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Abstract 

In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum 

Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are 

musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic 

effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is 

a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience: 

Musical pattern repetitions are found in live music and Varianish generates additional (musical) output accordingly that 

adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the 

conceptual design, a demonstrator implementation of Varianish is presented and evaluated.  
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1. Introduction

Rhythmic patterns play a fundamental role in almost 

all kinds of music. They structure a musical piece, give 

texture to harmonics, and they induce effects on listeners 

such as the feeling of energy and movement. Music with 

pronounced (rhythmic) patterns is widely used for 

dancing and marching – the synchronization of bodily 

movements to these patterns allows for groups moving as 

a whole, stimulating movements, emotions, and also joint 

music play [11]. 

Music that consists solely of (too few) repeating 

patterns, however, is often regarded as dull, mechanic, 

and “technoid”, which can be the intention, but requires a 

certain state of mind to enjoy thoroughly. For human 

players, it is natural and unavoidable to introduce small 

variations into repeated patterns. Minimal music pieces 

that require the precise repetition of patterns over several 

minutes by one or more musicians are often hard to 

perform, but very interesting to listen to, which reveals a 

particular quality of human hearing and musical 

perception: automatically reducing redundancy in what is 

perceived and attenuated focus towards the variations in 

the stream of perceived information, which holds 

naturally also for the other senses. When the information 

is largely redundant as in a repeated musical pattern, this 

results in a micro-focus on tiny variations in how the 

human player slightly changes the pattern over time–

something that especially minimal music, but also many 

electronic music styles effectively base on. 

In this paper we introduce Varianish, a musical 

instrument concept aiming at capitalizing on the 

aforementioned phenomenon by enabling ad-hoc 

improvisation with repetitive rhythmic patterns, to which 

Varianish gradually adds more and more musical layers 

autonomously–but only if the pattern is repeated strictly. 

When reaching levels of multiple added layers, the 

musician can start experimenting with slight variations of 

the original pattern by removing layers and then adding 

other layers by accurately repeating the new pattern for 

some time. While the technical challenges in creating 

Varianish have been tackled before, the most interesting 

aspect about Varianish indeed emerges only when using 

it: the system encourages and rewards repetition of 

musical patterns, and leads the human player into an 

exploration of tiny timing differences, imperfections of 

human play and subsequently the experimentation with 

timing and rhythmic patterns–in other words, a 

http://creativecommons.org/licenses/by/3.0/


EAI Endorsed Transactions on  
Creative Technologies  

01-10 2014 | Volume 1 | Issue 1 | e3 

Jort Band et al. 

2 

microscope for musical micro-structures. This might feel 

counter-intuitive at first sight, in a musical culture, in 

which variation is sought after. However, rhythmic 

monotonicity and depth in repetition have their own 

appeals and inspire even musical subcultures and 

communities. 

 

Varianish as a musical instrument allows for (solo) 

improvisation as well as for group music play. While in 

the first case the added layers can be broader and more 

expressive in terms of harmonics, sound effects, and 

added voices, in the second case, added layers need to 

comply more with the overall intention of the piece or 

performance, which can be influenced by choosing 

appropriate instruments or effects for the Varianish layers. 

Interactive composition is possible  

 

The main challenge in designing Varianish was how to 

create an instrument, which is able to recognize musical 

patterns in real-time and which can respond to the 

repetition of a pattern as a positive feedback loop by 

adding one or more musical layers. This technical 

challenge can be divided into two parts; the software 

backbone encompassing pattern finding and matching 

algorithms, and the implementation part using DAW 

(digital audio workstation) software and input hardware to 

create an instrument that is able to add musical layers. 

This requires the software to be able to cope with input 

given in real-time, which is a challenge in itself and 

should be a consideration in both the software backbone 

as well as the implementation part. 

 

In the following, related work is presented, after which 

the conceptual design of Varianish is shown, followed by 

an implementation and a showcase of the final prototype. 

The paper concludes with a short evaluation and a 

discussion of future steps. 

2. Related Work 

Analysing the rhythmic structure of music, either from 

score, but more so in real-time is a well-researched topic, 

framed as real-time pattern recognition or beat-tracking 

[5, 9]. The use of such derived information as input for 

generative purposes is not a new concept. For example, 

research can be found dating back to the 1980s when 

pattern recognition was used in real-time music 

generation by using predefined accompaniment sequences 

and patterns [4]. Later applications focus, for instance, on 

beat-tracking [19], interactive composition [15, 21] and 

the use of Bayesian Belief networks [18] to improve the 

synthesis of more open and richer accompaniments. 

