
Service Co-evolution in the Internet of Things
Huu Tam Tran∗, Harun Baraki and Kurt Geihs

University of Kassel, Distributed Systems Group, Wilhelmshöher Allee 73, Germany

Abstract

The envisioned Internet of Things (IoT) foresees a future Internet incorporating smart physical objects that
offer hosted functionality as IoT services. This service-based integration of IoT will be smarter, easier to
communicate with and more valuable for enriching our environment. However, the interfaces and services
can be modified due to updates and amendments. Such modifications require adaptations in all participating
parties. Therefore, the aim of this research is to present a vision of service co-evolution in IoT. Moreover, we
propose a novel agent architecture which supports the evolution by controlling service versions, updating
local service instances and enabling the collaboration of agents. In this way, the service co-evolution can make
systems more adaptive, efficient and reduce costs to manage maintenance.

Keywords: Service co-evolution, Coordinating agents, IoT services, Web services, Adaptive services

Copyright © 2015 Huu Tam Tran et al., licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

1. Introduction
In this paper, we address the challenge of coordinated
services in the scope of IoT by employing an agent-
based approach. Service providers may depend on third
party services to deliver quality products to customers
and to other service providers as well. To prevent
outages and failures by individual service modifications
and updates coordinated evolution (hereafter co-
evolution) is required in such complex systems, i.e. they
need a co-evolution for services in order to ensure that
no interruptions occur. A centralized solution would
not be realizable due to administrative and technical
reasons. It would not be scalable, in particular, in the
area of IoT, and security issues would complicate the
whole approach. Consequently, service providers have
to be responsible for the evolution of their own services.
The required actions have to be coordinated with other
providers in the IoT environment. The objective is
to automate the coordinated evolution as much as
possible.

With the emergence of Internet Protocol-based IoT
devices [9] and the concept of embedded Web services
[16, 19], new and highly interconnected IoT-aware
applications can be created. Nonetheless, changes can
happen at any stage in the service life cycle and have

∗Corresponding author. Email: tran@vs.uni-kassel.de

unpredictable impact on the service stake-holders [23].
Though Web services bring more flexibility, they also
create new challenges for change management in the
Web service lifecycle. How to handle those changes
for each Web service consumer as well as facilitate
the client application updates on the consumer side?
This question has become an emerging concern for Web
service providers and Web service consumers. Being
therefore able to control how changes manifest in the
service life cycle is essential for both service providers
and service consumers [23]. In fact, changes of Web
service can occur in three aspects of services: change
in the functional behavior of the service; change in the
non-functional behavior of the service; and syntactical
changes in the service interface.

Recently, agent-based models have been suggested
for IoT as they can capture autonomy, and proactive
and reactive features. Besides that, they can include
ontologies for cooperation and different contexts [2, 3].
Within the scope of IoT, agent approaches address
application levels and can use services provided by
smart objects in order to achieve co-evolution.

Service co-evolution in IoT has received barely
attention so far. Thus, there are some needs for detailing
the vision of service co-evolution and solutions to
provide benefits for IoT users. However, there are
many challenges and requirements to tackle to meet an
overall trade-off between aspects like the satisfaction

1

EAI Endorsed Transactions
on Cloud Systems Research Article

Received on 01 December 2014, accepted on 20 January 2015, published on 23 February 2015

doi: 10.4108/cs.1.1.e5

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<tran@vs.uni-kassel.de>

H.T. Tran et al.

Figure 1. Fitness4All disrupts due to service updates.

of clients, the resource consumption of provided
interface versions and the efforts to update them.
Consequently, this paper will analyse the roles of this
evolution regarding potential results, challenges and
its requirements as well as the solution. It is not the
intention of this paper to present details of Web service
evolution as that has been done elsewhere [11–13, 15].
This paper aims at promoting the idea of co-evolution of
web services in IoT by (i) illustrating how a service co-
evolution is carried out, what should be involved, why
it is essential, and what should be prepared in order
to meet the co-evolution requirements, (ii) highlighting
a novel agent architecture for service providers in
the IoT environment and explaining how these agents
can be used in service co-evolution environments, (iii)
discussing some potential research challenges of service
co-evolution. Thus, the main contribution of this paper
is to make software engineers aware of the power of
service co-evolution and make systems more adaptive,
efficient and reliable.

