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Abstract—Spectrum sensing is the basic step in cognitive radio
networks. Its accuracy directly affects spectrum utilization. In
this paper we propose a new method for blind cooperative
spectrum sensing using spatial information. We model our
sensing matrix as a graph, taking advantage of signal and spatial
correlation of antennas. We prove that the general settings of the
problem are hard to approximate. Taking spatial information
into account, we propose a new scheme to find white space
subregions. Cognitive radio users residing in the region may be
able to transmit, but must keep their transmission power to the
extent that no interference is caused to primary receivers out of
the region.

Index Terms—Cognitive Radio, Cooperative Spectrum Sensing,
Approximation Algorithm, Clique, Convex Hull

I. INTRODUCTION

The concept of the cognitive radio was conceived based
on the FCC Task Force report [1] in 2004 on the under-
utilization of the wireless radio environment. According to
the report primary users did not used their licensed spectrum
from 15 to 85% time. Therefore these silence ranges in time
and frequency can be exploited by unlicensed users. The only
point these users should keep in mind is not to cause any kind
of interference to primary users. The cognitive radio was first
defined by Joseph Mitola [2] as follows: A cognitive radio is
capable of reconfiguring its working parameters based on the
surrounding environment conditions.

As the definition offers the CR should have these two
capabilities [3]:
• Cognition: It is obvious that the CR must be able to sense

and measure the spectrum in order to adapt the working
parameters. Then the information gathered about the
working environment is used to calculate new working
parameters such as frequency, power, data rate and even
Direction-Of-Arrival (DOA).

• Reconfiguration: The CR should be able to set the new
parameters as working ones. So it should be able to
reconfigure them either in hardware or software.

The cognition cycle includes four steps [4]: spectrum sens-
ing, spectrum decision, spectrum sharing and mobility. During
the sensing step all the available spectrum is searched for
the presence of primary users and a spectrum map is drawn.
The map is used to decide the best available spectrum for the
secondary users based on the Quality-Of-Service requirements
in the spectrum decision step. Once the best spectrum is
selected, the secondary users can share the spectrum. The
sharing scheme should be fair to avoid malicious (selfish)

users. When a primary user shows up in the channel or the
channel characteristics degrade to the level unacceptable for
secondary users, a new channel should be selected. The spec-
trum mobility step deals with keeping a connection seamless.

The works by Cabric et al [6], Akyildiz et al [3]. and Haykin
[5] provide a summary of these classical techniques from the
cognitive network point of view. It is clear from these works,
that none can fully cope with all the requirements of the
cognitive radio networks.

In this work we propose a new method for blind (as no a
priori knowledge is needed) cooperative spectrum sensing that
is able to find subregions that do not receive primary signals
and are suitable for cognitive radio transmission that resides
inside the subregion. The method relies on the signal received
by multiple randomly distributed antennas and their spatial
correlation defined as their locality factor.

II. SOME ALGORITHMIC PRELIMINARIES

This section includes some algorithmic concepts that are
important for understanding the results in this paper. The
first concept, we are supposed to introduce is the concept of
approximation algorithms. Approximation algorithms are the
most important approach for solving NP-Complete problems.
As you know there is no polynomial time algorithm for NP-
Complete problems. The idea behind these kind of algorithms
is to lessen the degree of problem tightness and solve the
new problem with an algorithm in polynomial time which
guarantees the answer to be in an efficient distance from the
optimum answer. Our problem is a maximization problem. So
for simplicity, we define the concepts of this part in the context
of maximization problems.

DEFINITION 2.1: We call an algorithm A for a maximiza-
tion problem P an Approximation Algorithm if:
• Its solution is a feasible solution for our problem.
• there is a real number ε so that for every instance I of
P we have A(I) ≥ (1− ε).OPT (I). A(I) is the output
of the algorithm A on input I . OPT (I) is the optimal
solution for this input. We call the parameter 1 − ε, the
factor of the algorithm.

Approximation algorithms are important because they can
support an answer that is a good estimation of the optimal
answer. They can also be used as a heuristic for the local
search algorithms.

In this paper we need algorithmic results related to two
important NP-Complete problems:

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, ChinaCopyright © 2011 ICST 973-963-9799-97-4DOI 10.4108/crnet.2010.4



DEFINITION 2.2: In problem MAX-CLIQUE, we are
given a graph G and we want to find the maximum complete
subgraph of G called clique, means that we want to find a
subgraph of G in which every two vertices are connected via
an edge and also has the maximum number of vertices.

