
EAI Endorsed Transactions
on Cognitive Communications

Switching Brains: Cloud-based Intelligent Resources
Management for the Internet of Cognitive Things
R. Francisco1 and A.M. Arsenio2,*

1YDreams Robotics and IST, Edificio A Moagem - Cidade do Engenho e da Artes, Largo da Estação, 6230-311 Fundão,
Portugal
2YDreams Robotics and Universidade da Beira Interior, Edificio A Moagem - Cidade do Engenho e da Artes, Largo da
Estação, 6230-311 Fundão, Portugal

Abstract

Cognitive technologies can bring important benefits to our everyday life, enabling connected devices to do tasks that in the
past only humans could do, leading to the Cognitive Internet of Things. Wireless Sensor and Actuator Networks (WSAN)
are often employed for communication between Internet objects. However, WSAN face some problems, namely sensors’
energy and CPU load consumption, which are common to other networked devices, such as mobile devices or robotic
platforms. Additionally, cognitive functionalities often require large processing power, for running machine learning
algorithms, computer vision processing, or behavioral and emotional architectures. Cloud massive storage capacity, large
processing speeds and elasticity are appropriate to address these problems. This paper proposes a middleware that transfers
flows of execution between devices and the cloud for computationally demanding applications (such as those integrating a
robotic brain), to efficiently manage devices’ resources.

Keywords: Internet of Things, Finite State Machines, Resource Optimization, Wireless Sensor and Actuator Networks,
Cloud Computing, Middleware.

Received on 15 December 2014, accepted on 9 March 2015, published on 28 May 2015

Copyright © 2015 A.M. Arsenio and R. Francisco, licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.
doi: 10.4108/cogcom.1.2.e4

1. Introduction

Internet changed the way we communicate. Currently,
there is an explosive growth on the number of
objects connected to the Internet (overpassing by
large the number of connected people), giving birth to
the Internet of Things (IoT), which refers to a
multitude of uniquely identifiable objects (things)
connected through the Internet [1]. New paradigms
for the Internet of Things are crucial for migrating from
nowadays sensor networks into networks of intelligent
sensors enabled with actuation mechanisms and
cognitive skills. Such future networks will consist of
the ”Cognitive Internet of Things” (CIoT). This
paradigm derives from the need to enable

commonplace objects with the ability to comprehend their
surroundings and to make decisions autonomously [2].

It is expect that in a few years our lives will become
more dependent on internet objects connected by Wireless
Sensor and Actuator Networks (WSAN) in areas such as
environmental, medical, transportation, entertainment and
city management. This WSAN consists of a set of nodes
(sensors and actuators) that cooperate among them to
achieve the goal of collecting data and make some
decisions. Nowadays, sensor networks are becoming a
reality, especially for remote monitoring of events in
fields such as healthcare, military, forest integrity or
prediction of seismic activity in volcanoes. Especially due
to cost and energy issues, such sensors are usually simple,
with low computational processing capabilities. However,
new application requirements, such as energy savings and

1

Research Article

*Corresponding author. Email:arturarsenio@di.ubi.pt

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

http://creativecommons.org/licenses/by/3.0/

A. M. Arsenio and R. Francisco

operation autonomy, is pushing for the deployment of
more intelligent sensors, or even mechanisms with
actuators, such as forest sensors capable to move and act
on the environment for energy harvesting. Although there
has been important developments on the evolution of
WSAN devices, these continue to have limited battery,
limited computation power, etc. Due to these problems,
the network node can crash due to lack of sufficient
resources to perform, and jeopardize the smooth operation
of the infrastructure. So, especially for demanding AI
applications, Internet objects using sensors and actuators
require specific middleware for integrated operation with
networked resources [1].

Cloud computing provides attractive solutions for these
issues [3]. Indeed, it allows the reduction of the initial
costs associated with the computational infrastructure.
Another relevant aspect is that the cloud computing
resources are easily and automatically adjustable
according to the real infrastructure needs. This way, the
computational resources are easily scalable following the
growth of the infrastructure. In addition, the customer
only pays for the cloud resources that she actually uses.
But mostly important, cloud computing’ resources
provide almost unlimited battery, storage, and computing
power. So, we need an efficient solution that monitors
WSAN nodes’ capability to execute operations, and
communicates transparently with the cloud infrastructure.

1.1 WSAN and Robotics: New Concepts for
Robotic Brains and Bodies

Robots are undergoing a similar revolution. Robotics
has faced strong barriers in its evolution because there are
inherent challenges that until recently technologies were
unable to overcome. Researchers have been able to apply
robotics to controlled environments because robots in
factories have fixed behaviors and simple sensory systems
for pre-defined stimulus. But for robotics to reach a level
of pervasiveness in which robots are present in our daily
lives, robots need to adapt themselves to environments
that can change very frequently and need to be able to
respond to unexpected events. Robots to reach this level
of adaptation need to analyze their surroundings and to
store information about it and to process this information
[4]. Robots however usually do not have enough
computational and battery power to process that
information while still being mobile and with a small
form factor size.

