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Abstract

This paper presents a novel concept of active radio spectrum profiling f or C ognitive R adio ( CR) networks 
using evolutionary hypernetworks. Spectrum profiling enables cognitive radio nodes to abstract and predict 
usable spectrum opportunities in pre-defined P rimary U sers ( PU) c hannels. T he P U c hannels a re actively 
monitored through spectrum sensing and the resulting binary time series are used for channel abstraction 
and prediction. An overlay spectrum sharing approach is assumed in this paper and the evolutionary 
hypernetworks are used for the realization of the radio spectrum profiling concept. The abstracted information 
not only facilitates the optimization of channel selection and mobility, but also improves the quality of service 
for the secondary user applications. This paper presents the main concepts, their application to CR ad hoc 
networks, and an analysis of its impact on the CR network performance.
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1. Introduction
Radio spectrum is a very valuable but scarce resource,
especially when considering the overall picture of the
existing wireless communication systems. However,
this resource has not been utilized in the most efficient
way which has resulted in spectrum scarcity and under-
utilization problems. The main cause for these prob-
lems is considered to be the fixed radio spectrum allo-
cation strategies employed by the spectrum allocation
authorities across the world. Realization of these prob-
lems have resulted in the formulation of opportunistic
and dynamic spectrum access concepts which are gener-
ally discussed in conjunction with the Cognitive Radio
(CR) networks. CR networks are assumed to be able
to identify and utilize the spectrum opportunities pro-
vided by the existing wireless networks, the so called
Primary User (PU) networks. In the existing literature,
the spectrum sensing is considered to be the Eyes and
Ears of a CR node through which it can facilitate the
two most important tasks of identify spectrum oppor-
tunities and avoiding interference with the PUs. These
tasks are generally considered to be interrelated as
quick and accurate spectrum sensing can facilitate both
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function of a CR node. However, these two tasks have
very different timing requirements which makes the use
of spectrum sensing results impractical for both these
tasks. Identifying spectrum holes requires the monitor-
ing of the spectrum for a sufficiently longer period of
time whereas interference avoidance with PUs should
be instantaneous requiring immediate reaction to a
sensing result. Spectrum sensing is also the enabler for
the physical and link layer protocols which have strin-
gent time constraints. In the traditional 802.11 family of
protocols for example, the basic channel access tasks are
in the scale of microseconds. If a similar functionality is
assumed of CR MAC protocols, the spectrum sensing
should be equally fast and accurate. We can summarize
that for avoiding interference with PUs, the reliability
and time-efficiency of spectrum sensing is very impor-
tant. However, for identifying spectrum opportunities
such primitive spectrum sensing results are not suffi-
cient. There needs to be an abstraction process that can
characterize spectrum holes from the primitive spec-
trum sensing results. Furthermore, the identified spec-
trum holes must be quantified to determine whether
they can fulfill the SU applications’ requirements. This
serves as the basis for the proposed Hypernetworks based
Active Radio Spectrum Profiling concept which aims to
characterize the spectrum according to the application
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requirements of the CR nodes. This concept is specially
important for CR ad hoc networks which heavily rely on
spectrum sensing and have no infrastructural support.
The contributions of this paper in this outlined context
can be summarized as follows:

• Introduction of a new active radio spectrum
profiling concept for PU channels characterization,

• Application of Evolutionary Hypernetworks algo-
rithm for the active radio spectrum profiling,

• Presentation of a new channel state prediction
algorithm based on hypernetworks that can
tolerate miss detection and false alarms of
spectrum sensing algorithms and

• Analysis of CR ad hoc network performance
with the new hypernetworks based active radio
spectrum profiling concept.

The rest of the paper is organized as follows. Section
2 addresses the related work on spectrum characteriza-
tion and channel prediction. An introduction to Hyper-
networks is given in Section 3 before the details of the
proposed evolutionary hypernetworks based spectrum
profiling in Section 4. Simulation results are provided
in Section 5 and the paper is concluded with a summary
and future work in Section 6.