DEFINITION 2.3: In problem MIN-CLIQUE-
PARTITION we are given a graph G and the problem
is that of partitioning the vertex set of a given graph into a
minimum number of cliques.

For general graphs, we know that MAX-CLIQUE is inap-
proximable within factor n1−ε, for any ε > 0, unless P = NP .

Theorem 2.4: [10] For any ε > 0 there is no approxima-
tion algorithm with factor better than n1−ε for MAX-CLIQUE
problem.

There is a similar inapproximability result for MIN-
CLIQUE-PARTITION problem. For general graphs, MIN-
CLIQUE-PARTITION is equivalent to minimum graph col-
oring of the complement graph, which is known to be inap-
proximable within n1−ε, for any ε > 0, unless P=NP.

Theorem 2.5: [16] For any ε > 0 there is no approxima-
tion algorithm with factor better than n1−ε for MIN-CLIQUE-
PARTITION problem.

We will use these results to prove that the general setting of
our problem is very hard to deal and not approximable. After
considering our problem from the complexity view, we will
take spatial information into account and create a new model
in which some special kind of graph will be taken as the main
object. The following definition describes them:

DEFINITION 2.6: Unit Disk Graphs(UDG) are graphs in
which each vertex(a point in 2D space) is connected to all
vertices that reside in a disk with radius r around it. In this
paper we call r, the UDG threshold.

MAX-CLIQUE problem can be solved in polynomial time
in UDGs:

Theorem 2.7: [13] There is a polynomial time algorithm
solving MAX-CLIQUE problem in UDGs.

But MIN-CLIQUE-PARTITION still remains NP-Complete
in these kind of graphs [17]. Capolyleas et al [15] proved an
important property about the optimal answers of this problem:

Theorem 2.8: [15] Given a finite point set S in the plane,
there exists an optimal clique partition where the convex hulls
of the cliques are non-overlapping.

If you are not familiar with convex hull term you can refer
to following definition:

DEFINITION 2.9: The Convex Hull of a set S of points is
a convex polygon that every point of S resides in it or on the
perimeter of it.

There are many algorithms proposed for finding the convex
hull of a given set of points that operates in O(n.log(n)).
You can find some of them at [18]. The most famous one is
Graham Scan Algorithm.

The theorem 2.8 is important because it simplified devel-
oping algorithms for the problem by bounding the answer
domain. Pirwani et al in [11] proposed a PTAS for this
problem. PTAS is a kind of approximation algorithms with
dynamic factor and dynamic running time.

Figure 1. Non-overlapping minimum clique partitioning [12]

DEFINITION 2.10: A PTAS(Polynomial Time Approxi-
mation Algorithm) is an algorithm which takes an instance
of an optimization problem and a parameter ε > 0 and, in
polynomial time, produces a solution that is within a factor ε
of being optimal. For example, for an NP-Complete problem, a
PTAS would produce an answer with size at most (1+ε)OPT ,
with OPT being the size of the optimal solution.

Pirwani’s algorithm runs in nO( 1
ε4

) time. Dumitrescu et al
[12] introduced a new PTAS for MIN-CLIQUE-PARTITION
in UDGs with nO( 1

ε2
) running time.

Theorem 2.11: [12] There exists a PTAS for MCP(MAX-
CLIQUE-PARTITION) in unit disk graphs, which computes
an (1 + ε)-approximation in nO( 1

ε2
) time.

They also proposed a randomized quadratic-time algorithm
with approximation ratio 2.16 for this problem.

Theorem 2.12: [12] For any 0 < ε, δ < 1 there is an
algorithm for MCP in unit disk graphs, which computes a
solution at most 1+ 2√

3
+ ε times the optimal with probability

at least 1 − δ in O( 1
ε .ln

1
δ .n

2) time. Inparticular, a 181
84 -

approximate solution can becomputed with probability at least
1− δ in O(ln 1

δ .n
2) time.

All algorithms above search in the domain of the answers
that are congurous with the property stated in theorem [15].