The rest of the paper is structured as follows. Section
2 provides a motivating example in the healthcare area.
Section 3 illustrates an overview of our solution and
its key components. Section 4 analyses the coordination
of services. Section 5 introduces a number of existing
researches and compares them with our approach, and
finally section 6 draws conclusions on our current
results and provides an outlook for future work.

2. A motivating example
To clarify and illustrate the idea of co-evolution, we first
present a scenario set on Health Care applications, and

some important concerns for application development
in the IoT environment. HealthCareCo (HCC) is a
company specializing in providing healthcare services
for customers. Through its Web service, the company
provides a service named Fitness4All to customers
(users). Users can employ Fitness4All to obtain
information about health indicators such as heart
rate, number of daily steps, insulin level, arterial
blood pressure as well as daily calorie consumption.
Fitness4All can also provide diagnosis of the illness as
well as consulting users by offering a user guide on
nutrition and exercises to promote health. Users will be
advised to practise in health centers like Fitness Stations
Co (FSC) or Training Plan Co (TPC).

The company’s customers are provided with a smart
device which can access remotely Fitness4All services.
This smart device has an integrated RFID tag. When
customers go into FSC or TPC, local RFID readers will
identify the user. At the same time, the smart device
will connect to the center’s Web service. After that,
FSC or TPC will provide the appropriate training for
all users through personal health information based
on the Fitness4All. During training, the device will
signal an alert warning to the users if there are any
health issues. In addition, Fitness4All can advise on
nutrition information to the customers. This service
is supported from another company named Daily
Nutrition Co (DNC) which provides various nutritious
foods to people. Suddenly one day, the Web services
from service providers like FSC, TPC and DNC updated
to new version without notifying HCC. This leads to
the disruption of Fitness4All. Users can not access the

2 EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

 Service Co-evolution in the Internet of Things

information from the web service. It created many
claims and the company had to return money back
to users. HCC had to invest many financial resources
and human efforts to continue providing Fitness4All.
HCC Board of Directors understood that the emerging
social Internet sector was still immature because of
its lack of efficacy in dealing with changes while
ensuring the quality of the composite. After some time,
customers no longer trust the Fitness4All service as
several interruptions occurred 1. As a consequence, the
company had to stop the service and its activities.

After HCC Board’s initial problems they decided
to contact a consultancy firm called IoT-SU(an IoT-
support Company), specialized in supporting compa-
nies that use third party internet services to implement
robust systems. IoT-SU knows that when they publish
a certain service through an interface, they have to be
ready to maintain different versions of that interface
over time, in order to not deny service to hundreds of
thousands of subscribers.

However, service providers would like to publish
new interfaces and forget about maintaining old
ones. This would allow them to evolve the services
faster, and continuously offer improved services for
their subscribers. The solution to face this problem
is called service co-evolution. Service Co-evolution
artifacts are also installed on the consumer’s side so
that changes in the interfaces can be managed mostly
automatically. If it cannot be adjusted automatically,
then the development team of HCC will be informed. In
this case, the service provider may offer the old version
in parallel to the new version for a specified period of
time to avoid an abrupt interruption of HCC.

IoT-SU helped the HCC service to adopt the
service co-evolution approach. The sustainability of
the selected solution allowed them to continue the
provision of their services and to expand their user base.

Figure 2 illustrates a possible service co-evolution
scenario with support by Evolution Agents (EVAs).

Third party service providers usually update inter-
faces in order to make their services more reliable and
faster or to provide further functionality. In the intro-
ductory example the developers forgot about maintain-
ing the previous versions for the Fitness4All service. In
that case, for a short-term solution, the technical group
of HCC should contact soon the third party service
providers to get support in updating the interfaces.
In the longer term, the technical group should deploy
EVA for their Web services. When an update appears
from the Web service providers, the Fitness4All Web
service will be update almost simultaneously if appro-
priate update mechanisms are available or it will inform
developers immediately.

It is imperative that an application has to cope
with such evolutions, so that its business continuity is
not compromised. Unfortunately, we cannot rely on a

centralized evolution manager, since it would represent
a traffic bottleneck and a central point of failure. Having
a centralized manager might not even be feasible, for
technical or administrative reasons.

Evolution also cannot be fully automated. In
general, it is a multi-step process that a service
must go through to transition from a problematic
configuration, to a more acceptable new one. This
transition may involve adaptation mechanisms that
are already in-place, as well as offline activities, such
as requirements gathering and software development.
Although software evolution mechanisms have been
deeply studied in the last decades, service co-evolution
offers many new research challenges:

Figure 2. The service co-evolution with EVAs in the scenario.