2. Related Work
To the best of our knowledge, the proposed hypernet-
works based spectrum profiling concept is novel in the
CR networks context. However, a number of research
articles addressing channel prediction, channel recom-
mendation and secondary access can be considered as
related work since the hypernetworks based spectrum
profiling aims to achieve similar objectives. Prediction
techniques in CR networks have been applied for of PU
activity and channel behavior prediction. The authors
in [1] survey the main approaches applied in the lit-
erature for channel prediction in CR context. They
overview the main approaches and classify them based
on the prediction techniques used including Hidden
Markov Models (HMM), Multilayer Perceptron Neural
Networks, Bayesian Inference, Autoregressive Model,
and Moving Average based prediction. As the results of
channel prediction can be applied to the optimization
of different CR functions, no comparative analysis of
these techniques has been presented. The application
of HMM to predict the basic state transitions involved
in ON/OFF PU channel usage model can be found in
many articles. The authors in [2] present a binary time
series approach to spectrum prediction in CR networks.
They apply HMM to predict the next state(s) of the
channel based on the historic data. They essentially
predict the next values of spectrum sensing and relate

them to spectrum holes. The authors in [3] also apply
HMM based prediction technique for multi-step-ahead
prediction. They aim to avoid interference with PUs
based on the results of the prediction. They measure
the level of interference caused by CR network and
propose to keep it to a predefined level. Similar tech-
nique is used by authors in [4] to evaluate the radio
resource availability in 802.11 networks scenario and
apply multi-step-ahead prediction derived through an
auto-regression (AR) Model. They apply their technique
to 802.11 network data traffic by measuring the radio
resource availability through Network Allocation Vec-
tor (NAV). HMM based approach has also been used
by authors in [5] to predict exponentially distributed
PU activity over radio spectrum. For most of the HMM
based approaches, the activities of the channel are
modeled under Markovian assumptions. The authors in
[6] however, present temporal spectrum sharing scheme
based on PU activity prediction that considers bursty
PU traffic whose characteristics are not captured effec-
tively by Markovian process. They propose to adapt the
SU transmission power levels that can be adapted to any
source traffic model of PUs. The benefits of PU activ-
ity prediction have been shown to optimize different
functions of a CR node specifically those related to the
spectrum management and dynamic spectrum access.
The authors in [7] show the application of fast discovery
of spectrum opportunity in multichannel context to CR
performance optimization. They propose an adaptive
sensing period optimization algorithm together with
an optimal channel-sequencing algorithm. This allows
a CR node to find spectrum opportunities from a
number of available channels efficiently without loos-
ing significant spectrum opportunities provided by the
considered radio spectrum. They also show that the
channel discovery delay can be reduced to less than
half a second with an optimized channel sensing and
sequencing approach. The same prediction algorithm
has been applied for proactive channel access in [8]
in order to vacate a channel before the PU arrives.
They essentially apply the results from [7] to a different
optimization objective. The information about chan-
nels derived through spectrum sensing has also been
considered for CR optimization outside the context of
channel prediction. The authors in [9] present a channel
recommendation framework in which distributed CR
nodes complement each other’s channel access by rec-
ommending a successfully used channel. They derive
the inspiration from customer reviews system associ-
ated with major online retail systems. The same idea has
been optimized in [10] where the authors formulate the
problem as an average reward based Markov decision
process. They compare the performance of a dynamic
spectrum access system using the adaptive recommen-
dation system with a static channel recommendation
system and show a performance benefit of upto 15%.
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The existing literature on channel characterization
and prediction generally assumes the spectrum sensing
to be 100 percent accurate. This assumption is made
in order to have a realistic representation of PUs
communication in a binary time series. However, it is
well known that even the most sophisticated spectrum
sensing algorithms are prone to miss-detections and
false alarms. This renders the algorithms that predict
next state(s) of binary time series prone to lower
performance when considered in a realistic CR network
scenario. Another assumption that is explicitly made or
implied in literature is that zero bits in the binary time
series represent spectrum holes for secondary access.
Based on the discussion in Section 1, this assumption
does not hold true in most realistic scenarios. If the
spectrum sensing results are collected in the scale of
microseconds, a single zero bit loses its significance
for overall spectrum hole representation. However, the
same bit will have a very high importance for the
channel selection and interference prevention with PUs.
The proposed active spectrum profiling concept does
not rely on such assumptions and instead, applies an
abstraction process that is mostly independent of the
accuracy and time scale of spectrum sensing results.

3. Hypernetworks
Hypernetworks is a relatively new research domain
and a candidate architecture for cognitive learning
and memory [11]. It is a graphical model that can
abstract both low and high levels of interactions among
elements of a dataset. Hypernetworks are an extension
of the hypergraphs. A hypergraph is an undirected
graph G, the edges of which can connect any number
of non-null vertices. Formally, a hypergraph G = {X, E},
where X = {X1, X2, ...Xn} is the set of elements of the
dataset, E = {E1, E2, ...Em} is the set of edges and Ei =
{xi1 , xi2 , ..., xik } represents the elements of the edge
Ei . The edges Ei of a hypergraph are referred to as
Hyperedges. Each hyperedge which is synonymous to a
non-empty set, encapsulates some primitive relation in
the dataset X. The number of elements k encapsulated
in a hyperedge representing its cardinality, is referred
to as a k-hyperedge. Figure 1-A shows an example
hypergraph having five elements (X1-X5) and three
hyperedges (E1-E3). In hypergraphs, each hyperedge
encapsulate an association in the primitive dataset and
is unique.

