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Abstract

Video processing algorithms present a necessary tool for various domains related to computer vision such
as motion tracking, event detection and localization in multi-user scenarios (crowd videos, mobile camera,
scenes with noise, etc.). However, the new video standards, especially those in high definitions require more
computation since their treatment is applied on large video frames. As result, the current implementations,
even running on modern hardware, cannot provide a real-time processing (25 frames per second, fps). Several
solutions have been proposed to overcome this constraint, by exploiting graphic processing units (GPUs).
Although they exploit GPU platforms, they are not able to provide a real-time processing of high definition
video sequences. In this work, we propose a new framework that enables an efficient exploitation of single and
multiple GPUs, in order to achieve real-time processing of Full HD or even 4K video standards. Moreover,
the framework includes several GPU based primitive functions related to motion analysis and tracking
methods, such as silhouette extraction, contours extraction, corners detection and tracking using optical
flow estimation. Based on this framework, we developed several real-time and GPU based video processing
applications such as motion detection using moving camera, event detection and event localization

Keywords: Multi-GPU computing, camera motion estimation, event detection and event localization

1. Introduction

Recently, the CPU power has been capped, essentially
for thermal reasons, to less than 4 GHz. A limitation
that has been circumvented by the change of internal
architecture, with multiplying the number of integrated
computing units. This evolution is reflected in both
general (CPU) and graphic (GPU) processors which
present a large number of computing units, their power
has far exceeded the CPUs ones.

Video processing and more particularly motion
estimation algorithms present a very active research
topic in computer vision domain. They can be used,
for example, in surveillance systems tracking humans
in public places, such as metro or airports, to identify
possible abnormal behaviors and threats [1]. Motion
estimation algorithms serve therefore as a common
building block of some more complex routines and
systems. However, these algorithms are hampered by
their high consumption of both computing power and
memory. The exploitation of graphic processors can
present an efficient solution for their acceleration.

∗Corresponding author. Email: sidi.mahmoudi@umons.ac.be

Unlike algorithms requiring a high dependency of
computation between the input data and hence a
complicated parallelization, most of image and video
processing algorithms consist of similar computations
over many pixels. This fact makes them well adapted
for acceleration on GPU by exploiting its processing
units in parallel. Nevertheless, the new standards,
especially those in high resolutions require more
computation since their treatment is applied on large
video frames. Thus, the current implementations,
even running on modern hardware, cannot provide a
real-time processing. Moreover, the treatment of TV
broadcast images, which cannot be down sampled,
require an accelerated object detection and recognition.
Therefore, a fast processing of videos is needed to
ensure the treatment of 25 high definition frames
per second (25 fps). To overcome these constraints,
several GPU computing approaches have recently been
proposed. Although they exploit GPU platforms, they
are not able to provide a real-time processing of high
definition video sequences. Moreover, they are not
well adapted for exploiting multiple GPUs. Indeed,
clusters and computers that contain multiple GPUs
are becoming commonplace nowadays. However, their
exploitation requires an efficient sharing of data and
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computations between the available GPUs. Otherwise,
the computation time (with many GPUs) can be even
more elevated, compared to the case using one single
GPU due to data transfers and memory allocation times.

In this paper, we propose a new framework enabling
an effective exploitation of single and multiple GPUs
for accelerating video processing algorithms, and
hence achieving real-time treatment of high definition
videos. This framework allows an efficient management
of single and multiple GPUs memories and a fast
visualization of results. The proposed framework
includes several CUDA1 based primitive functions
related to motion analysis and tracking methods, such
as silhouette extraction, contours extraction, corners
detection and tracking using optical flow estimation.
With this framework, we developed several real-
time video processing applications such as motion
detection using mobile camera, event detection and
event localization.

The remainder of the paper is organized as follows:
related works are discussed in the second section.
Section 3 presents the proposed framework for real-
time video processing using multiple GPUs. In sections
4, 5, 6, we present three Multi-GPU based use cases of
our framework : motion detection using mobile camera,
event detection and event localization, respectively.
Section 8 compares and evaluates the related CPU, GPU
and multi-GPU implementations. Finally, conclusions
and future works are described in the last Section.