On the other hand, a robot is no more a “metal box”
with on-board processing (the brain) and sensors plus
actuators. Robots are part of the WSAN nodes on the
Cognitive Internet of Things. Their brains may be running
on devices on their robotic body, on the cloud, or on both
places. The notion of a robotic body is also changed, since
a robot may dynamically access to sensors and actuators
(or even processing capabilities) already present on the
visited environment.

1.2 Cloud Robotics

Cloud Robotics is a new paradigm aiming to solve
some of these current robotics issues. Cloud robotics is a
combination of cloud computing and robotics. Robots
operating from a cloud can be more portable, less
expensive and have access to more intelligence than an
ordinary robot [4]. These robots could also offload CPU-
heavy or energy demanding tasks to remote servers,
relying on smaller and less power demeaning onboard
computers [5].

Robots in a cloud configuration can perform
autonomous learning, obtain knowledge and share
knowledge, and even evolve. Through the robotics cloud,
robots can execute collaborative tasks and provide
efficient services. Robots can upload and share their
acquired knowledge on the servers, which are responsible
for knowledge, storage and scheduling [4].

The cloud is thus promising for the future evolution of
robotics, but it also has its short-comings. Robots rely on
sensors’ feedback (often real-time data) to accomplish a
task. This might not be accomplished on the cloud
because cloud based applications can be slow or difficult
to run due to Internet limitations [4]. Some real-time
functions (robots usually have several closed feedback
control loops between sensors and actuators demanding
real-time action) of the robotic brain still need to run most
of the time on the robot’s main platform, for which
network latency is an important concern.

So, in order for information (concerning task execution
by components of the robot’s brain) to be able to travel
over the Internet, it is needed a transparent solution that
enables application programmers to specify conditions for
switching the execution flow from a device to the cloud or
other devices, and vice-versa, in real-time. To solve these
issues efficiently it is necessary a mediator that efficiently
manages the device resources on various platforms and
communicates transparently with users. This paper
proposes such mediator middleware: a software that
assists an application to interact or communicate with
other applications, networks, hardware, and/or operating
systems. Thus the middleware manages the network
nodes. If a node is unable to perform some operation due
to measurements that trigger specified conditions (such as
resources’ unavailability), the middleware communicates
with the application on the device for suspending
execution, and transfers the flow of execution to the
application counterpart resting on the cloud or on other
devices (or vice-versa).

2. Related Work

This section presents and discusses some related work
to the Middleware for Wireless Sensor and Actuator
Networks. It is necessary to have in mind that robots can
be considered a WSAN with extended functionalities.

2
EAI Endorsed Transactions on

Cognitive Communications
01-05 2015 | Volume 01 | Issue 2 | e4

Switching Brains: Cloud-based Intelligent Resources Management for the Internet of
Cognitive Things

2.1 WSAN Middleware

IoT technology, supported by wireless network
solutions enabling automatic data acquisition, has been
applied in Home automation and Ambient Intelligence
environments to interconnect objects and materials. We
will first give a brief overview of IoT Platforms that can
be employed as a starting point for the Internet of
Cognitive Things, presenting their comparative
evaluation. One of these platforms, OpenHAB, was
integrated into the proposed solution.

There are platforms, like Xively (previously Cosm),
that enable the creation of CIoT projects and extensions of
these, such as Social Internet of Things and Robot as a
Service projects, which lets sensors and other equipment
post and read data to feeds – much like twitter works for
people – which allows them to trade messages and take
action. Other Home Automation platforms include
openRemote and openHAB. These solutions allow users
to connect virtually any device and have the platform take
action when a command is given or when a pre-condition
is met. Ninja Blocks provides a set of open source
hardware parts for people to create their own custom
devices that connect to the platform, whereas openHAB
and openRemote use more standard hardware platforms.

Platforms like IFTTT and SmartThings are platforms
that are more oriented towards defining intelligent
behavior from devices, like informing the thermostat that
the users are close to their home, through the GPS in their
smartphone, and thus turning on the Air Conditioning.

Funf, developed at the MIT Media Lab, is another open
source sensing and data processing framework, now a
commercial product. Funf consists on software modules
(Probes) that act as controllers and data collectors for each
sensor’s data. It also allows intelligent processing of the
personal captured data (e.g. monitoring a person’s
physical activity by an activity monitor probe that already
incorporates motion logic over the accelerometer sensor,
and sharing such data on the network). It allows saving
data on a remote backend (e.g. on a cloud).

SenseWeb [6] is a large-scale ubiquitous sensing
platform, aimed at the global indexing of sensor readings.
Its open-source layered modular architecture allows to
register sensors or sensor data repositories, using web-
based sensing middleware. Table 1 presents a
comparative overview of these platforms.