Hypernetworks are a generalization of the hyper-
graphs in which we assign a particular weight to the
hyperedges. Graphically, this weight is represented by
the width of the hyperedges in the hypernetworks. The
more stronger a relation is in the dataset, the larger
the width of the hyperedge. Formally, a hypernetwork
is a triple H = (X, E,W ) where X represent the set of
vertices or elements of the data set, E represents the

X1

X5X4

X3X2

E1

E3

E2

A

X1

X5X4

X3X2

E1

E3

E2

B

Figure 1. Hypergraph (A) and Hypernetwork (B) with five
vertices and three edges

set of hyperedges, and W represents the set of weights
associated with each hyperedge showing its strength
in the dataset. The cardinality (number of enclosed
elements) of a hyperedge is referred to as the order
of that hyperedge. Figure 1-B shows a hypernetwork
that is synonymous to the hypergraph in figure 1-A.
The elements of a hyperedge are generally ordered.
A hypernetwork can also be represented through a
corresponding incidence matrix. The incidence matrix
corresponding to the hypernetwork in Figure 1-B is
given below.


w X1 X2 X3 X4 X5

E1 10 1 1
E2 2 1 1 1
E3 5 1 1


The first column w in the incidence matrix represents
the associated weight of the hyperedges in a hypernet-
work. This weight can be in any appropriate form of a
numerical representation. The exact value of the weight
assigned to a particular hyperedge is determined by
the weight function used in the hypernetwork devel-
opment and learning process. In general, the weight of
a hyperedge is increased proportional to the order of
the hyperedge. Hyperedges with a smaller order tend to
have a higher weight as they represent information that
is very general/redundant in the actual dataset.

An important aspect of the hypernetworks is their
complexity which can increase very rapidly depending
upon the base of the dataset elements and the minimum
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and maximum order of the hyperedges. From a
given dataset D = {x(n)}Nn=1 of N example patterns, the
hypernetwork represents the probability of generating
the dataset D as:

P (D |W ) =
N∏
n=1

P (x(n)|W ) (1)

The W term in Equation 1 represents both the weight
of the hyperedge and its structure. With a mixed
order of the hyperedges, both low and high level
features of the dataset can be encapsulated into the
memory of the hypernetwork. The varying order of
the hyperedges allows hypernetworks to keep a large

number of random memory fragments x(n)
i1
x

(n)
i2
...x

(n)
ik

to
estimate the probability of any particular fragment. The
probability of an individual fragment or pattern can be
given as [11]:

(2)

P (x(n)|W ) =
1

Z(W )
exp

 K∑
k=1

1
C(k)

×

∑
i1,i2,...ik

w
(k)
i1,i2,...ik

x
(n)
i1
x

(n)
i2
...x

(n)
ik


where Z(W ) is a normalizing term and C(k) is
the number of possible hyperedges of order k. The
number of possible patterns or fragments grows
exponentially and therefore an evolutionary approach
of selection, replacement, and reinforcement towards
finding an appropriate ensemble of hyperedges can
be applied to collect information of complex datasets.
Readers are encouraged to follow [11] for a deeper
understanding of the hypernetworks based memory
and cognition concept. Related work on hypernetworks
have demonstrated their ability to predict future states
from previous observations as well as its ability to
mimic artificial intelligence [12–14]. Hypernetworks
have also been compared to other approaches of
learning and prediction and the results have shown the
hypernetworks to be comparable in overall achievable
results [15].

4. Hypernetworks based Spectrum Profiling
We coin the term Radio Spectrum Profiling as the
process of abstracting usable channel information
from primitive spectrum sensing that is performed
by all the CR nodes in a network. This abstracted
information is then used to optimize the performance
of the CR nodes in terms of their channel access and
handovers. Moreover, the spectrum profiling enables
the CR network to develop a distributed network
support architecture in which all the nodes maintain
information about their local radio environment and