(i) Heterogeneous services in IoT have de-coupled
lifecycles, meaning that single services may
be updated, or newly developed, while others
are still in operation. Any evolution that we
perform on a service requires that this action
be coordinated with other actions paramount
if we want to preserve the applications overall
functionality and quality of service.

(ii) The evolution of such complex systems will
require that we harness and understand the
horizontal and vertical relationships that exist
between services, so that we can have them evolve
in a coordinated fashion. This can be achieved
through modelling and analytics, and through
detailed runtime analysis, e.g., runtime testing
and formal verification. Given the decentralized
nature of the application environment, all these

3 EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

H.T. Tran et al.

Figure 3. Architecture of the EVA

tools need to rely on local knowledge of the
service itself and of its surroundings.

3. Solution Overview
Services running on heterogeneous systems and offered
by different providers have de-coupled lifecycles, in
particular, in IoT. Single services will be updated
due to amendments or refinements or to provide
further functionalities. Other providers may cut back
the functionalities without taking notice of remaining
clients that try to apply the removed functions. Business
processes and applications that depend on services
require appropriate coordination and adaptation by
the participating parties. The solution we worked
out equips every service with an agent, called EVA
(Evolution Agent) that is capable to undertake these
tasks. The internal structure and the rough composition
of an EVA are depicted in figure 3. The next sections
introduce the main components of an EVA and their
interactions.

3.1. Analysis
The information interaction flow within our model is
as follows. When an EVA receives first an Evolution

Request, it is analysed by the Analysis module. An
Evolution Request demands for adaptation to be able
to take part in future interactions. In case a service
provider wants to update his service, the Evolution
Request can be sent by its EVA to the EVAs of the
clients. This scenario is discussed in section 4. A further
scenario is that the EVA of a service that is composed
of other services and depends on them, demands one of
his service providers to evolve to be able to update his
own service.

In the latter case, the analysis module of the receiving
EVA has to decide whether an evolution should take
place and, if so, whether a local evolution is possible or
whether the evolution has to be coordinated with other
EVAs. For this reason, it assesses firstly the significance
of the Evolution Request by evaluating the importance,
the reputation and the number of partners who sent
the request. The importance of a partner will increase,
the more clients are affected by him. The significance
will rise too, if the local service strongly depends on
the other service and if there are no alternative services
available. If either resources are becoming scarce or if it
takes high efforts to satisfy the request, then lowly rated
Evolution Requests may be rejected. Service instances
not requested for a long time can be switched off to free
resources for crucial service instances.

To estimate the efforts required for adaptation, the
Analysis module considers initially local knowledge
that includes information about locally available
update mechanisms, the different service instances
realizing different versions of the service, and the
dependencies that the service versions might have
towards other services. In case the Analysis module
accepts the Evolution Request and a local update would
satisfy the request, it will instruct the Smart Update
Mechanism module, as presented below, to execute the
local update and to provide eventually a new service
instance. If a pure local update is not available or not
sufficient due to interplay between several services,
the Evolution Coordination module has to deal with
a coordinated evolution and possibly ask software
developers for further configurations.

3.2. Evolution Analytics
As time passes, the Analysis and the Evolution Coor-
dination module can take more sophisticated deci-
sions. The Evolution Analytics module collects runtime
data about successful and unsuccessful evolution pro-
cedures. These data include information about local
and coordinated evolutions since both modules feed
the Evolution Analytics module. The goal is to dis-
cover promising evolution patterns by fostering suc-
cessful and proven evolution procedures and prevent-
ing unsuccessful ones. Success does not only depend on
smooth running in a technical sense, but has to consider

4 EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

the cost-performance ratio, the revenue, the reputation
and QoS (Quality of Service) parameters too. Costs
comprise, for instance, hardware and human resources
which can be estimated hardly in the very begin-
ning. If a new configuration has been implemented,
the developer specifies the total man-hours spent. By
means of Evolution Analytics EVA will learn to predict
worthwhile evolutions while minimizing costs and time
and maximizing the own revenue and reputation. The
reputation of an EVA may decrease if it denies regu-
larly Evolution Requests. Here, Evolution Analytics has
to weigh the reputation against other factors like the
costs for updates and the future revenue. To estimate
reputation, costs and QoS, we will make use of our two
prediction algorithms presented in [4].