2.2 Robot Middleware

2.2.1 ROS
Robot operating System [7] is an open source

middleware for developing robots. The philosophical
goals of ROS are: Peer-to-Peer (P2P), Tools-based, Multi-
lingual, Thin and Free and open source. These
philosophical goals influence the design and
implementation of ROS, as described hereafter:

Multi lingual: ROS supports four languages, namely
C++, Python, Octave and LISP.

Table 1. Comparative Analysis for Home Automation
and Sensing Platforms.

Peer to Peer: ROS system consists in a number of
hosts connected at runtime in a P2P topology. P2P
connectivity combined with buffering software modules is
used to avoid unnecessary traffic flowing across the
wireless link that occurs in central server.

Tools-based: ROS has a microkernel instead of a
monolithic development and runtime environment. In this
microkernel a large number of small tools are used to
build and run ROS components.

Thin Most: drivers and algorithms could be used in
other projects, but some code has become so entangled
with the middleware that it is difficult to extract. To solve
this problem ROS encourage all drivers and algorithm
developers to write standalone libraries without
dependencies on ROS. This is achieved by placing
virtually all complexity in libraries and only creating
small executable.

The fundamental concepts of ROS implementation are:
node, messages, topics, and services. Nodes are processes
that perform computation. ROS is typically comprised of
many nodes. The nodes communicate with each other by
passing messages. A message is a typed data structure and
can be composed of other messages. A node sends a
message by publishing it to a given topic. A node that is
interested in a specific topic will subscribe it. In general
publishers and subscribers are not aware of each other.
Publish-subscribe is a flexible communication paradigm,
however not appropriate for synchronous transactions. To
address this issue ROS uses services (a service is
composed by its name and a pair of messages: one for the
request and the other for the response).

2.2.2 YARP
Yet Another Robot Platform [8] is an open-source

project to reduce the development effort of robotic
software. YARP enables to execute processes that are
location independent, and that can run on different
machines without any changes in the code. This way it is

3
EAI Endorsed Transactions on

Cognitive Communications
01-05 2015 | Volume 01 | Issue 2 | e4

A. M. Arsenio and R. Francisco

possible to move the process between machines that are in
a cluster to redistribute the computational load and to
recover from hardware failure. The application developer
ensures this automatic allocation of processes. The
addition of new components can interfere with the
existing one in YARP infrastructures. But this problem is
alleviated through the inclusion of more processors to the
network. YARP also minimizes the dependencies between
processes. If process is killed or dies does not require
processes to which it connects to be restarted.
Furthermore, communication channels between existing
processes continue without process restart. For reducing
dependencies with the operating system, Communication
in YARP uses the Observer design pattern. The state of
special Port object is delivered to any number of
observers (in any processes). To manage these
connections YARP insulates the observed from the
observer and the observees from each other. In YARP a
port is an active object managing multiple connections.
Each connection has state that is changed by external
commands. YARP uses many different communication
protocols such as Transmission Control Protocol (TCP),
User Datagram Protocol (UDP), multicast, etc. The ports
can be connected programmatically or at runtime.

2.2.3 PEIS Kernel
Physically Embedded Intelligent Systems (PEIS)

Kernel [9] is a middleware that employs the Ecology
concept of Physically Embedded Intelligent Systems.
PEIS Kernel provides a shared memory model, a simple
dynamic model for self-configuration and introspection,
and supports heterogeneous devices. The goal of this
middleware is to provide a common communication and
cooperation model that can be shared among multiple
robotic devices. Any robot device that has a software
control in the environment is considered a PEIS.

A PEIS is a set of inter-connected software
components developed to control sensors or actuators. All
devices are connected in PEIS by an uniform
communication layer. This layer allows not only the
exchange of information between the PEIS devices, but
also dynamic joining and leaving. Using a uniform
cooperative model allows comparison between all of PEIS
devices. Devices that participate in the cooperative model
can use functionalities of other PEIS devices to complete
their own functionalities.

The organizational structure is divided into three
layers: the communication layer, peer-to-peer network
layer and Tuple layer. The communication layer at the
lowermost abstraction is used to provide communication
links and device detection for shared medias. This layer
also provides services for initializations, calling
functionalities, etc. This communication layer also serves
as a bridge, translating message to a more compact
protocol suitable over low-bandwidth networks.

On top of the communication layer is the P2P network
layer that uses P2P algorithms for optimizing connectivity
and performing routing. Finally the Tuple layer is on top
of the P2P network layer. Tuple-space is a decentralized

version of the shared memory where a number of tuples
containing a namespace, key, data as well as a number of
meta attributes such as timestamps and expiration date,
can be stored and retrieved by any participating process
using an abstract tuple.