Varianish differs from these approaches in the intention 

and purpose of generated musical layers: while most 

generative applications focus on enriching and varying a 

musical experience, Varianish aims at positive feedback 

loops for repetition leading towards deeper focus on 

micro-timing and the actual beauty of human inaccuracies 

in playing rhythmic patterns. 

 

Other research areas focus on real-time pattern 

recognition for interacting with a computer system [8], 

although this is a limited scope and applies to predefined 

input patterns only. Related research can also be found on 

onset detection algorithms [20] and transcribing music 

through MIDI input data, by using pattern matching [2] 

and through Monte Carlo methods [22], often using a 

static tempo, which is either pre-determined or pre-set [2, 

20, 22]. A related research area is the use of pattern 

recognition software to identify music genre [6] and the 

use of pattern recognition software to identify specific 

musical pieces (songs) from a database [3, 7], which are 

usually based on artificial neural networks [23]. 

Repetitive musical structure are also analysed and used 

for music visualisation [17]. 

 

We are not aware of any other expressive musical 

instrument concept that focuses at leveraging pattern 

repetition for rhythmic micro-focus. Varianish aims at 

giving human players a different kind of control over the 

generated layers of music, and is this sense, this approach 

is similar to other approaches to control music and sound 

with rather abstract representations (see for instance, 

[13]). 

3. Varianish 

Varianish
†
 is a musical instrument that will encourage 

the musician to invent first, and then consequently repeat 

a rhythmic and, given a pitched instrument, also melodic 

pattern. The instrument will analyse the live input and at 

some point – after a sufficiently stable repetition phase – 

gradually start adding layers to the overall sound. If the 

pattern is varied, layers will again disappear before 

coming back after the new pattern stabilized. These 

additional layers can be diverse, and depend very much 

on the type of music that is intended, for instance, drones, 

harmonics, noise, and other additional elements are 

possible. Varianish can also be used to control effect 

processors that shape the incoming sound in a creative 

way, such as sound-based effects like distortion and 

filtering, sample-based like stuttering and pitching, or 

delay-based effect like Chorus or Flanger. In the 

remaining sections, the core concept of Varianish is 

presented together with a demonstrator implementation 

for a drum machine with additional effects and harmonics. 

 

 

 

                                                           
†
 The name “Varianish” is a straightforward mash-up of 

“variation” and “to vanish”. 
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3.1. Technical Concept 

At the technical level, Varianish processes timed 

events: it (1) finds patterns in a stream of events, and after 

“tuning” into a certain pattern; (2) checks the stream for 

repetitions of this pattern.  The amount, consistency and 

accuracy of such pattern repetitions are then used to 

determine how additional layers can be added to the 

overall sound output. Varianish accepts input of rhythmic 

patterns of one or more (pitched) trigger events, called 

notes in the following, and, in the case of multiple of such 

notes (differing for instance in pitch), Varianish performs 

the pattern processing for these notes in parallel. In this 

way, music based on complex polyrhythmic or melodic 

patterns can be fed through Varianish and can be enriched 

by it. In the following, this brief outline of the Varianish 

concept shall be unfolded: 

3.1.1. Pre-processing 
Enrichment through Varianish starts with pre-

processing: Raw timed notes generated by a human 

player, are usually not quantized, i.e., timing-wise noisy, 

which would lead to problems when looking for patterns 

and their repetitions [2, 20]. Therefore a first pre-

processing step is needed, in which incoming events are 

quantized into a grid of notes that can be better processed 

subsequently. This quantization step removes slight 

variations in timing from the stream and yield events with 

corrected timing that is according to a global metric such 

as 1/4 or 1/16 of a bar. 

 

The pre-processing step deals with timed sound 

signals, which can be transients in a stream of audio data 

[20], but which are more likely input in the form of notes 

such as implemented and delivered by the MIDI protocol. 

This MIDI data has to be converted to MIDI onset timing 

data, which contains the MIDI note and time at which the 

note had its onset, but no duration and other optional note 

attributes. 