For reasons of bootstrapping, EVAs are allowed to
share parts of their knowledge with other EVAs. Special
know how that affects only the service supervised by the
EVA, has to be left out.

3.3. Evolution Coordination
In the event that a pure local evolution is not applicable,
the Evolution Coordination module will co-operate
with other EVAs and possibly interact with software
developers. For example, the service is providing a
method that depends on data delivered by a third
party. To customize the interface for the client sending
the Evolution Request, the Evolution Coordination will
determine first the involved third parties and send them
an Evolution Request. A continuous feedback between
the EVAs is required to keep all parties up-to-date and
to recognize future developments early. If a third party
rejects the Evolution Request or if it is not available
anymore, the Evolution Coordination can start a search
for suitable services. To this end, we will adopt our
service selection algorithms proposed in [7].

If the latter fails due to a lack of matching
services, the Evolution Coordination will instruct the
service provider or a responsible software developer
to adapt the service. For this purpose, the developer
may implement a configuration that is subsequently
executed by the Smart Update Mechanism.

3.4. Smart Update Mechanism
The Smart Update Mechanism encompasses mainly
two types of evolution capabilities. Firstly, it is aware
of the different versions of the services running
as service instances on the local machine and the
versions used in the past. If one of them is fulfilling
the conditions required, then it will be assigned
to the requesting party. The second approach is a
specification of the evolution rules and constraints
that represent the possible service re-configurations
and adaptations. In MUSIC [10] application developers
specified the possible variants of an application and

Figure 4. Deployment of an EVA in an IoT scenario

their dependencies on the runtime context; this was
exploited by the adaptation manager in the middleware
to achieve optimized application adaptation in different
situations.

An EVA maintains up-to-date evolution models of its
services. The models expose the possible configuration
and adaptation paths. The EVA may govern multiple
instances and versions of the same service at the same
time, in order to accommodate different applications
that may have different needs with respect to the
service. Eventually, out-dated alternatives will be
slowly retired.

The Analysis and Evolution Coordination modules
introduced in the previous sections decide which
configuration or version will be used for a specific
client. In this connection, they do not only consider the
possibilities offered by the Smart Update Mechanism,
but take also into account the Evolution Analytics
to optimize criteria like revenue, reputation, response
time and own operability.

3.5. Repository
The Smart Update Mechanism makes use of a repository
where several configurations were made available by
developers. Developers can add new configurations to
the repository during the lifetime of a service, for
instance, if the Smart Update Mechanism did not find
appropriate ones to update the service.

5

 Service Co-evolution in the Internet of Things

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

H.T. Tran at al.

3.6. Middleware
Since objects or mobile devices are free to enter or
leave the system, the middleware enables EVAs to
communicate with each other in an asynchronous and
loosely coupled manner. Besides that, the EVA itself
can be divided into its modules such that each module
may run on another device. This allows to make
use of powerful runtime environments while energy
constrained IoT devices that deliver the data offered by
the service are spared. Small services, such as an object
in IoT, will not have the processing power or storage
needed to implement a full EVA. Figure 4 shows a low-
level object that has outsourced its EVA components.
This is a conservative deployment scenario since we
assume that the on-site server and the cloud are always
available.

However, more opportunistic approaches are also
conceivable. For example, an object might rely on the
availability of mobile devices that can enter or leave
the system freely, to provide the resources it needs to
communicate with the cloud.

4. Coordination of EVAs
Coordinating the evolution of services is a major
challenge since it is a complex process that requires
multiple interactions, as well as continuous feedback
to understand whether the distributed evolution
is proceeding as desired. To prevent never-ending
negotiations between service providers about which
service has to adapt first or to change at all, we
introduce an algorithm that gives a clear path for the
evolution. Therefore, we include the number of clients
of each concerned service and their overall reputation.
Figure 5 shows the process of taking into account the
feedback received in response to an evolution request,
particular from EVA x which sends the requests to its
clients.