can share it with other peers [16]. Hypernetworks are
well suited to the realization of the radio spectrum
profiling concept introduced in this paper for the CR
networks. We apply the hypernetworks based algorithm
for the abstraction and prediction of spectrum holes
from primitive spectrum sensing data which are given
in the form of binary time series. Hypernetworks can
achieve these objectives by keeping many fragments
of the PU channel activity patterns in the hyperedges
of different order which is determined based on the
requirements of secondary user applications. Each
hyperedge encapsulates a pattern of interest in the
dataset for a specific secondary user application
requirements. For example a hyperedge H1 can
encapsulate the pattern of interest for an application
App1. The encapsulated pattern consists of two parts
i.e. the input part and the predicted output part. The
total elements of the hyperedge H1 = input + output.
Encapsulating the inputs and outputs within the same
hyperedge makes the prediction straightforward once
the input pattern is matched. Over the course of the
hypernetwork learning and evolution, the hyperedges
are either reinforced or discarded based on their
relevance in the original dataset. The underlying
assumption for all prediction based CR research is
that the events observed through spectrum sensing
are repeated probabilistically and therefore intelligent
decisions can be made based on their prediction. This
assumption holds true for most of the activities of
PUs operating in different frequency bands. However,
these patterns have different time-scales over which
they occur which can be captured by a varying order
of the hyperedges. In general, the higher the correlation
between training and testing dataset, the better the
performance of the prediction algorithms in terms of
accuracy. We shall now explain the main steps of the
hypernetworks based spectrum profiling concept.

4.1. Hypernetwork Initialization
We apply the hypernetworks based learning approach
to spectrum sensing results that can be collected over
time by each CR node in the network. For simplicity,
we shall explain the hypernetworks based spectrum
profiling for a single CR node. The hypernetwork
initialization/creation process is depicted in Fig. 2. The
primitive input to the hypernetworks based spectrum
profiling is the output of the spectrum sensing module
in a CR node. We assume that all CR nodes are capable
of detecting the PU activity with sufficient accuracy
and timing constraints. From the basic binary time
series of the spectrum sensing data, with an acceptable
level of miss-detection and false-alarm errors, the
hypernetwork first abstracts the patterns of interest
for the SU applications. A pattern in essence is a
variable sequence of bits (2 or more) in the provided
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P1 P2 P3 P4 P5

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 .  .  .  .  .  .  .  .  .

E1
E2

E4E3

Hyperedge of order 2

Primitive pattern of
interest in the data for 

SU application

Width of an edge shows
its strength in data

Figure 2. Hypernetwork with 4 hyperedges and 5 patterns

binary time-series data. These patterns are selected
based on the minimum requirements of the secondary
user applications. The requirements of applications are
diverse and can be represented in many forms such as
in terms of reliability, throughput, security and etc. In
this paper, these requirements are represented by the
amount of channel access time the SU applications need
to send their data over an opportunistically accessed
PU channel. This approach is valid as many application
require different throughput from the channel to
function properly e.g. an email application and a high
definition video stream have throughput requirements
that are poles apart. This implies that the extracted
patterns from the dataset represent variable lengths
of spectrum holes and PU transmissions. Therefore, in
our CR context, the patterns are essentially variable-
length sequences of zeros implying the durations of no
PU channel activity and ones implying busy channel
states. The use of the variable length patterns enables
the hypernetworks to be able to abstract and predict
different durations of the PU activities on a channel.

The fundamental reason for deriving the patterns
from the binary time series is to ensure that the hyper-
networks are trained on the datasets that are usable
for opportunistic spectrum access. Assuming that miss-
detections and false-alarms are not sequentially redun-
dant, each pattern can neglect some incorrect bits in the
overall pattern by replacement. In Fig. 2 for example,
pattern P1 can ignore the existence of the bit ’1’ in the
sequence and treat the whole pattern as a sequence of
zeros. Ignoring the existence of such sparse erroneous
bits has to be based on a clear understanding of how the
PU activity is represented in the binary time series. If
the spectrum sensing is assumed to be fast enough to
detect the smallest levels of PU channels access, then
it is easier to differentiate such erroneous bits from the
real PU activity patterns in the dataset. Another reason
to ignore the significance of the individual bits in the
binary time series is that these bits are not the actual
representation of the spectrum holes on a PU channel.
In order to avoid all possible interference instances with
the PU network, the spectrum sensing has to work on a
very minute time-scale in order to detect the smallest
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Figure 3. Throughput achieved over 2 GSM channels with
varying time-scales of PU activity