The database implementation to store tuples assumes
that each PEIS component can be used to store all
relevant tuples. This database gives some special attention
to an abstract tuple, a tuple in which one or more fields
have been initialized to a wild-card value while the
remaining fields have been given concrete values. This
abstract tuple is used for three reasons. The first one is
they are used whenever an application is accessing the
database to query the current value of a tuple.
Additionally, before a PEIS can access tuples at a remote
location, a subscription to the corresponding tuples must
be made. And finally abstract tuples are used by the event
mechanism to setup callbacks when tuples changes value.

2.2.4 Player/Stage
Player/Stage system is a middleware platform for

mobile robotics applications [10][11]. The main features
of this middleware are the platform-programming
language, transport protocol-independence, open source,
and modularity.

Main components of this middleware are the player
and the stage. The component player is a device
repository server where we can find robots’ sensors and
actuators. Each one of these devices has an interface and a
driver. The middleware client uses the interface to obtain
information collect by the sensor to control the actuator.
The algorithms implemented by the drivers can receive
data from other devices, process the received data and
send it back. Drivers can also create arbitrary data when
needed. The other component (stage) is a graphical
simulator that models devices in a user defined
environment.

This system has a three-tier architecture. In the first tier
the clients are software developers for a specific robot
application. The player, which provides common
interfaces for different robots and devices, constitutes the
second tier. Robots, sensors, and actuators form the third
tier. Different programming languages like C, C++, Java,
and Python are used to access services. Client side
libraries are in form of proxy objects. Clients can connect
to the Player platform to access data, send commands, or
request configuration changes to an existing device in the
repository.

2.2.5 Mobile and Autonomous Robotics
Integration Environment (MARIE)

Mobile and Autonomous Robotics Integration
Environment is a middleware that was made for
developing and integrating new and legacy robotic
software [12]. MARIE is a flexible middleware, which
allows integration of different robotic software. The main
characteristics of MARIE are interoperability and
reusability of robotic application components. Flexibility
is another important aspects of this middleware, which

4

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

provides services that allow the adaptation of different
communication protocols and applications.

The architecture of the MARIE middleware is divided
in three layers: Core, Component and Application. The
core layer contains communication services, low-level
operating functions and the distributed computing
functions. The component layer is used to add
components that are going to be constantly used by
services. The application layer has services and tools
useful for building and managing the integrated
application.

MARIE uses the Adaptive Communication
Environment (ACE) communication framework. This
framework allows a variety of software components to
connect to MARIE using a centralized component. There
are also four functional components: application adapters,
communication adapters, communication managers, and
application managers. The application adapter behaves as
a proxy between the central component and the
application. Communication adapters translate the data
exchange between application adapters. Connections are
created and managed by communication managers.
Application managers instantiate and manage components
locally or across distributed processing nodes. MARIE
also provides mediator interoperability layers among
adapters and managers.

2.2.6 RoboEarth Cloud Engine (Rapyuta)
Rapyuta is cloud robotic platform for robots that

implements a platform as a Service (PaaS) open source
framework [13]. This framework is built upon a clone
based model, which provides a secured customizable
computing environment (clone) in the cloud. This way the
robots can use extra resources for heavy computation. The
robots connect to the Rapyuta and can start the computing
environment by their own initiative. It allows to launch
any computational node as uploaded by the developer,
and to communicate with the launched nodes using the
WebSockets protocol. The use of WebSockets protocol
provides a full duplex communication channel between
the robot and the cloud with predefined messages. The
computing environments that are started by the robots
have high bandwidth connection to the RoboEarth
repository. Thus, the robots are allowed to process their
data inside the computational environment in the cloud
without the downloading and local processing. Another
aspect of this platform is that the computing environments
are interconnected with each other.

The architecture of Rapyuta consists mainly of four
elements: the computing environment, the communication
protocols, the core tasks and the command data structure.
The computing environments are built with Linux
Containers. These containers provide isolation of
processes and system resources within a single host, and
they allow the applications to run at native speed because
they do not emulate hardware. Linux containers allow
easy configuration of disk, memory limits, I/O rate limits
and Central processing unit (CPU) quotas. Thus it is
possible to enable one environment to be scaled up to fit

the biggest machine instance of the IaaS provider or
scaled down to just relay data to the backend.

All processes within a single environment
communicate with each other using ROS interprocess
communication. The communication protocols of Rapyuta
are divided in three parts: internal communication
protocol, external communication protocol, and the
communication between Rapyuta and applications
running inside the Linux container. The internal
communication protocol is the protocol that covers all the
communication between the processes of Rapyuta. The
external module has the goal to define the data sent
between the physical robot and the cloud. The container
offers the functionalities required to start/stop the
computing environment.

Rapyuta is organized in a centralized command data
structure with four components. The network is the most
complex of the four. These components are used to
organize the communication protocols and to provide
abstraction to all platforms. The user is another
component, representing the group of humans that have
one or more robots to be connected to the cloud. The
loadBalancer manages the load from robots running in the
computing environment. Finally the distributor has the
functionality to distribute incoming connections from
robots over the available robots.