To tackle the aforementioned challenge, we define the
following terms to coordinate and adapt EVAs.
Weight of a service (w):

The weight of a service is defined as the product of the
reputation r of the service (range [0,1]) and its number
of clients nc (scaled into the range [0,1] by incorporating
the max and min values of all services considered). The
reputation r of the service and the weight w of a service
can be defined respectively as follows:

r =
∑n

1 ratingi
n

(1)

w = r × nc (2)

Vote of a service (v): The EVA that is managing an
affected service is either interested in an adaptation or
rejects it. For this reason, an EVA can vote for or against
the evolution of a used service. Hence, we adopt the
values of votes:

Figure 5. Coordination of EVAs based on client’s feedback

• Vote (vi) = +1 votes for accepting the new service
version.

• Vote (vi) = −1 votes for not updating the interface
or do update but keep the old version.

Feedback (f): The higher the reputation of a service
and the higher its number of clients, the higher the
vote of the EVA that is managing the service is
weighted. Thus, the overall feedback is comprised of the
multiplication of the vote and the weight that consists
of the reputation and the number of clients. This means
that services that satisfy and affect more clients have a
higher impact.

Feedback of one client (fi):

fi(wi , vi) = wi × vi (3)

Feedback of all n clients (fagg):

fagg =
n∑
i

wi × vi (4)

4.1. Coordination algorithm
The co-evolution will be executed if

fagg ≥ ε(thresholdvalue) (5)

A step-wise structure of the proposed algorithm that
encompasses the equations from (1) to (5), is given in
the following:
Input: Evolution request of EVA x to EVAs c ∈ C;

number of clients and the reputation of the EVAs c ∈ C.
Step 1: The service managed by EVA x will be

updated by the provider or EVA x received an evolution
request from another EVA y.
Step 2: x is asking the EVAs c ∈ C of its clients

whether they would accept or reject the required
adaptation.

6 EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

Step 3: x is summing up the feedbacks of c ∈ C by
considering their vote and their reputation and number
of clients that are both scaled into the range [0,1].
Step 4: x is dividing the summed up feedbacks by the

number of clients to obtain fagg and compares fagg with
a predefined threshold value ε.
Step 5: The co-evolution will be executed if fagg ≥ ε.

In this case, the update mechanisms will be executed.
Step 6: Otherwise, the evolution requests will be

rejected.
Output: Accept or reject the evolution requests

4.2. Optimization Problem
Web services may be composed of several other Web
services and, hence, stay in contact to different EVAs.
This scenario is similar to that of business processes in
SOA (Service-oriented Architectures), where a central
process orchestrates Web services to realize a certain
functionality. The orchestration is formulated as a
process that may start with the arrival of a message
like a receive or a pick activity. It may send an answer
back to the requester with a reply activity. Activities and
service invocations may be grounded inside a sequence
or a flow structure.

In service co-evolution, we are searching for the
optimal interface. A service may be a composition
of multiple EVAs where each EVA represents a Web
service. The orchestration itself is monitored and
managed by an EVA. It tries to optimize the own
revenue and the rate of satisfaction of clients by
providing a suitable interface for a given functionality.
This interface is built by a composition of the interfaces
of other EVAs (services). The goal of an selection
algorithm is to find first an optimal choice of interfaces
that realizes the most preferred interface for the
orchestration. This is done by the aforementioned
coordination algorithm. With EVA x, for instance, we
define the set I that contains the set of requested service
interfaces. The set I depends on the clients who vote
whether they would accept or reject the interface of a
composition of certain interfaces.

After finding the set I of matching interfaces, the
challenge is to find those services that optimize the
overall quality of the orchestration for the clients and
the revenue for the provider. Finding the optimal
solution means now to maximize the overall satisfaction
(S) of the own clients and to select those EVAs that will
provide the required interfaces and that maximizes the
own revenue (R).

We consider the following objective function for
realizing the EVA orchestration:

MaximizeFobj (I) = Fobj1(R) × Fobj2(S) (6)

Fobj1(R) and Fobj2(S) are explained below. Fobj1(R)
is an objective function for maximizing the provider’s

revenue, Fobj2(S) has the goal to maximize the clients’
satisfaction.

We incorporate the following quality dimensions to
compute the overall satisfaction for the clients:

• throughput(t) : number of service invocations per
time unit.

• reliability(l) : the probability that the service
executes successfully.

• executiontime(e) : the time it takes to execute the
service.

• availability(a) : the percentage of time during
which the service is available.

The vector Q (t, l, e, a) contains the quality of service
(QoS) dimensions.