2. Related work
In general, event detection and localization methods
consist of analyzing and modeling normal behaviors,
and then detecting the difference between the normal
behavior model and the observed behaviors. These
variations can be labeled as abnormal or emergency
events. In this category, Bilinski et al. [2] extract hog
descriptors in order to calculate predefined models
(i.e. crowd scenarios) that allow to recognize crowd
events. Authors in [3] propose a context-aware method
that allows to detect anomalies by tracking all moving
objects in the video. There are also some work in [4]
which addresses the problem of analyzing video events
in crowded scenes. A novel manifold learning method
was developed to achieve an effective modeling of video
events in a low dimensional space. The general idea of
these methods consist on estimating the displacement
and velocity of features in a given video frame with
respect to the previous one. In this work, we are more
focused on optical flow methods since they present
a promising solution for tracking even in noisy and
crowded scenes or in case of small motions. Moreover,

1CUDA. https://developer.nvidia.com/cuda-zone

most of camera motion estimation techniques are based
on optical flow methods such as shown in [5]. The
latter presents a method that creates prototypes of
optical flows before performing a linear decomposition
of motion vectors, which enable to estimate the camera
parameters.

Otherwise, several GPU based motion tracking
methods have been proposed such as in [20], which
developed a GPU version of motion detection technique
from a moving platform. As result, they can build the
background model and detect motion regions at around
18 fps on 320 × 240 video captured from a moving
camera. Authors in [21] proposed an eye blink detector
which can be used in dry eye prevention system. Their
solution, exploiting GPU, is based on histogram back
projection and optical flow techniques.

In case of optical flow-based motion tracking
algorithms, one can distinguish two categories of
related works. The first presents so called dense
optical flow which tracks all frame pixels without
selecting any features. In this context, Marzat et al.
[6] proposed a GPU implementation of the Lucas-
Kanade method for the optical flow estimation. The
software was programmed using the CUDA library
(Compute Unified Device Architecture) to compute
dense and accurate velocity field at about 15 fps with
640x480 video resolution. Authors in [7] presented
the CUDA implementation of the Horn-Shunck optical
flow, that offered a real-time processing of 316×252
video resolution. Gwosdek et al. [8] developed a GPU
implementation of the Euler-Lagrange (EL) framework
for solving variational optical flow methods using
sequences with 640x480 pixels in near-real-time.

The second category includes software tools tracking
selected image features only. Sinha et al. [9] developed
a GPU implementation of the popular KLT feature
tracker [10] and the SIFT feature extraction algorithm
[11]. This was developed with the OpenGL/Cg libraries
allowing to extract about 800 features from 640x480
video at 10 fps which is approximately 10 times
faster than the corresponding CPU implementation.
There is also a work in [12] proposing a GPU
based block matching technique using OpenGL. This
implementation offered a real-time processing of
640x480 video. Sundaram et al. [13] developed a
method for computing point trajectories based on a fast
GPU implementation of the optical flow algorithm that
tolerates fast motion. This parallel implementation runs
at about 22 fps, which is 78 times faster than its CPU
version. However, despite their great speedups, none
of the abovementioned GPU based software tools can
provide real-time processing of high definition videos.
Moreover, they are not well adapted for exploiting
multiple GPUs simultaneously.

Our contribution consists on proposing a new
framework for video processing on single or multiple
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GPUs. This framework contributes within three main
factors:

1. Efficient and adapted exploitation of GPU in
case of video processing applications. Indeed,
we apply several optimization techniques such
as: the adapted selection of the number of GPU
threads within blocks, the exploitation of GPU
shared and texture memories, the overlapping of
data transfers by kernels executions that allows
reducing data transfer times, the OpenGL fast
visualization of results.

2. Scalable exploitation of multiple GPUs that allows
to benefit from the full power of each graphic
cards. The number of selected GPUs depends
directly from the computational intensity of the
input application. As result, the framework allows
to reduce significantly the computation time and
the energy consumption.

3. Several primitive GPU based image and video
processing functions are developed such as: sil-
houette extraction, contours and corners detec-
tion, features tracking, etc. These functions can be
selected easily within our framework for acceler-
ating video processing applications. As example,
we developed three real-time HD/Full HD or even
4K video processing applications:

• Camera motion estimation using optical flow
vectors.

• Event detection in crowd videos

• Event localization in multi-user scenarios.