 

To compare the incoming MIDI data, the data has to 

be processed and quantized into a timing grid. Without 

quantization, calculation time would increase and data 

required for calculation would be much larger. For this 

application, a relative quantization method is chosen, i.e., 

the coarseness of the quantization is determined by the 

MIDI timing data–in contrast to quantization methods 

based on a set tempo or pre-determined tempo. 

 

To relatively quantize the note onsets, the smallest 

inter-onset interval should be found. For this purpose, a 

dataset is created that contains only the onset timing data 

from the MIDI onset timing data of all MIDI notes 

(making it a list with timing events), we will call this 

dataset x(x1, x2, ….., xn). The dataset x is ordered in 

chronological order. 

This data is converted to an inter-onset interval 

dataset, i.e., a data set containing the intervals between 

each consecutive note: y (y1, y2,…., yn), which is 

calculated by:  

yz-1 = xz - xz-1, z being an arbitrary number in the range 

of 2 to n). Due to the inaccuracy in human play we can 

expect an slight onset difference in polyphonic music 

between two notes played at the “same” time, which 

represents a second source for onset difference. To 

compensate for both kinds of onset differences we 

introduce the threshold ov, which is the maximum timing 

difference two note onsets can have, in which they are 

considered having been played simultaneous, ov ranging 

between 5ms and 50ms (an optimum for this value should 

still be found). To account for this in the data set, a new 

data set is created, called i (i1, i2, …, in).  Basically, i is y 

with the onsets yz removed that comply with yz – yz-1<ov, 

z being an arbitrary number in the range of 2 to n). From 

data set i, the smallest interval will be selected, which will 

be referred to as Si in the following. 

 

To compensate for the player’s note onset inaccuracy 

both in terms of tempo and beat matching, a dataset, 

which we shall name sc (s1, s2, ..., sn), is made with the 

values from i, that range between Si and Si+ Si · f, where f 

is a pre-defined fault tolerance constant. In the practical 

application of the Varianish a constant of 1.4 was used for 

f. With the data set of sc, the mean is calculated, which we 

will name d (cf. Equation 1). To allow for dotted notes 

(1.5 times a normal note), the final divider D, which will 

be used for quantization, will be determined by Equation 

2. Without dotted note compensation, D is equal to d. 

 

  
   

 
   

 
 

Equation 1 

         

 

 
         

           

  

Equation 2 

The reason why D is not divided by two if it is smaller 

than ov 2 is to prevent the divider coming into the range of 

ov, which would result in erroneous quantization. D will 

be used to quantize the notes by selecting the earliest 

onset time from the onset timing data, which will be 

named ts. Now the relative position (pr) of a MIDI note 

(tm) from the received MIDI data can be calculated in 

reference to ts and by means of D, with a fault tolerance 

given by fc (in the practical application of Varianish, a 

constant of 0.7 was used for fc), given by Equation 3. 
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Equation 3 

Converting the MIDI onset timing data set from point 

ts up to an arbitrary point will give a new grid position 

data set which will be called P for now. 

Before this data will be used in pattern finding or pattern 

matching, another conversion is necessary: the conversion 

from position data to a bit array grid. For example: we 

have Pn, with Pn being an arbitrary position data set for a 

specific note, Pn contains the data (1,5,9), so the total grid 

size will be 9. This will be converted to a bit array 

(figuratively reading from left to right) which will contain 

the following data: 10001000 1, as you can see having an 

onset on the first fifth and ninth position. 

3.1.2. Pattern finding 
After a first step of quantization, the processed stream 

of events is ready for the subsequent pattern finding step: 

For pattern finding we use the quantized data and 

compare it to itself. This is done by means of a comb-

filter. This comb-filter calculates a pattern on a note 

sequence (bit array for one note) by note sequence basis. 

For the comb-filter to give a positive result the minimum 

requirement is that a pattern should at least repeat itself 

three times within the entire sequence of incoming notes 

and that no noise is present (the bit array should only 

contain the pattern repetition). 

 

The comb-filter works by comparing the bit array with 

itself. This is done by comparing the beginning and the 

end of the bit Array to itself. For example it starts to 

compare the beginning and the end of the bit array to each 

other (1 bit); in the next iteration it compares the two bits 

at the beginning and the two bits at the end and so on (see 

figure 1). 

