtv.eu) funded by the European Commission

through the 7th Framework Programme (FP7-287911).

References

[1] Persa, S.-F. (2006) Sensor fusion in head pose tracking.

[2] Emotiv EPOC headset Features, http://emotiv.com/

epoc/features.php

[3] OptiTrack, Optical motion tracking solutions.

http://www.naturalpoint.com/optitrack/

[4] Qualisys. Products and services based on optical motion

capture. http://www.qualisys.com/

[5] FaceLAB 5. Face and eye tracking application.

http://www.seeingmachines.com/product/facelab

[6] FaceAPI. Markerless face tracking application.

http://www.seeingmachines.com/product/faceapi/

[7] Microsoft Kinect Software Development Kit,

http://www.microsoft.com/en-

us/kinectforwindowsdev/Start.aspx

[8] Bradski, G. (2000) The opencv library. Doctor Dobbs

Journal of Software Tools 25.11 120-126.

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

Head pose estimation & TV Context: current technology

F. Rocca, et al.

12

[9] Saragih, J. M., Lucey, S., & Cohn, J. F. (2011) Deformable

model fitting by regularized landmark mean-shift.

International Journal of Computer Vision, 91(2), 200-215.

[10] Rocca, F., Mancas, M., & Gosselin, B. (2014). Head Pose

Estimation by Perspective-n-Point Solution Based on 2D

Markerless Face Tracking. Intelligent Technologies for

Interactive Entertainment: 6th International ICST

Conference, INTETAIN 2014

[11] Leroy, J., Rocca, F., Mancas, M., & Gosselin, B. (2013)

Second Screen Interaction: an Approach to Infer TV

Watcher’s Interest Using 3D Head Pose Estimation.

WWW13 Companion: Proceedings of the 22nd international

conference on World Wide Web companion 465-468

[12] Rusu, R. B., & Cousins, S. (2011, May). 3d is here: Point

cloud library (pcl). In Robotics and Automation (ICRA),

2011 IEEE International Conference, IEEE, 1-4

[13] Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E.,

Martínez-Sánchez, J., & Arias, P. (2013). Metrological

evaluation of microsoft kinect and asus xtion sensors.

Measurement, 46(6), 1800-1806.

[14] Face Tracking. Microsoft Developper Network.

http://msdn.microsoft.com/en-us/library/jj130970.aspx

[15] Viola, P., & Jones, M. J. (2004) Robust real-time face

detection. International journal of computer vision, 57(2),

137-154.

[16] Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Gool, L.

(2013) Random forests for real time 3d face analysis.

International Journal of Computer Vision, 101:437-458,

[17] Fanelli, G., Gall, J., and Van Gool, L. (2011) Real time head

pose estimation with random regression forests. CVPR, 617-

624

[18] Aldoma, A. (2012) 3d face detection and pose estimation in

pcl.

[19] Breiman, L. (2001) Random forests. Machine Learning,

45(1):5-32,

[20] Fanelli, G., Weise, T., Gall, J., and Gool, L.(2011) Real time

head pose estimation from consumer depth cameras.

Proceedings of the 33rd international conference on Pattern

recognition, DAGM'11, (Berlin, Heidelberg : Springer-

Verlag), 101-110

[21] Viager, M. (2011) Analysis of Kinect for mobile robots.

Technical report, Technical University of Denmark, Lyngby,

Denmark, Mar.

EAI Endorsed Transactions on
Creative Technologies

01-06 2015 | Volume 2 | Issue 3 | e2