3. Multi-GPU based framework for real-time video
processing
This section is presented in two parts: the first one
describes our framework for video processing on single
or multiple GPUs. The second part presents the related
GPU based primitive functions : silhouette extraction,
features detection and tracking, based on optical flow
estimation. These primitive functions can be directly
selected within our framework.

3.1. The proposed framework
Our framework is based upon CUDA for parallel con-
structs and OpenGL for visualization, using three steps:
multiple GPUs selection, CUDA parallel processing and
OpenGL visualization (Fig. 1).

1. Multiple GPUs selection : Video processing algo-
rithms are known by their high intensity com-
putation, and their well adaptation for parallel
calculation. Therefore, apart from implementing
our video processing algorithms on a single GPU,

we propose a version taking advantage of multiple
GPU systems that nowadays are becoming com-
monplace. The default setup of our framework
selects a number of one GPU only. During the first
20 frames , we test the performance of our appli-
cation. If the condition of real-time processing is
achieved, the number of 1 GPU is maintained, else
we increase the number of GPUs until achieving
a treatment of 25 fps. This allows to select one
GPU only in case of processing low resolution
videos or applying low intensive treatments. As
result, accelerated treatments are obtained with a
reduced energy consumption. Once the number of
GPUs selected, the program initializes all of them.
Then, the input image frame is first uploaded to
each GPU. This frame is virtually divided into
equally sized subframes along y dimension and
once the image data is available, each GPU is
responsible for treating its part of the frame (sub-
frame).

2. CUDA parallel processing : Before launching the
parallel treatments of the current subframes. The
number of CUDA threads, within each GPU, in
the so called blocks and grid has to be defined,
so that each thread can perform its processing
on one or a group of pixels in parallel. This
enables the program to process the image pixels in
parallel. Note that the number of threads depends
on the number of pixels. Once the number and
the layout of threads is defined, different CUDA
functions (kernels) are executed sequentially, but
each of them in parallel using multiple CUDA
threads. In our case, we selected a number of
CUDA threads equal to the number of pixels,
(within each subframe) which enables for each
CUDA thread to treat its corresponding pixel.

For a better exploitation of GPU, we propose to
load the input image on GPU texture memory for
a fast access to pixels. We have also loaded each
pixel neighbors on GPU shared memory for a fast
processing of pixels using their neighbors values.
This optimization is so useful in case of applying
image convolutions, the related filters are loaded
in the shared memory. Moreover, we employ the
streaming technique within multiple GPUs so that
each GPU can overlap effectively data transfers by
kernels executions.

3. OpenGL visualization : At the end of computa-
tions for each frame (the subframes). The results
can be displayed on screen using the OpenGL
graphics library that allows for fast visualization,
as it can operate on the already existing buffers on
GPU, and thus requires less data transfer between
host and device memories. In case of Multi-GPU
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treatments, each GPU result (subframe) need to be
copied to the GPU which is charged of displaying.
This, however, is a fast operation since contiguous
memory space is always transferred. Once the
visualization of the current image is completed,
the program goes back to the first step to load and
process the next frames of the video.

Figure 1. Multi-GPU based framework for real-time video
processing (N : video frames number)

This framework could provide a unified way to
implement advanced methods accordingly to each
given scenario. These methods can exploit easily
the primitive functions (described in Section 3.2).
Otherwise, the framework user could provide the new
required algorithms before integrating them into the
processing primitives. Fig. 2 summarizes the method of
exploitation of our framework. Notice that the selection
of primitive functions depends mainly from the video
processing application.

3.2. GPU-based primitive functions
In this section, we propose GPU (CUDA) based
primitive functions that can be used within our
framework as shown in Fig. 2. These primitives
correspond to the functions of silhouette extraction,
features (corners and contours) detection and tracking
methods.

1. GPU based silhouette extraction : the compu-
tation of difference between frames presents a
simple and efficient method for detecting the sil-
houettes of moving objects. We propose a GPU
implementation of this method using three steps.
First, we load the two first frames on GPU in
order to compute the difference between them
during the CUDA parallel processing step. Once
the first image displayed, we replace it by the next

Figure 2. Exploitation process of our framework

video frame in order to apply the same treatment.
Fig 7.(b) presents the obtained result of silhou-
ette extraction. This figure shows two silhouettes
extracted, that present two moving persons. In
order to improve the quality of results, a threshold
of 200 was used for noise elimination.