2.2.7 Discussion
The related work previously described does not satisfy

completely our requirements. They solve indeed problems
also addressed on this paper such as: software flexibility
(MARIE), code reuse and modularity (ROS), and even
information sharing with other devices (player/stage).
However, these middleware are still constrained by the
limited capacity of the devices (actuators, sensors, or
robots) where they are executed. Indeed, the player/Stage
middleware will transfer the execution for another device
even if the later has no available capacity. Contrary to
other solutions, Rapyuta middleware can solve the
problem inherent to the limitations of the hardware by
running some algorithms on the cloud platform. But still
this middleware does not have the intelligence to decide
whether it is necessary to run some code on the cloud or
on a device. Francisco et al. [14] presented such solution,
which is further detailed in this paper.

3. Smart Middleware Architecture

The overall system consists of devices running
applications (egg clients: cell phones, tablets, and
computers, as shown in Figure 1) and the cloud that
performs data processing and storage. The communication
protocols employed are TCP, UDP, SSH and HTTP Rest,
and a publish/ subscribe model for internal
communications on the device. Devices run applications
developed by programmers, having constraints such as
limited memory and battery (contrary to the cloud). These
applications will run the management and cloud client

5
EAI Endorsed Transactions on

Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

Switching Brains: Cloud-based Intelligent Resources Management for the Internet of
Cognitive Things

A. M. Arsenio and R. Francisco

side modules for programmers to use our middleware.
The middleware manager monitors hardware components,
and communicates to the cloud client whenever a
component reaches a critical condition. The cloud client
interchanges application’s control messages and data to
the cloud server module.

Figure 1. System Architecture and its Components.

3.1 Middleware Requirements

The Middleware runs inside the user developed
application, and can be considered as an extension of the
operating system, which provides a transparent
communication layer between the hardware and the
applications. The objective of this middleware is to solve
some problems of a modular design, such as
interoperability and communication configuration. To
achieve these objectives the proposed middleware needs
the following resources:

Simplifying the development process: application
development is not easy for the robotic environment
because each robot manufacturer has its own API.
Middleware should simplify the development process by
providing higher-level abstractions with simplified
interfaces that can be used by developers.

Support communications and interoperability: The
robotic and WSAN modules are designed and
implemented by different manufacturers. The middleware
must provide functions that help to have an efficient
communication and simple interoperability mechanisms
between these modules.

Provide efficient utilization of available resources:
The device (single sensor, single actuator, mobile device,
robot) may have single or multiple microprocessors, one
or more interconnection networks, and it may need to
execute intensive tasks in real time. Therefore efficient
resource utilization is required. Middleware supports
applications in efficiently using these resources [15][16].

Providing heterogeneity abstraction: The
communication and cooperation between hardware and
software is very important. To hide complexity at the
communication level, as well as heterogeneity of the
underlying modules, the middleware is used as a
collaborative software layer.

Supporting integration with other systems: Devices
often need to interact with other devices for achieving
their goals in real time. Therefore the middleware should
provide real time interaction services with other systems.

Supporting low resources devices: Devices may have
several limitations such as limited power, small memory,
limited connectivity, and so the middleware needs to have
adequate functionalities to manage these resources.

Providing automatic resource discovery: The
devices are dynamic systems due to their mobility.
Therefore automatic and dynamic resource discovery and
configuration are needed in the middleware.

To provide the abovementioned functionalities the
middleware is divided in three layers (see Figure 2): the
communication layer, the peer-to-peer network layer and
the device manager layer. The communication layer
provides communication links with multiple platforms
such as the cloud or a mobile device, and it also provides
device detection for shared information. This layer
provides an heterogeneity abstraction for supporting
communications and interoperability. The layer also
provides services for system initialization.

Figure 2. Detailed Architecture.

On top of the communication layer is the peer-to-peer
network layer, enabling integration with other systems
and automatic device discovery. This layer is responsible
the connectivity with routing algorithms.

The manage device layer runs a monitoring algorithm
to detect problems, such as if the device is lacking battery
power or if the load of CPU is too high. This it way it is
possible to support low resource devices and provide an
efficient utilization of available resources.

3.2 Applications

Applications will be running on smartphones, tablet,
WSAN nodes or in robots, with different operating

6
EAI Endorsed Transactions on

Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

systems. The programmer deploying the middleware is
not typically the one who develop the applications.
Instead, application programmers should integrate the
middleware functionalities at development time. The
application can have different types of actions:

• Presenting a textual or graphical representation of the
information acquired by the device, which may be
stored in the device or in the cloud platform.

• Processing information received from the device.
• Performing operations according to the results of

information processing.
• Performing specific operations on the device.

The middleware will be integrated with the application
thereby ensuring that the application receives information
about the status of the hardware components that the
middleware is monitoring. Thus the integration between
application and the middleware can help to avoid critical
situations (for instance excess CPU usage) and prevent
device shutdown (for instance due to lack of battery).