The value of functions Fobj1 and Fobj2 are weighted
and combined to make the final decision. To maximize
Fobj (I) in (6) both objective functions below has to be
maximized:

Fobj1(R) =
n∑
i=1

ri , ri ∈ R (7)

Fobj2(S) = k1 × t + k2 × l + k3 ×
1
e

+ k4 × a (8)

Therefore:

Fobj (I) = (
n∑
i=1

ri) × (k1 × t + k2 × l + k3 ×
1
e

+ k4 × a) (9)

To keep the description as simple and clear as
possible, the normalization steps to the range of [0,1]
are not included in the formula. The factors ki , i =
1...4 represent the weights for the quality dimensions
depending on the preferences of the EVA. Let us
assume that the current interface of EVA x can
provide a revenue of R0 and an average satisfaction of
(t0, l0, e0, a0). The goal of interface selection would be to
find a pair (Ri , Si) better than the pair (R0, S0).

In the event of pure Web service selection for business
processes, this issue can be solved by our approach
in the paper [7] or by other popular approaches like
integer linear programming [24] and genetic algorithms
[6].

5. Related Work
Over the last decades, the service evolution raised to
a more and more important topic that brings many
new challenges to software engineering. This section
will present some frequently cited works related to our
research.

One of first works handling the problem of service
evolution is developed by Forkaefs et al. [11]. Their

7

 Service Co-evolution in the Internet of Things

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

H.T. Tran at al.

tool VTracker is designed to analyse the evolution
of WSDL interfaces. The idea of Vtracker is based
on the Zhang-Shashas tree-edit distance [25] which
calculates the minimum edit distance between to trees.
In this study the WSDL interfaces are considered
as usual XML files. Specifically the authors created
an intermediate XML representation to reduce the
verbosity of the WSDL specification. In this simplified
XML representation, among other transformations,
the authors trace the references between message
parameters and data types and replace the references
with the data types themselves. However, VTracker
does not take into account the syntax of WSDL
interfaces. As consequence, their approach outputs only
the percentage of differences between XML elements.
In addition, this approach of transforming a WSDL
interface into a simplified representation can lead to the
detection of multiple changes while there has been only
one change.

Similarly, Romano and M. Pinzger [18] presented an
outstanding work called WSDLiff that compares sub-
sequent versions of WSDL interfaces to automatically
extract the changes. This approach takes into account
the syntax of the WSDL file and the schema file XSD
[18] that is used to define the data types of the WSDL
interface. In particular, WSDLDiff extracts the types of
the elements affected by changes (e.g., Operation, Mes-
sage) and the types of changes (e.g., removal, addition,
move, attribute value update). Romano at al. refer to
these changes as fine-grained changes. The fine-grained
changes extraction process of WSDLDiff is based on the
UMLDiff algorithm [21]. This proposed tool is a useful
means to understand how a particular Web service
evolves over time. This approach is relevant for Web
service subscribers who want to compare the evolution
of different Web services with similar features or to
analyze the most frequent changes affecting a WSDL
interface. By applying this approach, Web service sub-
scribers can estimate the risk associated to the usage
of a certain Web service. Nonetheless, the authors did
not investigate the co-evolution of different Web service
which differs from our approach.

Other well-known research results come from M.P.
Papazoglou and V. Andrikopoulos [1, 15] with ana-
lyzing shallow changes and deep changes. In their
papers, they developed a set of theories and modes
that unify different aspects of services (description,
versioning, and compatibility) to assist service develop-
ers in controlling and managing service changes. They
distinguished between shallow changes (small-scale,
localized) and deep changes (large-scale, cascading) for
service compatibility and reasoning mechanisms for
delimiting the effect of changes which can keep local
to and consistent with a service description. They dis-
cussed when a change in a service is triggered, how to
analyse its impact, and the possible implications of the

implementation of the change for the service providers
and consumers. However, the authors only focused to
deal with shallow changes. Additionally, their approach
did not mention about the IoT environment and its
services. But some lessons can be learned from their
formal principles and theories for the description of the
coordination of EVAs, for instance.

Design patterns have been widely used for software
development for structuring solutions [8, 20]. S. Wang
et al [20] focuses on a common evolution scenario where
a single service, provided by a single provider, is used
by many different and possibly unknown consumers,
as is the case of most current Web services, such as
Google Maps, eBay Trading, and Amazon E-Commerce.
In the scenario of [20], the services usually face large
and frequent changes as a result of an increasing need
to conform to changing business and technological
requirements [20]. In particular, the paper proposed
four patterns involving compatibility, transition, split-
map, and merge-map. These patterns provide generic
and reusable strategies for service evolution. These
patterns can be involved to deploy and support our
agents as they can be used to derive the set of changes.