2. GPU based features detection and tracking : in
this section, we propose the GPU implementation
of both features detection and tracking methods.
The first one enables to detect the good features
to track, i.e. corners. To achieve this, we
have exploited the Bouguet’s corners extraction
technique [14], which is based on the principle
of Harris detector [15]. Moreover, we developed
a CUDA version of Deriche-Canny edge detector.
These two GPU implementations are detailed in
[16].

The second step enables to track the features
(corners) previously detected using the optical
flow method, which presents a distribution of
apparent velocities of movement of brightness
pattern in an image. It enables to compute the
spatial displacements of images pixels based
on the assumption of constant light hypothesis
which supposes that the properties of consecutive
images are similar in a small region. For more
detail about optical flow computation, we refer
readers to [17] and [14]. In this work, we
propose the GPU implementation of the Lucas-
Kanade algorithm, which is well known for its
high efficiency, accuracy and robustness. This
algorithm disposes of six steps:

4 EAI Endorsed Transactions on 
Creative Technologies 

01-02 2015 | Volume 2 | Issue 2 | e5

Sidi Ahmed Mahmoudi 



(a) Step 1: Pyramid construction : in the first
step, the algorithm computes a pyramid
representation of images I and J which
represent two consecutive images from the
video. The other pyramid levels are built in
a recursive fashion by applying a Gaussian
filter. Once the pyramid is constructed, a
loop is launched that starts from the smallest
image (the highest pyramid level) and ends
with the original image (level 0). Its goal is to
propagate the displacement vector between
the pyramid levels.

(b) Step 2: Pixels matching over levels : for each
pyramid level (described in the previous
step), the new coordinates of pixels (or
corners) are calculated.

(c) Step 3: Local gradient computation : in this
step, the matrix of spatial gradient G is
computed for each pixel (or corner) of the
image I . This matrix of four elements (2×2)
is calculated with the horizontal and vertical
spatial derivatives. The computation of the
gradient matrix takes into account the area
(window) of pixels which are centered on the
point to track.

(d) Step 4: Iterative loop launch and temporal
derivative computation : a loop is launched
and iterated until the difference between
the two successive optical flow measures
(calculated in the next step), or iterations,
is higher than a defined threshold. Once
the loop is launched, the computation
of the temporal derivatives is performed
using the image J (second image). This
derivative is obtained by the subtraction
of each pixel (or corner) of the image I
(first image) and its corresponding corner
in the image J (second image). This enables
to estimate the displacement estimations
which is then propagated between successive
pyramid levels.

(e) Step 5: Optical flow computation : the
optical flow measure ḡ is calculated using the
gradient matrix G and the sum of temporal
derivatives presented by shift vector b̄. The
measure of optical flow is calculated by
multiplying the inverse of the gradient
matrix G by the shift vector b̄.

(f) Step 6: Result propagation and end of
the pyramid loop : the current results
are propagated to the lower level. Once
the algorithm reaches the lowest pyramid
level (the original image), the pyramid loop
(launched in the first step) is stopped. The

vector ḡ presents the final optical flow value
of the analyzed corner.

Upon matching and tracking pixels (corners)
between frames, the result is a set of vectors as
shown in Equation (1):

Ω = {ω1 ... ωn | ωi = (xi , yi , vi , αi)} (1)

where:

• xi , yi are x a y coordinates of the feature i;

• vi represents the velocity of the feature i;

• αi denotes motion direction of the feature i.

We propose a GPU implementation of the Lucas-
Kanade optical flow method by parallelizing its steps on
GPU. These steps are executed in parallel using CUDA
such that each GPU thread applies its instructions
(among the six steps) on one pixel or corner. Therefore,
the number of GPU threads is equal to the number
of pixels or corners. Since the algorithm looks at
the neighboring pixels, for a given pixel, the images,
or pyramid levels are kept in the texture memory.
This allows a faster access within the 2-dimensional
spatial data. Other data, e.g. the arrays with computed
displacements, are kept in the global memory, and are
cached in the shared memory if needed.