III. PROBLEM FORMULATION

The basic problem of spectrum sensing is the detection of
a primary user in a noisy environment. It is a difficult task
especially with low SNRs due to fading and shadowing. The
sensing problem can be characterized as a hypothesis test
problem [8]:

yt =
{
n(t) H0
h(t)s(t) + n(t) H1

Where y(t) is the received signal, n(t) is the noise instance
in time t with variance , s(t) is the transmitted signal that is



Figure 2. Hidden Terminal Problem [3], [7]

auto-correlated,E{|s(t)|2} 6= 0, and h(t) is the channel gain
or attenuation. H0 and H1 are the noise and signal presence
hypotheses respectively. Classical techniques use the detected
energy as an indicator for signal presence in the channel. The
decision process is as follows [8]:

Decision =
{
E{|y(t)|2} ≤ VT H0
E{|y(t)|2} > VT H1

where VT is the variance of the noise. The energy often
estimated by the sum below which is an imprecise estimator
especially when a small number of samples are available [8]:

E{|y(t)|2} ≈ 1
N

N∑
k=1

|y(t)|2

Cooperative approaches for spectrum sensing use the infor-
mation gathered by all receivers to determine the presence of a
signal in a channel [4], [7]. This cooperation avoids the hidden
terminal problem, in which the cognitive radio transmitter is
unable to detect the primary transmitter due to shadowing
or fading, but its transmission causes interference to the
primary user transmission in the primary receiver. The scenario
is depicted in figure III. Since the interference happens in
receivers, it is possible to avid interference by primary receiver
detection [4]. This method has shown practical only for TV
receivers [9].

As it is obvious, cooperative spectrum sensing needs multi-
ple sensors distributed over a large area. Its accuracy depends
on the density of sensors over the area, since low density
results in highly uncorrelated data received by sensors. Along
with the density, information fusion technique used to com-
bine the multi-source information and the decision making
algorithm affects the performance of the scheme.

Consider a large area in which a primary user network is
installed. For a cognitive radio network to take advantage of
the white spaces throughout the primary user communication
and avoid any interference to primary users, it is vital to draw
a precise spectrum map.

The scenario depicted in III is as follows. Consider a
primary network with fixed base stations that communicate

Figure 3. Sensing Scenario [8]

occasionally in a licensed band along with spatially random
distributed spectrum sensing base stations of the cognitive
radio networks distributed in a large region. The goal is to
find the largest area in which no primary user transmission is
detected. We call this are the white space region or WSR for
short from now on. Then the cognitive radio users residing
in the WSR exploit the opportunity to transmit to their
neighboring cognitive radio users.

Assume that [8]:

• We have K cognitive radio sensing base stations spread
over the area randomly, but their precise spatial coordi-
nates are known. Suppose that these base stations are able
to communicate over a wired network and maintaining a
control network is not of

• They all are able to sense the same portion of the
spectrum.

We define S, the K ×N sensing matrix to be defined by N
recently sensed samples by K sensing base stations, where
yi(k) is the kth sensed sample by the ith antenna:

S =

 y1(1) y1(2) . . .
y2(1) y2(2) . . .

...
...

. . .


In the case of H0, only noise present, the inner product of
all rows will be an estimate of the noise autocorrelation
function. Since it is assumed that noise samples are mutually
uncorrelated, this value will be close to zero. We denote the
mth row of the matrix S by Sm we have:

Sm � Sn = SmS
T
n =

N∑
i=1

ym(i)× yn(i) ≈ Nσ2
noiseδ(m− n)

where σ2
noise is the noise variance.

In case of H1, primary transmission available, the inner
product of the rows will be proportional to the transmitted
signals autocorrelation. We assume constant channel gain
for the sensing period. As the noise is uncorrelated to the
transmitted signal we will have:



Sm � Sn =
∑N
i=1 ym(i)× yn(i)

=
N∑
i=1

((hn.s(i) +Nn(i))× (hm.s(i) +Nm(i)))

≈ hmhn ×N × E{|s(t)|2}(m 6= n)

The goal here is to find some of submatrixes of S, called
the Xsubmatrix, with all mutually uncorrelated rows and
successive columns:

DEFINITION 3.1: Suppose that we have a n × m matrix
with row set A = {r1, r2, ..., rn} and column set B =
{c1, c2, ..., cm}. Xsubmatrix is the triple (Φ, p, q) where Φ ⊆
A and p ≤ q is a submatrix formed by rows of the set Φ and
columns of the set {cp, ..., cq}.

The Xsubmatrix identifies the adjacent antennas that receive
no primary transmission. To form a WSR, we should take
spatial information into account.