3.3 Cloud Platform Services

The cloud-based platform will be in charge of two
relevant functions: data processing and data storage.
Cloud computing resources can be easily and
automatically adjusted according to new application
demands or the growth of application’s requirements.

Data Processing: The Data Processing component is
in charge of processing the data transmitted by the
devices. This component executes the heavy work, not
possible to be carried out by the device due to lack of
resources (such as lack of energy or computational
resources to process the collected data). Hence this
component allows the device not to crash by executing the
work that the device could not do, sending back the
processing result to the device.

Data Storage: This component is in charge of storing
persistently the collected data from each WSAN node. If
devices do not have space to store the collected data
because the device memory is full (or above a given
threshold), such data can be transmitted to the cloud
platform using the middleware, so that data is not lost.

3.4 Manager Module

The management module aims to determine hardware
components state (battery, CPU and memory), as well as
the wireless connection state. The programmer defines
each component’s critical state on a configuration file,
before the middleware starts to be used. Whenever one of
these components achieves a value above a critical value
(and wireless signal is strong) a certain execution will no
longer be run on the device, being transferred to the
cloud. Figure 3 shows the management model’s state
machine.

The management model is initialized in the
”Middleware” state when the ”Application” state sends an
initialization command. The “Middleware” state contains
the monitored component conditions, which are updated
by the ”Monitoring” state through a shared queue between
the two states. The ”Middleware” state is always checking
the conditions of the wireless signal (Wi-Fi was employed
on the scope of this paper) quality and the conditions of
the battery, CPU and memory, through calls to device
hardware that runs the middleware. The values obtained
are compared with the critical values stipulated by the
application programmer. The load CPU analysis is a bit
different from the other checks, because a notification is
only sent if the read values are superior to the critical
value for three times in a row (to avoid reactions to
sporadic peaks). If the signal quality of the wireless
network is below the critical value stipulated by the
programmer the remaining monitoring tests will not be
performed. After each monitoring cycle of the hardware
components, the ”Monitoring” state goes into sleep mode
for an interval of time (one minute).

Figure 3. Management and Cloud state machines.

The ”Application” state sends requests to the
”Middleware” state on the conditions of a component
(e.g. battery). If the reply is ”False” (transition between
the ”Application” and ”Function” states), it means no
action is needed, since the state of the component is below
the critical status (and hence running with enough
resources on the device). This way the programmer’s
application can continue to run without any changes, and
no event is initiated. In case of a “True” response sent by
the ”Application” state, the machine transits to the ”Do
Something” state, meaning the component exceeds the
critical value. In this case the programmer chooses the
actions to take after receiving the message. One possible
option is to use cloud platform provided services for

7
EAI Endorsed Transactions on

Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

Switching Brains: Cloud-based Intelligent Resources Management for the Internet of
Cognitive Things

A. M. Arsenio and R. Francisco

performing certain actions. This way it is removed some
load on the device that is running the application,
releasing resources (e.g. memory).

3.5 Cloud (Client) Module

The communication between the application and the
cloud is initialized when the programmer application
makes an initialization call to the middleware. The first
step is for the client to boot the server in the cloud via an
SSH command and to create TCP and UDP sockets. The
access settings of Post and Get commands of HTTP Rest
protocol are also configured, so that whenever the
programmer intends an application to perform an upload
or download of information in the cloud, it is sent a Post
or Get command to the cloud.

The middleware in the cloud responds (transitions
between ”Application”, ”Upload / Download” and
”Cloud”) states either: i) with a confirmation that the
information was successfully saved; or (ii) there was an
error while performing the storage operation; or (iii) the
information as requested by the get command; or (iv)
error due to failure on getting the requested information.

In a blocking call connection, a message is sent to the
cloud with the following information: the function ID and
its arguments. After the message is sent the state
”Synchronous transmission” enters in a blocking state and
waits for the result of the function that is going to be
executed in the cloud, delivered by the state ”Reading
Socket”. In the non-blocking case, the state is not blocked
after the message is sent (the program continues to run).
Once the cloud returns the response, this is saved in the
device memory until the program needs to access it. The
state ”Reading Socket” after being initialized enters in
block mode waiting for new entries in the socket that
arrive from the state ”Cloud”. A new message on the
socket will be processed differently depending on the
information of one message field. If the message is from a
blocking function, the result is sent to the state
”Synchronous transmission”, otherwise the function ID
and its result will be stored in the device memory until the
program needs the result.

3.6 Cloud (Server) Module

The Cloud Server side module (see Figure 3) is
initialized at the application server once it receives an
SSH connection with the start command, locking the
”Cloud” state, and waiting to receive messages from the
client. Upon receipt of the message and its decoding, it is
possible to identify the function ID that is intended to be
performed and its arguments (going from state ”Cloud” to
”Function” state). The ”Function” state consists of the
execution of the functions that were chosen by the
programmer to run in the cloud. At the end of the
execution of a function a message is sent to the client
(state ”Reading Socket) with the function ID and its
result. It is also sent a small packet to identify if the

response is to the blocking (synchronous) or the non-
blocking (asynchronous) function.