 

 

Figure 1. Example of two iterations of a comb-filter 

To prevent false positives, i.e. finding patterns where 

the player does not actually repeat anything recognizable, 

the comparison process is not started at the first bit and 

last bit, but started at slightly less than a third of the bit 

array size and stops at a maximum of the bit array size -1. 

To find a second pattern exact matches have to be found. 

The reason for this is that with two matches the exact size 

of a pattern can be found and also to prevent false 

positives (for example a pattern which has an inner 

repetition). 

 

After a pattern for each note sequence is found (note 

sequences without input are skipped) the total pattern size 

will be the least common multiple (LCM) between the 

individual pattern lengths. The individual note patterns 

will then be repeated to fit within the total pattern size and 

stored in the final pattern data set, which contains the 

entire repeated individual note pattern of all the notes. For 

example: an individual note sequence has a pattern size of 

2; and another, second note sequence has an individual 

pattern size of 4. The first note sequence will be repeated 

twice and the second note sequence will be stored as is in 

the final pattern data set. That way, polyrhythmic patterns 

of different notes will be compatible in terms of sequence 

length. 

3.1.3. Pattern matching 
Pattern matching occurs when a known pattern is 

compared to incoming data. The incoming data is 

compared after it has been quantized. The data can then 

be compared in chunks that are equal in size with the 

known pattern’s size. These data chunks will be compared 

on a note-by-note basis to their pattern counter parts by 

means of a basic Levenshtein comparison algorithm [10], 

which will output a Levenshtein distance for each 

individual note. 

3.2. Implementation 

The implementation of the project consisted of using a 

MIDI pad controller (a Novation Launchpad [14]) as 

input device, the Processing programming environment 

[16] for the processing of the MIDI input/output and for 

the pattern matching and finding. Ableton Live [1] was 

used to convert the MIDI to sound by means of sample 

triggering. 

3.2.1. Input 
For this project MIDI (Musical Instrument Digital 

Interface) [12] is chosen, as it is a widely implemented 

and supported protocol, which is used in musical 

instruments and software. MIDI input has the advantage 

over “normal” audio input that it directly provides events 

and not a continuous audio wave that first needs to be 

converted into discrete events, which is often processing 

intensive and prone to errors [20]. 



EAI Endorsed Transactions on  
Creative Technologies  

01-10 2014 | Volume 1 | Issue 1 | e3 

Varianish: Jamming with Pattern Repetition  

5 

 

Figure 2. A flow chart depicting the system-level 
view on the Varianish core system. 

3.2.2. Software 
An overview of the software is shown in Figure 2. The 

path from MIDI to sound is kept relatively short; 

Varianish is simply chained into the MIDI connection 

between input and DAW output, with the possibility to 

analyze incoming MIDI notes at real-time and, if needed, 

add more MIDI data, before sending everything to the 

DAW (digital audio workstation), which in this case is, 

Ableton Live. The DAW will output MIDI notes it 

receives from the Varianish as sounds, based on a 

predefined set of sounds samples. The MIDI output of the 

Varianish software consists of MIDI note-on events and 

of messages output on different MIDI channels, where 

each MIDI channel represents a new musical layer. 

  

For the actual pattern processing the incoming MIDI 

data has to be stored in an input buffer. Depending if a 

pre-existing pattern is present the program will try to find 

a pattern or try to match the pre-existing pattern to the 

input data. When a pattern has to be found, the data is 

quantized and then comb-filtered. To account for input 

“noise”, meaning that the beginning input might not 

contain any pattern, the comb-filter is run several times 

where each time it is run, a smaller piece of the input 

buffer is selected for comb-filtering. If no pattern is 

found, the program will wait for more input. If a pattern is 

found the program will calculate the pattern size and store 

the pattern. The amount of repetitions of the pattern is 

then counted and the note counter (counts the amount of 

pattern repetitions for each individual note) is 

incremented accordingly. Finally, the input data is 

removed from the input buffer. When a pre-existing 

pattern is present, the program will try to match the input 

data to this pre-existing pattern. First the program checks 

if the amount of data in the input buffer is sufficient to 

have the pattern present in it; if not, it will wait for more 

input; if so, it will quantize the data and use bitwise 

comparison to see if the data matches exactly. The reason 

to check for an exact match first is that this is much faster 

than doing a Levenshtein distance comparison and can 

thus save in calculation time. If an exact match is found 

the note counter is incremented accordingly and the input 

buffer is cleared. 