This paper has two parts. In the first part we consider the
problem of finding the maximum XSubmatrix of matrix S.
We will show that this problem is NP-Hard. Moreover We
prove that this problem is also Hard to approximate. In the
next part we take spatial information of antennas into account
and propose a method for finding good WSRs.

IV. FINDING THE MAXIMUM XSUBMATRIX

Now, we have a model of the problem suitable for using
algorithmic techniques. A matrix with real entries, in which we
want to find a XSubmatrix with maximum number of entries.

In this section we will show that the general setting of the
problem is NP-Complete, means that there is no polynomial
algorithm for it unless P = NP . From now we call this
problem MXS(Maximum XSubmatrix). In the following
theorem we will prove this fact. In order to prove this theorem
we use the default approach. We must show that MXS is harder
than an NP-Complete problem. To achieve this we should
find an NP-Complete problem, A, reducible to MXS, means
that we can find a polynomial algorithm for A, if there is a
polynomial algorithm for MXS.

Theorem 4.1: The problem of finding the XSubmatrix wit
maximum number of entries is NP-Complete(MXS is NP-
Complete).

Proof: We select the MAX-CLIQUE(definition 2.2) prob-
lem for our reduction process. Suppose that we have a graph
G and we want to find the maximum clique of it. Suppose G
has n vertices v1, v2, ...., vn and m edges e1, e2, ..., em. We
construct a n×m matrix M from G. The entries of M will
be defined in the following way:

Mi,j =
{

1 if vi is adjacent to ej
0 otherwise

It is obvious that there are exactly two 1’s in each column
of M . Now consider the correlation of two rows of M . If the
vertices vi and vj are connected in G via an edge the dot
product of row i and row j of M will be 1 means that those
rows are uncorrelated. In the other direction if there is no edge

between vi and vj the dot product of those rows will be 0 and
means they are correlated.

With the discussion above every clique of G of size k
is related to k uncorrelated rows of M . So if we had a
polynomial algorithm for solving MXS, we could run it on
M constructed from G and return its output as the indices of
the vertices included in the maximum clique of G. This leads
to contradiction because there is no polynomial time algorithm
for MAX-CLIQUE problem unless P = NP .

It is trivial that we can reduce MXS problem to MAX-
CLIQUE problem and we can use the approximation algorithm
proposed for MAX-CLIQUE for our problem without violat-
ing their factor. We call this type of reduction, L-Reduction.
In the next two theorems we will prove that this problem is
more harder than default NP-Complete problems.

So we can use the same proof we have used for theorem
4.1 to prove the following theorem:

Theorem 4.2: For each ε < 1 there is no approximation
algorithm for MXS problem with factor n1−ε if P 6= NP .

Proof: Since there is no approximation algorithm for
MAX-CLIQUE problem with factor better than n1−ε (from
theorem 2.4) by using the same proof in theorem 4.1 this
theorem can be obtained.

In the next section we will change the model according to
cartesian coordinates of the antennas. We will see that finding
spatial constrained cliques is not as hard as the general setting
of the problem.

V. USING SPATIAL INFORMATION

In this section instead of looking to the whole matrix we
consider Xsubmatrix that corresponds to a small connected
convex region in which no primary transmission is detected.
We do so by adding spatial information to the edge assignment
policy. At first we will model the sensing matrix as a special
graph that includes spatial information and then we will show
the problem to be easier to solve in this new setting.

A. Graph Modeling

In this section we propose a method to find a WSR from the
matrix S modeled as a Unit Disk Graph (UDG). We model
the matrix with a graph G = (V,E) where each vertex in
V corresponds to a sensing base station. An edge is assigned
to a vertex pair if their sensed signals are uncorrelated (the
inner product of their corresponding rows yield a value near
zero). We define the threshold for their correlation value to
be the noise covariance. To take the spatial information into
account, we also define a distance threshold for vertex pairs to
receive an edge. By this means we form a partial UDG graph
in which not only the distance of two ends of an edge is below
a threshold, but also their correlation value is below the noise
variance.

We use this graph to find a WSR. A WSR is formed
of some locally distributed antennas that receive no primary
transmission. Transforming the problem to the graph world,
we should find the sufficiently large complete subgraphs.
This problem tends to be the MAX-CLIQUE(definition 2.2)



and MIN-CLIQUE-PARTITION(definition 2.3). This complete
subgraph represents a set of mutually uncorrelated antennas
that are locally distributed over a small subregion. Once the
clique is formed, we find the convex hull of the vertices.
We then inform the cognitive radio users residing inside the
convex hull to use the white space found, but limiting their
transmission to remain inside the borders of the convex hull.
For simplicity we assume that due to simple channel propa-
gation model [14] the probability of a base station receiving
primary transmission inside the convex hull is low (because
of small surface area of the convex hull). However any clique
containing a receiving base station could be detected by a
simple algorithm and removed.