3.7 Transparent Implementation

A key factor in the development methodology was the
exploitation of existing frameworks and libraries in the
proposed solution implementation process, harnessing the
potential of currently available tools.

For a flexible and transparent implementation of the
middleware, IKVM (Open Source software that allows to
directly run compiled Java code in C#) and jython (an
implementation of the Python programming language in
Java) were employed, which allow the JAVA core of the
middleware to be executed on C# and Python,
respectively. Communication interfaces employ
JavaScript Object Notation (JSON), since it ensures
greater efficiency on message delivery between clients
and the cloud. Communications between applications and
the Microsoft cloud, when it comes to data storage and
downloading of information from the cloud, is ensured by
the Microsoft cloud API that uses the Hypertext Transfer
Protocol (HTTP) REST protocol.

Aiming to ensure that the configuration of certain
points of the middleware is conforming to each
application needs, and to set certain aspects of the cloud
(such as the login to the machine that was obtained in the
cloud), configuration files were used, employing the INI
file format (ini4j.jar). These simple files have a pretty
basic structure organized in sections and properties.
Furthermore this format is quite often used for drivers’
settings and Linux/Unix systems for system configuration.

OpenHAB, a home automation middleware, was
integrated into the solution to enable support not only for
robot devices and middleware, but also the transparent
integration of home automation devices.

4. Experimental Evaluation

The objective of result assessment is the implementation
validation, and the determination of adequate system
improvements. This section is divided into areas of
analysis consisting of sets of testing experiments that
cover different analysis aspects. Results are gathered
through the execution of a number of experiments that
were defined for each area. These results are stored,
taking into account the expected value and standard
deviation for the set of samples of the targeted metrics.
The general assessment methodology focuses on testing,
and if possible validating, the different parts of the system
individually, and then progressively integrating more
complexity. The detailed experimental methodology is
described under each test area subsection.

4.1 Metrics and Experimental Setup

8

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

The following metrics were used to evaluate potential
solution gains: Energy consumed, Time that takes to
perform a function, Delay times and CPU load. Two
experimental setups were implemented:

(i) The baseline: application running stand-alone in the
device (no middleware, the application that
detects/tracks the human face is the only running on
the Android OS).

(ii) Middleware integration with the application using
cloud resources: the same application solely sends
messages containing image frames, getting these
from the camera, and sending these to the cloud,
being the frames’ analysis made in the cloud.

The hardware setup consists of one BQ tablet with
Android OS, and one virtual machine with one core and
1,75GB of RAM). The application uses the Computer
Vision Library (OpenCV) to do face detection, as well as
face tracking after detection. As this application makes
significant image processing, it turns out to be a fairly
heavy application in terms of CPU processing power,
battery consumption and generated network traffic. Thus,
the device performance gets worse over time. With these
tests it is intended to check the percentage of battery
discharged, and CPU load, during the application
execution. The second experimental setup consists at the
integration of the middleware developed with an Android
application, using Microsoft Azure platform as the cloud
computing infrastructure.

4.2 Energy Consumption

The application was tested on the two aforementioned
scenarios to check percentage values for the battery
energy spent. These experiments lasted 40 minutes and
were repeated 5 times. As shown in Table 2 and Figure 4,
there is no evidence of gains by transferring some
application execution flows to the cloud. Results are even
slightly better when the middleware was not used
(difference never exceeded 8%).

Table 2. Energy Consumption (as percentage of the
battery full charge).

Experimental setup Without Cloud With Cloud

Average working battery
charge (at the end) 73,6% 66,4%

Standard Deviation 2,70 3,04
Average of b
spent by the five tests 25,2% 32,6%

Standard Deviation 3,11 3,04

This similarity may be due to excessive use of the
video camera, which consumes a lot of battery power,
although this component is also used extensively without
the middleware. The constant access to the wireless

network should be the largest impact on the results, since
the higher transmission rate implies higher energy
spending [17].

Figure 4. Energy Consumed, with and without cloud.

4.3 CPU Load

To check potential middleware advantages in relation
to CPU load, the ”Face Detect/Tracking” application was
subjected to tests lasting 20 minutes and repeated five
times. In Table 3 and Figure 5, there is a significant gain
with the migration of the detection and tracking
algorithms to the cloud. This gain is due to the heavier
work done now in the cloud, which alleviates the
processing needs of the device’s CPU running the
application (the device just grabs image frames on the
device and sends them).

By reducing the CPU load, the lifetime of the battery
should increase. As previously explained, this was not the
case due to other factors, such as more battery energy
required for wireless communications.