4. Multi-GPU based motion detection using mobile
camera :
The above-mentioned GPU implementations are
exploited in an application that consists of real-time
motion detection within moving camera. In this
category, motion detection algorithms are generally
based on background subtraction which presents
a widely used technique in computer vision domain.
Typically, a fixed background is given to the application
and new frames are subtracted from this background to
detect the motion. The difference will give the objects
or motion when the frame is subtracted from the fixed
background. This difference in resulting binary image
is called foreground objects. However, some scenarios
present a dynamic background which can change due
to the movement of cameras. In this context, we propose
an application for real-time background subtraction,
which enables to detect automatically background and
foreground using a moving camera. This application
can be summarized in four steps:

1. Corners detection : the Harris corner detector
[15] is applied to extract good features to track
and examine for camera motion.

2. Optical flow computation : the Lukas-Kanade
optical flow method [14] is applied to track the
corners, detected previously.
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Figure 3. (a). Camera motion estimation (b). Motion detection

3. Camera motion inhibition : the camera motion
is estimated by computing the dominant values
of optical flow vectors. This enables to extract
the common area between each two consecutive
images and focus only on motions related to
objects in the scene.

4. Motion detection : this step consists of detecting
movements based on computing the difference
between each two consecutive frames.

In order to achieve a real-time treatment of high
definition videos, the method steps are ported on GPU.
Their GPU implementation is described in section 3.
Fig. 3.(a) shows a scene of camera motion. Dotted
and dashed line presents the first image, dotted line
presents the second frame and solid line shows the
joint area of two frames. Once, the camera motion is
estimated. The joint area between 2 consecutive frames
is determined by cropping the incoming and outgoing
areas as seen in the white area of Fig. 3.(a). Fig. 3.(b)
shows the resulting image of background subtraction.
White areas represent the difference around moving
objects.

This method steps are integrated within our frame-
work for providing an accelerated Multi-GPU based
solution that offers an efficient and scalable exploitation
of multiple GPUs.

5. Multi-GPU based event detection

Before presenting the GPU implementation, we start
by describing our CPU based implementation of event
detection method that consists of four steps: points of
interest detection, points of interest tracking, clustering
and event detection.

1. Points of interest detection : the Harris [15]
corner detector is applied to extract good features,
which will be tracked during the next step.

2. Points on interest tracking : the Lucas-Kanade
[10] optical flow method is applied to track
the previously detected corners. As a result,
this method provides, for each corner, a related
velocity and an angular direction of motion. The
features (points on interest) that have a velocity
close to zero are considered as static features.
Noise features are isolated points that have a
velocity or direction so different compared to their
neighbors.

3. Clustering : this step consists of applying the K-
means method to get clusters. The features which
are used within the clustering process are the
spatial coordinates (x; y), the velocity and the
direction. The K-means method is a well-known
geometric clustering algorithm. This classification
allows to have in each class individuals moving
with similar velocities and directions in the same
region.

4. Event detection : this step consists of computing
the distance between each cluster and its
corresponding one in the next frame. If we have
N clusters within each frame, the global distance
between frames is represented by the sum of the
N distances between clusters.

As compared to normal motion, the positions and
sizes of the clusters (rectangles) of abnormal motion
are significantly different between two consecutive
frames. This is due to the sudden changes of the
values of velocity and direction of optical flow fields.
Fig. 4 presents the result of the steps listed above
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using a crowd video. For more detail about this
implementation, we refer readers to [19].

Figure 4. (a). Corners detection (b). Corners tracking (c).
Clustering

For a better exploitation of graphic cards, we
developed a GPU implementation of the above-
mentioned event detection method by parallelizing its
most intensive steps on graphic processing unit: corners
detection and tracking. The related GPU versions are
described in Section 3.2.2. Otherwise, these steps are
integrated within our framework for providing an
accelerated Multi-GPU based solution that offers an
efficient and scalable exploitation of multiple GPUs.

To conduct the experiment, we used as data set videos
from different outdoor places, comprising both normal
and abnormal motions. The experimental results
corresponding to the approach of event detection based
on clustering optical flow fields, applied on one of the
videos have been presented in Fig. 5. Abnormal motion
includes a sudden situation when a group of people
start running. From frame 1 to 550 the people’s motion
is normal. People tend to run since the frame number
551. More precisely, the assigned distance of frame
551 will be higher than any other assigned distances
among frames. In Fig 5, the blue colored curve is the
output of the proposed approach. The Gaussian like
curve represents the abnormal motion when the group
of people is trying to leave the place with very quick
motion.