levels of the PU channel access. With such a reduced
time-scale of the spectrum sensing, the usefulness of
detected idle instances of the PU channel also reduces.
This aspect is highlighted in Fig. 3 which shows the
time required to opportunistically transmit 1MB of data
over two GSM channels having fixed PU duty cycles of
70 and 40 percent respectively. The x-axis shows the
same duty cycle mapped on to different time scales.
When the PUs are off (point 0 on x-axis), the time
required to transmit the 1MB data is approximately
4.6 seconds, an indication of the maximum throughput
achievable on a 200Khz GSM channel in the simulated
network. When the PUs are active and operate at vary-
ing time-scales, the time required to send the same
data increases considerably, an indication of reduced
throughput. When the PU provides spectrum access
opportunity in the order of a few milliseconds, the time
required to send the data increases to infinity which is
an indication of zero throughput as no secondary user
connection can be established in such a short channel
idle phase. From this result it is clear that a spectrum
opportunity provided in the scale of microseconds is
not suitable for any secondary application. Although
the result from figure 3 it is a self-evident observation
for such durations of spectrum holes, it signifies that
the channel differentiation and prediction should not be
based directly on the spectrum sensing results and jus-
tifies the utilization of the proposed patterns which aim
to abstract application-specific spectrum opportunities
from these sensing results.

An opposite argument to this proposal could be
that the spectrum sensing duration can be increased
to a point at which the binary time series becomes
representative of the spectrum opportunities but this
creates two problems. Firstly, the time scale at which
the physical and link layer protocols operate (micro-
seconds in existing networks) requires the spectrum
sensing to be equally fast. Otherwise, the CR nodes
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cannot avoid interference with the PU networks.
Secondly, the decision of accessing a spectrum hole
must be taken at the very beginning of that opportunity
and not after a long observation. In PU channels with
heavy traffic, the spectrum opportunities for the CR
nodes may require very quick access and mobility
in order to avoid interference. The transformation of
the binary time series into a sequence of patterns
for the hypernetworks avoids both these problems
without compromising on the interference constraints.
The creation of the patterns also serve to smooth out
the effects of miss-detection and false alarms which
may be caused by the deficiencies of the spectrum
sensing mechanism itself or because of the temporal
variations of the RF spectrum. Another benefit of the
extraction of the patterns from the binary time series is
the reduction of the complexity of the hypernetworks.
As stated before, the complexity of the hypernetworks
can grow exponentially and working on a reduced set
of patterns keeps this complexity under manageable
bounds. This in theory, should also reduce the hardware
and energy requirements as well. Furthermore, as
different applications require different channel access
guarantees, the patterns derived from the binary time
series can be a representation of these requirements
and can classify the PU channels based on these
requirements.

The binary time series is transformed into a sequence
of application-specific patterns which serve as the basic
input to the hypernetworks. From this sequence of
patterns, the hypernetwork randomly creates hyper-
edges of the specified order. The hypernetwork in Fig.
2 for example, has four hyperedges formed from five
basic patterns. The total number of possible hyper-
edges in a hypernetwork depends upon the specified
minimum and maximum order of the hyperedges and
and this number grows exponentially. The maximum
number of possible hyperedges are therefore equal to∑max
O=min(T p)O where Tp represents the total number

of the primitive patterns abstracted from the dataset
and O represents the order of hyperedge. The patterns
encapsulated inside a hyperedge are ordered based on
their abstraction from the spectrum sensing data. In
other words, each hyperedge encapsulates a sequence
of observations on a predefined channel. The hyperedge
creation process is undertaken using random sampling
of the pattern sequences. The parameters that control
the complexity of the hypernetworks are the min and
max order of the hyperedges. If min = max then a fix
order hypernetwork is created where each hyperedge
encapsulates the same number of sequential patterns. If
min 6= max then a mixed order hypernetwork is created
where small order hyperedges encapsulate small mem-
ory fragments and higher order hyperedges encapsulate
larger, more specific channel activity information. The
initial weight of a hyperedge is set to the same value i.e.

1, unless otherwise specified at the time of initializa-
tion. Explicit initial weights can be assigned to certain
types of hyperedges in order to emphasize the impor-
tance of that particular relationship in the dataset.
For example, a hyperedge encapsulating the patterns
associated with PU connection and transmission phases
can be assigned a higher weight in the hypernetwork.
The process of the creation of a hypernetwork from a
series of abstracted patterns is given in the pseudo-code
in Algorithm 1.