Another important service evolution approach is
the analysis of service dependencies. Basu et al. [5]
introduced a tool that can extract dependencies from
log files. Their technique could be adapted in order to
infer a set of dependent service consumers. One the
dependencies are understood, it is also important to
infer the impact of service changes on the dependent
applications. The Chain of Adapters technique [12] is
an alternative approach for deploying multiple versions
of a Web service in the face of independently developed
unsupervised clients. The basic idea is to resolve the
mismatches between the expectations of the consumers
and the supported versions and configurations of the
services. This can prove useful in self-configurations.

It is worth mentioning the work on service compat-
ibility with the WS2JADE tool [14] which is based on
an agent approach. Xuan Thang Nguyen and Ryszard
Kowalczyk proposed the WS2JSADE toolkit for inte-
grating Web services and the Jade agent platform. This
tool provides facilities to deploy and control Web ser-
vices as agent services at run time for deployment
flexibility and active service discovery. The authors
also discuss different ways how Web services can be
visible to agents and how they can be accessed and
used by agents. Although WS2JADE offers many advan-
tages over other existing tool, it still lacks substantial
theoretical work with respect to agent to Web service
integration like, for instance, service co-evolution.

In fact, there are many agent-based approaches
available to support interoperable IoT devices and
their services nowadays [2, 3, 17, 22]. Nonetheless,
the adaptation mechanisms and the collaboration
characteristics in these agents are not sufficient in order

8 EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

to achieve coordinated service evolution. Furthermore,
it needs a global vision which can predict potential
effects, challenges and requirements for participating
service providers.

6. Conclusion and Future Work
This paper introduces a new vision of service co-
evolution in IoT. It provides developers a common evo-
lution management model and reference architecture
and represents a focused effort to provide a foundation
for realizing the full potential of service-based architec-
tures. For this reason, the challenges in the co-evolution
of services that cover the wide spectrum from IoT to
Cloud Computing are analyzed as well.

This paper also adopts a novel conceptual agent as
a solution for service co-evolution. Evolution tasks like
the assessment and coordination of evolution requests,
updating and versioning the interfaces and selecting
matching services can be performed automatically or
semi-automatically by EVAs.

Furthermore, the paper also proposes an approach
for coordinating EVAs in service co-evolution. Besides
that, it proposes a first approach for the selection of
interfaces in orchestrations that is required to satisfy
revenue and satisfaction requirements. In this way,
systems can be made more adaptive, efficient and
reduce costs to manage maintenance.

In summary, the paper is a step forward to service
co-evolution in IoT. The results of this research will
provide support to professional service providers and
business process engineers. In future, first research
prototypes for the coordination of EVAs shall be
delivered to evaluate the prospect of this approach.

Acknowledgment
The authors would like to acknowledge the gener-
ous support of DAAD (Deutscher Akademischer Aus-
tauschdienst).

References
[1] Andrikopoulos, V., Benbernou, S., Papazoglou, M. P.,

2012. On the evolution of services. Software Engineer-
ing, IEEE Transactions on 38 (3), 609–628.

[2] Atzori, L., Iera, A., Morabito, G., 2010. The internet of
things: A survey. Computer Networks 54 (15), 2787–
2805.

[3] Ayala, I., Amor, M., Fuentes, L., 2012. An agent platform
for self-configuring agents in the internet of things.
INFRASTRUCTURES AND TOOLS FOR MULTIAGENT
SYSTEMS, 65–78.

[4] Baraki, H., Comes, D., Geihs, K., 2013. Context-aware
prediction of qos and qoe properties for web services. In:
Networked Systems (NetSys), 2013 Conference on. IEEE,
pp. 102–109.

[5] Basu, S., Casati, F., Daniel, F., 2008. Toward web
service dependency discovery for soa management. In:
Services Computing, 2008. SCC’08. IEEE International
Conference on. Vol. 2. IEEE, pp. 422–429.

[6] Canfora, G., Di Penta, M., Esposito, R., Villani, M. L.,
2005. An approach for qos-aware service composition
based on genetic algorithms. In: Proceedings of the
7th annual conference on Genetic and evolutionary
computation. ACM, pp. 1069–1075.