Fig. 6 presents another case of event detection,
applied on a video that consists of four persons only. In
frame 231, one person starts running and the assigned
distance will be higher. Therefore, an abnormal event
is detected in this frame. Moreover, the high values
of optical flow vectors (compared to previous values)
enabled to localize the persons which present an
abnormal motion. The latter are presented by red
optical flow vectors, as shown in Fig. 6.

6. Multi-GPU based event localization
Event localization allows to provide, in real-time, areas
in video frames where motion behavior is surprising
compared to the rest of motion in the same frame.
We propose in this section an approach that takes into
account the spatial occupation of the moving objects.
It is based on the extraction of scene occupation model
from video sequences. Once this model is acquired

Figure 6. Event detection: video with several moving persons

(Fig. 7.(c)), motions close to this model are inhibited
while only different motion (in other spatial locations)
is highlighted. The event localization using scene
occupation model follows three principal steps: frame
difference, frame accumulation and motion inhibition.

1. Frame difference : we use the simplest motion
detection technique which consists in the differ-
ence between every two consecutive frames in
video. This method is very fast to implement. It
needs no background modeling which can be a
difficult task in some situations. Fig. 7.(b) shows
the result given by this step.

2. Frame accumulation : the frame difference
enables to detect moving individuals, so every
frame represents individuals in movement. The
video frames will be accumulated using a
threshold accumulator in order to have as result a
top-down model representing dominant regions.
The threshold accumulator value depends of
the computing time of model extraction. This
extraction can be longer if one has a bigger value
of this threshold. Fig. 7.(c) shows the model
extracted after 1000 frames using a threshold
of 100. Indeed, the white area presents the
dominant regions on which the major individuals’
movements have taken place.

3. Motion inhibition : in this step we apply a
subtraction between the frames of moving objects
(frame difference) and the model extracted. This
subtraction allows to inhibit similar motions and
focus only on abnormal motions.

On the one hand, we developed a GPU version of
the above-mentioned event localization method. This
parallel implementation is based on parallelizing these
steps on GPU: frame difference, frame accumulation
and motion inhibition. The GPU based frame difference
is described in Section 3.2.1, while the GPU based
frame accumulation consists on exploiting the result
of frame difference step for each image of the video.
Theses resulting frames will be accumulated (added),
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Figure 5. Event detection in crowd videos

Figure 7. (a). Input Video (b). Frame difference (c). Frame
accumulation

in a GPU buffer, using a threshold accumulator in
order to have as result a top-down model representing
dominant regions. The GPU implementation of this
step consists for each frame of applying an addition
and a comparison with threshold. The last step
applies a subtraction on GPU between the frames
of moving objects (frame difference) and the model
extracted in previous step. This enables to inhibit
similar motions and focus only on abnormal motions.
On the other hand, these GPU based steps are
included within our framework for providing an
accelerated Multi-GPU based solution that offers an
efficient and scalable exploitation of multiple GPUs.
Experimentation are conducted with a video of 3800
frames representing normal and abnormal motions.
The model extraction (accumulation) needed 1000
frames, the event localization can therefore begin at
the same time. At the beginning, when the model is
not finished all the moving objects will be salient, but
after 1000 frames, some motion is no more interesting
as it corresponds to the model. This approach is close
to human perception when recurrent motions become
annoying after a given time. Fig. 8 shows abnormal
events detected due to the motion of a person out of
the model representing dominant regions of movement
at the frames number 1900, 2100 and 3150, this person
is tracked using the red color.

The above-mentioned GPU implementations can
be also exploited for accelerating an eye tracker
application called "CVC Eye-Tracker" [22], presented
by an open source eye tracking software. Indeed, this

Figure 8. (a). Scene Occupation Model (b).(c).(d). Abnormal
events localized

application consists mainly on selecting the 8 facial
points (related to eyes, nose and frontal face), followed
their tracking. These steps are well adapted for a Multi-
GPU acceleration using our framework.