From the given pattern series D, generate a
hypernetwork H with vertices, edges and weights
V , E,W using specified order Kmin − Kmax, and the
number of hyperedges I per history window h;

H = (V, E, W) = null;
Initialize N as sizeOf(D);
Initialize I as the sampling rate;

for i = 0; i < N; i++ do
/* select the history window from the dataset */
h← D[i...sizeOf (h)];
/* select the last element as current tag */
tag = lastElement(h);

for (j = 1; j<I; j++) do
E′ ← null;
/* Select an order for E′ based on the
selected distribution */ ;
O = distribute(Kmin...Kmax);

for k = 0; k<O; k++ do
v′ ← h[random(1, sizeof (h − 1))];
E′ ← E′

⋃
v′ ;

end
/* sort the elements in order */
E′ ← sort(E′);
/* Assign the tag */
E′ ← E′

⋃
tag;

/* Assign the initial weight to the newly
created hyperedge */
W ← W ′ ;
/* Update the E and W sets with new
information */
E ← E

⋃
E′ ;

W ← W
⋃
W ′ ;

end
end
H ← {V , E,W };

Algorithm 1: Hypernetwork creation process

4.2. Hypernetworks Learning Process
The hypernetwork learning is an iterative process
through which it evolves and assigns different weights
to the abstracted hyperedges. This process implies
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that the assigned weights are a representation of the
relative frequency of the patterns in the dataset. The
number of iterations is also a parameter of the learning
algorithm and can be set at the beginning of the
learning process. In the classical hypernetworks, the
set of randomly sampled hyperedges remain alive
throughout the lifetime of the learning process. An
evolutionary approach is more suited to more complex
hypernetworks where the addition of new hyperedges
as well as the removal of the weak/old hyperedges is
allowed. In our approach, on every iteration j, a new
hyperedge E′ of order k ∈ {min,max} is created from
the patterns in the dataset. Since the new hyperedge is
created from the same patterns pool, the encapsulated
elements can be matched to the previously sampled
hyperedges. The weight of the matched hyperedge wE
is updated by a reward function for the next iteration
j + 1:

w
j+1
E = w

j
E + δ(E, E

′
) (3)

where δ is a reward function. We utilize the same
approach for the reward function as is used in [15]
which bases the reward on the order of a hyperedge.
The reward function bases its weight adjustment on
the last element of the hyperedge which we refer to as
the tag tE of a hyperedge. The tag of the hyperedge is
important as it is used for the prediction of the channel
patterns when given an input from the spectrum
sensing module. We consider the last pattern of the
hyperedge as the tag of the hyperedge but in principle,
the tag can be a combination of more that a single
pattern. If E matches E′ along with their respective tags,
the reward is equal to the order of E which is added to
the previous weight of the hyperedge. If the tags do not
match, a penalty is imposed instead which is equal to
the negative of the order of E. Formally,

δ(E, E′)

=


k, ∀i ∈ [1, k′],∃j ∈ [1, k] : e

′
i = ej ∧ tE = t

′
E

−k, ∀i ∈ [1, k′],∃j ∈ [1, k] : e
′
i = ej ∧ tE 6= t

′
E

0, otherwise

(4)

where E is a k order hyperedge with tag tE ,
and E′ is the new hyperedge with tag t′E . In the
classical hypernetworks which do not utilize the
evolutionary functions of replacement and weakening
of the hyperedges, the number of randomly sampled
hyperedges is usually kept very high in order to
cover most of the search space from the dataset. The
initial abstraction of binary time series into patterns of
interest allows to keep this complexity under bounds.
Furthermore, we employ the Data-driven Evolutionary
Training approach [15] to optimize the learning process.
When a newly generated hyperedge from the pattern
pool is not matched with any of the existing sampled

hyperedges, one of the smallest weight hyperedge
is replaced with the newly created hyperedge from
the dataset. This allows for a continuous exploration
of search space while keeping the hypernetwork
information relevant to desired objectives. If the newly
added information is relevant, its weight will increase
in future iterations otherwise it will be discarded
through the evolutionary process. To summarize,
hyperedges encapsulate different levels of secondary
channel access opportunities through different ordered
hyperedges. During the evolutionary learning process,
the relevant information in the hyperedges is reinforced
that can serve to characterize channels and optimize CR
node spectrum management functions.

4.3. Hypernetworks based Prediction

Once the hypernetwork is trained over the patterns
pool, the desired information is reflected in the
developed structure of the hypernetwork and the
forecasting process is very straightforward. The most
frequent patterns in the dataset are reflected in the
weights of their respective hyperedges. The patterns
that are least frequent in the dataset have very weak
hyperedges i.e. with a small weight. The structure of the
hypernetwork also represents the different parameters
set for the initialization and training i.e. min −max
order of the hyperedges, evolution and iterations. When
a new pattern extracted from spectrum sensing data is
given as input to the trained hypernetwork it is first
matched to the candidate hyperedges.