[7] Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs,
K., 2010. Heuristic approaches for qos-based service
selection. In: Service-Oriented Computing. Springer, pp.
441–455.

[8] Daigneau, R., 2012. Service Design Patterns: fundamen-
tal design solutions for SOAP/WSDL and restful Web
Services. Addison-Wesley.

[9] Dunkels, A., et al., 2009. Efficient application integration
in ip-based sensor networks. In: Proceedings of the
First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings. ACM, pp. 43–48.

[10] Floch, J., Frà, C., Fricke, R., Geihs, K., Wagner, M.,
Gallardo, J. L., Cantero, E. S., Mehlhase, S., Paspallis,
N., Rahnama, H., Ruiz, P. A., Scholz, U., 2013. Playing
music - building context-aware and self-adaptive mobile
applications. Softw., Pract. Exper. 43 (3), 359–388.

[11] Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau,
A., 2011. An empirical study on web service evolution.
In: Web Services (ICWS), 2011 IEEE International
Conference on. IEEE, pp. 49–56.

[12] Kaminski, P., Müller, H., Litoiu, M., 2006. A design
for adaptive web service evolution. In: Proceedings of
the 2006 international workshop on Self-adaptation and
self-managing systems. ACM, pp. 86–92.

[13] Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar,
S., 2008. End-to-end versioning support for web
services. In: Services Computing, 2008. SCC’08. IEEE
International Conference on. Vol. 1. IEEE, pp. 59–66.

[14] Nguyen, X. T., Kowalczyk, R., 2007. Ws2jade: Integrating
web service with jade agents. Springer.

[15] Papazoglou, M. P., Andrikopoulos, V., Benbernou, S.,
2011. Managing evolving services. Software, IEEE 28 (3),
49–55.

[16] Priyantha, N. B., Kansal, A., Goraczko, M., Zhao, F.,
2008. Tiny web services: design and implementation
of interoperable and evolvable sensor networks. In:
Proceedings of the 6th ACM conference on Embedded
network sensor systems. ACM, pp. 253–266.

[17] Roalter, L., Kranz, M., Möller, A., 2010. A middleware for
intelligent environments and the internet of things. In:
Ubiquitous Intelligence and Computing. Springer, pp.
267–281.

[18] Romano, D., Pinzger, M., 2012. Analyzing the evolution
of web services using fine-grained changes. In: Web Ser-
vices (ICWS), 2012 IEEE 19th International Conference
on. IEEE, pp. 392–399.

[19] Shelby, Z., 2010. Embedded web services. Wireless
Communications, IEEE 17 (6), 52–57.

[20] Wang, S., Higashino, W., Hayes, M., Capretz, M. A., 2014.
Service evolution patterns. Proceedings of the 21st IEEE
International Conference on Web Services.

9

 Service Co-evolution in the Internet of Things

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e5

H.T. Tran et al.

[21] Xing, Z., Stroulia, E., 2005. Umldiff: an algorithm
for object-oriented design differencing. In: Proceedings
of the 20th IEEE/ACM international Conference on
Automated software engineering. ACM, pp. 54–65.

[22] Yu, H., Shen, Z., Leung, C., 2013. From internet of things
to internet of agents. In: Green Computing and Commu-
nications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on
and IEEE Cyber, Physical and Social Computing. IEEE,
pp. 1054–1057.

[23] Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B., 2008.
Deploying and managing web services: issues, solutions,

and directions. The VLDB JournalâĂŤThe International
Journal on Very Large Data Bases 17 (3), 537–572.

[24] Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M.,
Kalagnanam, J., Chang, H., 2004. Qos-aware middleware
for web services composition. Software Engineering,
IEEE Transactions on 30 (5), 311–327.

[25] Zhang, K., Shasha, D., 1989. Simple fast algorithms for
the editing distance between trees and related problems.
SIAM journal on computing 18 (6), 1245–1262.

10
EAI Endorsed Transactions on

Cloud Systems
01-02 2015 | Volume 1 | Issue 1 | e5

	1 Introduction
	2 A motivating example
	3 Solution Overview
	3.1 Analysis
	3.2 Evolution Analytics
	3.3 Evolution Coordination
	3.4 Smart Update Mechanism
	3.5 Repository
	3.6 Middleware

	4 Coordination of EVAs
	4.1 Coordination algorithm
	4.2 Optimization Problem

	5 Related Work
	6 Conclusion and Future Work