B. Finding the Regions

In this new model we deal with a UDG in which we have
removed some of the edges. In this section we call this UDG,
G. In the new problem setting we still deal with finding
cliques. As we stated in the previous subsection each clique
in G has a good chance to be a clique in H too.

In the first approach we exploit the method proposed by
Clark et al [13] stated in theorem 2.7 to find the largest
subregion that receives no primary transmission that is a
maximum clique of G. There should not be any base station
receiving transmission inside the output clique, Therefore we
check all sensing base stations inside the convex hull formed
of clique vertices each time to see if they receive any primary
transmission. In this algorithm we increase the UDG threshold
at each step to find a clique with the maximum area. The
details of the algorithm are expressed in algorithm 1.

Algorithm 1 Find the Maximum Region(t : Time)
1: flag ← FALSE.
2: r ← minimum radius acceptable for a WSR.
3: result← no answer.
4: while flag = FLASE do
5: Form the UDG G by the threshold parameter r.
6: Find the maximum clique Q of G by the algorithm

suggested in theorem 2.7.
7: Find the convex hull C of the Q vertices.
8: Check each base station inside C to see if they receive

any primary transmission by the test proposed in section
III.

9: if check fails then
10: flag ← TRUE.
11: else
12: result← C.
13: end if
14: r ← r + δ
15: end while
16: return result.

In figure V-B you can see the mechanism of algorithm 1.
In this figure correlated and uncorrelated antennas are shown
by black and white circles respectively. In the first stage
algorithm starts by setting r = rmin and finds the maximum

C1

C2

Figure 4. C1 is the maximum region formed by r = rmin in algorithm
1. C2 is the maximum region in the second stage of algorithm 1 where
r = rmin + δ

Figure 5. Output of algorithm 2

clique convex hull in the UDG formed by this threshold. The
algorithm finishes in the second round where r has been set
to rmin + δ.

In the second approach we use the algorithms proposed
for MIN-CLIQUE-PARTITION problem for UDGs. In this
approach at first we find the partition of graph G into minimum
number of cliques. Find the convex hull of them, and check
their validity during the time as we do in the first approach. We
must emphasize that the output of algorithms in [12] follow the
conditions of the following theorem through which they tend
to have non-overlapping convex hulls. To have regions with
more area, after the regions have found, we increase the UDG
threshold for each of them independently while they remain
valid and then we extend the area in which they reside. You
can see the details of this approach in algorithm 2

In figure V-B we show the style of algorithm 2’s output.

VI. CONCLUSION

In this paper we have proposed a new scheme for co-
operative spectrum sensing. We have exploited the spatial



Algorithm 2 Find Non overlapping Regions(t : Time)
1: r ← minimum radius acceptable for a WSR.
2: result← ∅.
3: Form the UDG G by the threshold parameter r.
4: Find the nearly minimum clique partition (Q1, Q2,..., Qp)

of G by one of the algorithm in suggested in theorems
2.11 or 2.12.

5: Find the convex hull of the vertices of each Qi and call
it Ci.

6: for each Ci do
7: Check each base station inside Ci to see if they receive

any primary transmission by the test proposed in section
III.

8: if check fails then
9: Remove Ci from the convex hull list.

10: else
11: r′ ← r.
12: flag ← FALSE.
13: while flag = FALSE do
14: r′ ← r′ + δ.
15: Expand Qi with new UDG parameter r′.
16: Find the convex hull C ′ of Qi vertices.
17: Check the validity of the convex hull C ′.
18: if check fails then
19: flag ← FALSE.
20: else
21: Ci ← C ′.
22: end if
23: end while
24: result← result ∪ Ci
25: end if
26: end for
27: return result.

information of the antennas to find spectrum holes inside local
regions. We have modeled our problem setting as a special
kind of graphs called UDG. In the new setting our problem
tends to be much like MAX-CLIQUE and MIN-CLIQUE-
PARTITION problem that are NP-Hard in general, but are
solvable in polynomial time in our setting. Our method can
be enhanced by taking direction of the edges into account to
find the largest subregions possible.
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