During the CR node operation, it actively monitors
the current state of a channel and classifies it into
the predefined patterns. These patterns are given as
real-time input to the trained hypernetwork. The input
pattern is always a subset of the patterns encapsulated
inside the hyperedges of the hypernetwork. The
hypernetwork structure can forecast the probability
of next pattern in the dataset based on the strength
of the matched hyperedge. For example, the real-
time patterns may match five hyperedges in the
hypernetwork. If there is a different tag associated
with these matched hyperedges, the weights of
these matched hyperedges is considered for the final
prediction. The correct prediction of a future pattern
is of higher significance to a CR application than the
prediction of spectrum sensing results considered in
many related literature. If the tag of the hyperedge is
a representation of the absence of PU for a specific time
frame, the channel access can be initialized by a CR
transmitter. The drawback of the current hypernetwork
structure however, is that it can only abstract one
channel at a time, unless multiple channels are sensed
simultaneously and their state represented with a single
bit. This may be possible through a wide-band spectrum
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Figure 4. Simulated network scenario

sensor which can classify the channels’ states from a
single sensing iteration.

5. Simulation Analysis
In order to analyze the effectiveness of the hypernet-
works based spectrum profiling in a CR networks, we
carried out system level simulations using crSimula-
tor platform [17]. This platform provides an detailed
architecture of the CR nodes as well as PU nodes with
adaptable activity patterns and duty cycles. As the
CR ad hoc networks have to rely on spectrum sensing
more than infrastructure-based networks, we simulated
ad hoc connections under the influence of different
primary users. Since a multi-hop CR ad hoc network
can be considered as an extension of many single-hop
links, we analyze the effect of the hypernetwork based
spectrum profiling on a single multi-channel CR link.
The evaluated network scenario is presented in Fig.
4 where two CR nodes attempt to use two PU chan-
nels (GSM specification) opportunistically. It should be
noted however, that the selection of the GSM channels
specification for the evaluation over any other spectrum
band is of little significance for the proposed spectrum
profiling. The important aspect is the representation of
accurate channel state based on the PU activity profiles
and the existence of secondary access opportunities.
Representation of realistic PU activity profiles is an
active area of research in itself as it is very difficult
to have a generalized model for different locations and
spectrum bands. From the numerous spectrum mea-
surement campaigns, it has been observed that the PU
activity can scale from completely free channels such as
in the TV broadcast bands in remote locations, to 100%
utilization of the spectrum such as in UMTS downlink
or WiFi bands depending upon time and location [18].
In literature, two extremes can be found for the PU
activity modeling which are using a fixed pattern with
predefined duty cycles and a fully stochastic behavior
with different random distributions. The actual PU
activity distribution in any particular location can be

Table 1. Hypernetwork parameter settings

Parameter Value

Order min 3

Order max 6

Patterns max 3

Reward function δ

PU Activity Variable Duty Cycle (30-75%)

Dataset size 100

Table 2. Successful forecasts

Setup Avg Order Success Rate

EHN(3,6)δ 4.4 74%

EHN(3,5)δ 4 71%

EHN(3,4)δ 3.4 71%

EHN(3,3)δ 3 68%

assumed to lie somewhere in the middle of these two
extremes. In order to evaluate the performance of the
hypernetworks based spectrum profiling, we employ
the binary (ON/OFF) model for PU activity with time
varying duty-cycles (30 to 70%) during the course of
simulation time [19].

5.1. Successful forecasts
Table 1 shows the settings used for the formation
and the training of the hypernetworks. The spectrum
sensing results are abstracted into three distinct
patterns based on the requirements of two different
secondary user applications. The first two patterns
abstract two distinct spectrum access opportunities
in time-domain while the third pattern represents a
busy channel state. With these three basic patterns,
any binary time series data of spectrum sensing can
be abstracted and fed into a hypernetwork structure
representing different sequences of channel busy and
idle states. This process essentially transforms the
binary data into time series of the three primitive
patterns. The association among these patterns is
learned by the hypernetwork through the iterative
evolution process described in the previous section.
Table 2 gives the results of the forecasting process.
The notation EHN (3, 6)δ denotes an evolutionary
hypernetwork with min −max order of 3-6 of the
hyperedges and a reward function of δ. The success
rates shown for the different order hypernetworks are
for the test cases where similarity between training
patterns and and the test patterns was upto 60% only.
If certain patterns of activity on PU channels repeat
to a higher degree, the success rates of hypernetworks
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Figure 5. Percentage of spectrum opportunities on two PU
channels and their opportunistic usage

also increase proportionally. The success rates achieved
through hypernetworks based channel state forecasting
are significant and can potentially be optimized
further by using more sophisticated approaches to the
hypernetwork training and evolution process.