 

If no exact match is found, the Levenshtein distance 

for each individual note is calculated, and depending on 

the distance, the note sequence counter will be 

incremented or decremented. When too few successful 

repetitions have occurred, i.e. the note counter is 

decremented more than a tolerance maximum since an 

exact match is found, the pre-existing pattern is removed 

and the note counter is reset. 

3.2.3. Tolerance 
The tolerances added in the software have been largely 

discussed in the theory section of this paper; a short 

overview of these fault tolerances are given below. 

The first is onset tolerance, notes that are played at the 

same time always have some onset variance between 

them; the tolerance for this is added during the 

quantization process. The second is tempo variance 

tolerance; the user will always drift in tempo. To 

compensate for this a new divider is calculate each time 

data is quantized, meaning that the data will always be 

quantized in comparison to its own tempo. The third 

tolerance is the allowance of inaccuracies or non- pattern 

data (data which does not contain a pattern) in both the 

pattern finding stage as well as in the pattern matching 

stage. During the pattern finding stage the input buffer is 

compared to itself several times, each iteration taking a 

smaller piece of the input buffer (by removing the oldest 

inputs). During the matching stage only the newest chunk 

of input data with the same size as the pattern is compared 

exactly and by means of Levenshtein comparison. The 

Levenshtein comparison is able to give a relative fault 

distance, thus being inaccurate “friendly”. 

3.2.4. Processing performance 
Because the software had to be able to run real-time, 

processing performance had to be taken into account. 

Some considerations have been mentioned briefly 

throughout this paper. A small overview of these 

considerations is given below. 
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1. It was really important that the basic comparison 

algorithms were fast and lightweight. To achieve 

this, the data is quantized into a bit array. The 

advantage of using a bit array is that bitwise 

operations can be performed; these operations are 

primitive and directly supported by the processor, 

which means they are fast.  

2. For performance the choice was made to “favor” an 

exact match when the input data and a pre-existing 

pattern are compared. What is meant by this is that 

it first checks for an exact match, instead of doing a 

Levenshtein comparison first (which is also able to 

determine an exact match), because the Levenshtein 

comparison is much more processing intensive. 

3. Another consideration was the maximum size of the 

input buffer. To keep the software real-time it can 

only process a limited amount of input data. 

Therefore, a maximum input buffer size is set. This 

has as a result that the maximum size of the pattern 

is limited. 

3.2.5. Instrument 
As final result for this project we aimed for an 

instrument/device, which was able to find and match 

patterns and to convert this to something musical. It had 

to be able to add musical layers to a player’s performance 

by using pattern matching and finding. This can be best 

compared to the way organs add more richness to their 

sound: organs add layers of sound by activating registers 

or voices resulting in a bigger soundscape. This principle 

was transferred to enable the instrument to add samples 

on samples the more a specific note was repeated within a 

pattern; resulting in a bigger soundscape the more a 

pattern is repeated. 

 

The resulting instrument used a Novation Launchpad 

(a MIDI pad controller) as interface. With this controller 

MIDI notes were generated as input for the software. It 

also provided feedback to the player, trough lighting the 

pads . The player plays the instrument the same as a MIDI 

pad controller would normally be played. The goal is to 

repeat a pattern over and over again to create a bigger and 

bigger soundscape. More samples per note are added the 

more a player repeats a pattern. These samples are added 

by sending the same note on different MIDI channels the 

more the note is correctly repeated in a pattern the more 

MIDI channels are used. On each of these MIDI channels 

a different complementary sample is present for each 

note. Feedback to the player is two-fold. One is visual 

status indication, where the color of the pad indicates a 

certain level and the brightness of the pad indicates the 

inter-level progress an illustration of which can be found 

in figure 3. The level and inter-level feedback, is there to 

provide visual feedback about the amount of layers added 

on each individual note. Feedback was also given when 

the pattern was found by flashing all the pads once. 

 

 

 

Figure 3. A graphic representation of the level 
progress given by the instrument. 

The other is auditory feedback: adding sound layers to 

notes can be heard. Besides this, timed delays based on 

the original divider can be added to intrinsically motivate 

the user to stay in the original tempo. 

 

 

Figure 4. System overview 

4. EVALUATION 

The system was informally evaluated during 

development and in an open exhibition-like setting with 

musicians and non-musicians. The setup (see Figure 4) 

was as described, using a Novation Launchpad as the 

controller and Ableton Live as the sound generator. 