7. Performance
On the one hand, we can say that the quality of
the above-mentioned applications of camera motion
estimation, event detection and event localization
remains identical since the procedure has not changed.
Only the architecture and the implementation did. On
the other hand, the exploitation of single or multiple
GPUs enabled to accelerate the computation time. This
acceleration allowed to obtain a real-time processing of
high definition videos, even of 4K standards.

Table 1 presents a comparison between CPU, GPU
and Multi-GPU performances of our approach of
motion detection within mobile camera (Section 4).
Notice that the exploitation of GPUs enabled a real-time
processing of Full HD videos (1920×1080) and even 4K
standards (3840×2160), with an acceleration ranging
from 16 × to 47 ×.

Otherwise, Table 2 presents a comparison, in terms
of the number of frames per second (fps), between
sequential (CPU), parallel (GPU) and Multi-GPU
implementations of event detection and localization
methods respectively. Notice that use of GPUs enabled
to achieve a real-time processing of high definition
videos. This is due to the parallel treatment of the pixels
within video frames, exploiting the large number of
computing units in GPUs. We note also that we obtain
reduced acceleration when processing low resolution
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Resolution 2 CPU
1 GPU 2 GPU 4 GPU

fps Acc (x) fps Acc (x) fps Acc (x)

512×512 5 fps 79 16.8 × 89 17.8 × 98 19.6 ×
1280×720 2,9 fps 51 17.6 × 69 23.8 × 95 32.8 ×

1920×1080 1,9 fps 45 23.7 × 58 30.5 × 84 44.2 ×
3840×2160 1,7 fps 35 20.6 × 54 31.8 × 80 47.1 ×

Table 1. GPU performances of motion detection using mobile camera

videos since we can’t exploit sufficiently the high power
of GPUs. As result, the use of multiple GPUs in this
case is not so beneficial in terms of performance. Notice
also that the number of exploited GPUs should take
into account the treatment intensity. Indeed, Table 2
shows that using 2 or 4 GPUs can be significantly
advantageous, in terms of performance, when treating
Full HD or 4K video. This is due to an efficient
exploitation of GPUs since the graphic cards can be
fully exploited. In case of event localization, we present
single GPU performances only since this method
doesn’t require a high intensive treatment. Thus, the use
of more than one GPU doesn’t improve performance.

A demonstration of GPU based features detection,
features tracking, and event detection in crowd video is
shown in this video sequence: https://www.youtube.
com/watch?v=PwJRUTdQWg8.

In order to have a fair evaluation, we compare our
GPU performance with the very recent and up to our
best knowledge the fastest GPU based image processing
library . i.e. OpenCV 2.4.9. The latter provides both
CPU and GPU versions of algorithms. Table 3 presents a
comparison between our GPU performances and those
obtained with the GPU module of OpenCV. Notice
that our implementations offers better performances
thanks to the efficient exploitation of GPU (texture &
shared) memories, the overlapping (streaming) of data
transfers by CUDA executions and the fast OpenGL
visualization.

Notice that the tests were run on the following
hardware:

• CPU: Intel Core 2 Quad Q8200, 2.33GHz,

• GPU: 4 x NVIDIA GeForce GTX 580 with 1.5GB
of RAM,

• RAM: 8GB,

• OS: 64-bit Linux.

8. Conclusion
We proposed in this paper a new framework for real-
time video processing using multiple GPUs, and par-
ticularly in case of treating high definition videos such

as Full HD formats or even 4K standards. This frame-
work includes several GPU based primitive functions
related to motion analysis and tracking methods, such
as silhouette extraction, contours extraction, corners
detection and tracking using optical flow estimation.
Based on this framework, we developed three real-
time video processing applications: motion detection
using mobile camera, event detection and localization
in multi-user scenarios. Performed tests show that our
applications can turn in multi-user scenarios, and in
real-time even when processing high definition videos
such as Full HD or 4K standards. Moreover, the scala-
bility of our results is achieved thanks to the efficient
exploitation of multiple graphic cards. As future work,
we plan to extend our framework in order to facilitate
the implementation of new advanced monitoring and
control systems exploiting parallel and heterogeneous
platforms, with reduced energy consumption. We plan
also to exploit the SDI capture cards2 that allow for
direct video stream capture into the GPU memory
without any use of the CPU memory, which enables the
software to decrease the amount of PCI-E bandwidth
used for the video transmission.
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