5.2. Channels characterization

The hypernetworks based spectrum profiling can
characterize the available channels based on the
application requirements. To test this, a time variant
duty cycle between 60 to 70% was applied to the
network scenario of Fig. 4 where each PU (PU1,
PU2 in Fig. 4) followed its independent time-scale of
transmission. In such a scenario, without spectrum
profiling, the CR nodes will attempt to access both
PU channels with equal probability and random
access. With hypernetworks based spectrum profiling
however, the CR nodes check for the probability of
the next pattern in the channel and try to access
that channel which has a predicted pattern of interest
in the forecast. This effect is shown in Fig. 5 which
shows the distribution of spectrum opportunities
during the simulation on both PU channels and their
utilization by CR nodes. The hypernetworks based
profiling enables CR nodes to access the suitable
channel (CH2) more frequently. This result shows
that CR network performance can be optimized by
differentiating among channels that generally look
to provide similar spectrum access opportunities.
The performance benefit increase even more when
there is a clear difference between the channels as
shown in Fig. 6. This performance improvement can
also be seen in the number of channel handovers
performed by CR network during the simulation
and the achieved throughput as shown in Fig. 7.
For the analysis of the impact on handovers, we
assumed that the channel switching does not incur
considerable time overhead. In real scenarios however,
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Figure 6. Secondary channel access with clear differentiation
between channels
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Figure 7. Achieved throughput and performed handovers

performing spectrum handovers will require some pre-
agreement, about back-up channels through control
message exchange, or through certain policies which
may incur considerable time costs. Figure 8 shows the
impact of the CR transmission on the PU transmission
in terms of packet collisions per MB of data transmitted
over the CR link. In our simulated network, a packet
collision occurs whenever the CR nodes transmit a data
packet simultaneously to the simulated PU nodes. This
may happen when the PU nodes start transmission
while the CR nodes were utilizing a spectrum hole
on the licensed channel. It should be pointed out
here, that the probability of creating zero interference
with the PU nodes may be impossible for the CR
network which utilizes the spectrum holes in an overlay
manner. No matter how fast is the spectrum sensing
of the CR nodes, it cannot guarantee that the PUs
will not be switching to transmit state during the
accessing of the spectrum holes. For the analysis of the
impact of the spectrum profiling on the interference
with PU nodes, we compared the hypernetworks based
profiling with the channel recommendation scheme
presented in [10] and a random channel access scheme.
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Figure 8. Collision instances with PU transmission

In the channel recommendation scheme, the CR nodes
prioritizes the channel for access that was successfully
used for the previous transmission. The random access
scheme utilizes a uniform random distribution for the
selection of the PU channel. In all three approaches,
a reactive spectrum mobility approach was used for
vacating a channel in response to the PU appearance.
As can be seen in figure 8, the hypernetworks based
spectrum profiling reduces the number of collision
instances considerably when compared to the other two
approaches. We acknowledge that the representation of
the impact on the interference levels through packet
collisions is not very representative and should be
shown through SNR values. This shortcoming however
does not invalidate the result shown in figure 8 as we
expect a similar level of improvement when simulated
on a signal level simulator.

6. Conclusion and Future Work
In this paper we presented a novel radio spectrum
profiling framework that is based on the evolutionary
hypernetworks. The hypernetworks can effectively
capture and abstract the patterns of interest from
the primitive spectrum sensing data and enable the
characterization of the the available PU channels
based on secondary users’ application requirements
which are represented through different ordered
hyperedges. It was shown that spectrum holes can be
identified from primitive binary time series of spectrum
sensing results and utilized for differentiating among
the available channels for spectrum management.
In contrast to other channel prediction techniques
e.g. those based on Hidden Markov Models, the
hypernetworks do not require the spectrum sensing
data to be 100 percent accurate and can reliably forecast
the future channel states. Hypernetworks are suited
to identifying spectrum opportunities for different
types of applications. The implicit data smoothing
through formation of patterns in the primitive sensing

data also serves to mitigate the effect of minor
channel fluctuations in RF environment. Currently,
a hypernetwork learns from a single dataset which
implies that only one channel/band can be abstracted
and multiple instances are required for multiple
channels. A future extension this proposal could be
to analyze a cross-channel pattern creation process
for a single hypernetwork especially for adjacent
frequency channels. This paper provided the analysis
of hypernetworks for a single link CR network where
the environment was similar for both the transmitter
and the receiver nodes. However, in a distributed ad hoc
network, disagreements about channel states among
network peers will happen because one node may be
affected by PU more than the other. This problem can
be addressed through a consensus approach and is the
subject of further investigations in future.
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