Varianish was chained in-between to capture all events 

from the Launchpad, analyse them, and, in the case of 

successful pattern repetitions, trigger additional musical 

layers in Live as well as control LEDs on the Launchpad 

to visually indicate progress. 
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In the following, evaluation findings are presented 

divided into technical and usage aspects. 

4.1. Technical Evaluation 

During the evaluation it became clear that a large, 

almost full input buffer significantly increased the 

calculation time and thus imposed a lag on the rest of the 

system (in cases when the processing of the incoming 

notes takes longer than the interval between notes). 

Giving the input buffer a maximum size reduced this 

problem.  

It also became apparent that not only the buffer size 

was of importance for the calculation time, but also the 

data input into the buffer. The calculation time is often 

within the maximum allowed range, but setting a 

maximum buffer size is not a sufficient means to ensure 

that the calculation time is within an acceptable range. To 

counter this, optimization has to be used and a way of 

dynamically changing the input buffer size. The 

calculation time also influences the maximum pattern size 

that can be recognized, which has as a result that the 

pattern can only have a limited size and that the system is 

only able to process relatively small patterns, an estimate 

would be a pattern consisting of 12 to 30 note onsets, this 

estimate is rather wide and further evaluation and 

optimization with the system has to be done to get a more 

accurate estimate, which were still large enough for most 

musicians that tried the system. 

 

In future versions, a dynamically changing input buffer 

size would be advisable, by means of monitoring the 

calculation time and adjusting the buffer size accordingly. 

This would prevent the software from exceeding the 

maximum allowed calculation time. It also became clear 

that the system had difficulty with recognizing shuffle 

patterns. The difficulty of picking up shuffle patterns will 

probably be fixed by compensating for dotted notes as 

discussed in the theory, which was not yet implemented 

fully during the evaluation. Another point was the 

optimization of the algorithm in favour of perfect pattern 

repetitions, resulting often in looking for an exact match 

and not finding it, after which the Levenshtein algorithm 

is still run. These points will be further investigated and 

optimized in a future version of Varianish, given more 

extensive input from follow-up user evaluations. 

4.2. User Evaluation 

During the exhibition setting participants were 

instructed to play with the device and repeat a pattern 

over and over. The players often started by exploring the 

initial sounds available to them and only then tried to 

invent and repeat a pattern. A significant amount of the 

participants gave up repeating a pattern after a few times 

or were not able to repeat even a simple pattern. For many 

participants it was indeed a difficult task to repeat the 

same pattern several times accurately. The level of focus 

and the occurrence of rhythmic inaccuracies have a very 

direct relation, however, fine motoric skills play a role as 

well. Reducing the complexity of the pattern has a 

positive effect, however, this did not naturally occur to 

many participants. 

 

The visual feedback that is given when the system 

recognized a pattern was startling for some users, which 

often resulted in them stopping the pattern repetition. The 

participants were all able to hear layers being added to the 

notes they played, which meant that the auditory feedback 

was chosen well and that the layers of sound are clearly 

distinguishable. So, while the auditory feedback was 

clear, the visual feedback of the system (when it 

recognizes a pattern) should be revised in a future version. 

5. CONCLUSION 

This paper introduces Varianish, a musical instrument 

concept based on repetition of musical rhythmic patterns 

that result in the generation of additional sound layers to 

be added to the overall sound. Our findings suggest that 

Varianish is able to perform its core basic task: 

recognizing musical patterns in real-time and triggering 

both visual output to the player as well as generating 

additional musical layers. This works in real-time with 

interchangeable sample or sound sets resulting in the 

desired micro-focus experience. 

 

An interesting aspect of the Varianish concept is that 

patterns can both be very simple and very complex–the 

instrument works the same, and thus allows in principle 

for similar experiences for novice and expert players 

alike. The evaluation, however, showed that the current 

implementation is not yet robust enough for beginners and 

better suited for slightly more advanced novice or expert 

players who can rely on their fine motor skills to 

consistently repeat a pattern. 

 

The pattern recognition core itself has also potential to 

be used as a method of interaction in itself, which, to our 

knowledge, is a new way of interacting with a system that 

potentially has no musical context. An open-source 

release of the processing core is planned in a future 

release. 
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