Table 3. CPU Load with and without cloud support.

Experimental setup Without Cloud With Cloud

Average CPU Load 68,98% 45,84%
Standard Deviation 3,53 1,15

4.4 CPU Load – Heavy Processing

However, in situations where applications compete for
CPU time in processing constrained devices, this solution
can bring very interesting benefits. The image processing

9
EAI Endorsed Transactions on

Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

Switching Brains: Cloud-based Intelligent Resources Management for the Internet of
Cognitive Things

A. M. Arsenio and R. Francisco

algorithms require a lot of CPU load to be executed,
which may prevent simultaneously other applications to
run properly. The same also happens with the image
processing application that ceases to have the CPU just
for itself, competing for resources such as CPU
processing time, and this competition may create
difficulties to its execution, such as a smaller frame rate,
getting this way less frames per second.

Figure 5. CPU Load with and without cloud.

To check if the middleware solution can solve this
competition problem for limited resources, the following
test scenarios were performed: checking the CPU status
whenever an exhaustive analysis of 100 frames needs to
be made, and checking the time consumed for both
processing these set of images in the tablet or in the cloud.

According to Table 4 and Figure 6, the CPU load
reaches saturation values (100%) for single tablet
processing. But usage of cloud processing originates a
significantly lower CPU load at the tablet (~25% in
average). Hence the integration of the middleware may be
beneficial to run reliably multiple applications on a device
of limited resources, because by transferring the execution
flows to the cloud, much of the processing will be done
outside the device, thus freeing some of the CPU
resources (decreasing CPU load), so that other device
applications can also be executed.

Table 4. CPU Comparative load in exhaustive case.

Without Cloud With Cloud

CPU Load average (%) 98,69 25,53
CPU Load standard deviation (%) 1,20 2,28
Average (execution time)(ms) 1292 1100
Standard deviation (ms) 5,60 4,80

Figure 6. CPU Load in exhaustive case, with and
without cloud support.

4.5 Network and Processing Delays

The proposed solution exploits networked cloud services,
and so it is of relevance to test time delays associated to
performing certain execution flows in the cloud.
As expected the integration of the middleware brought
some delay to the execution of the application (see
experimental results in Table 5), and this delay may
increase whenever the message size increases.

Experimental tests evidenced there is a significant
delay comparing with processing time for the baseline
test, corresponding to executing the algorithm in the
device. This long delay is explained by network
conditions, since this network has some restrictions due to
its large number of users. But the factor that most impacts
this delay is the usage of TCP communications at the
transport layer between the application and the cloud.
Although TCP is a quite reliable transport protocol, since
guarantees message delivery, it can also bring large
delays, since network problems result in lost message
segments being retransmitted until message reaches its
destination, thereby translating into an extra delay when
sending the message. Even with the implementation of a
mechanism to discard messages, these are only discarded
when the message is fully received (the use of UDP
communication was not feasible to test in this case due to
Microsoft Azure platform limitations).

Table 5. Time delays for face detection and tracking.

Experiment Face Detection /
Track Algorithms

Average
(ms)

Standard
Deviation (ms)

Baseline (no
cloud)

Detect 195,06 5,56
Track 56,95 0,93

Cloud-based (not Detect 157,19 4,79

10

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

accounting
transmission time) Track 25,29 9,51

Cloud-based
(including

transmission time)

Detect 575,56 28,18

Track 423,16 0,934

Observation of Table 5 also reveals the occurrence of
high standard deviation values. This is due to image
variations in terms of complexity, since image complexity
can cause the increase or decrease of the algorithm
execution time. Another important factor contributing to
these high values is the quality of Internet connection,
which varies over time due to several factors such as
network congestion. Thus the end-to-end execution times
of the algorithm may vary significantly.

4.6 Cloud Storage for Wireless Sensors

A second test scenario was prepared consisting of the
integration of the middleware with the Android
application of BIOPLUX. This Android application
connects via Bluetooth to a Plux@ motion bracelet
(shown in Figure 7) that contains a motion sensor. This
sensor is continuously sending inertial coordinates to the
Android application running on a BQ tablet (that saves the
coordinates in a file). As the Android device has reduced
memory resources it is very likely that the Android
memory will eventually be fully allocated after some
time. The middleware integration with the Android
application solves this issue, since whenever the used
memory reaches a certain value the data will be sent to the
cloud (using Windows Azure Blob Storage and the cloud
storage service). This way the application will not block,
and data will not be lost. With this test, whenever the
memory arrives to values equal or superior to 50%
occupancy and the Internet connection is good (according
to the definition of “good” given by the application
programmer), a group of files is sent to the cloud. This
test scenario will evaluate if after the uploading of the
files, the state of the memory will drop below 50%
occupancy. And finally it will be checked if the files that
were sent to the cloud were successfully saved.

Figure 7. BIOPLUX motion bracelet.

Therefore, this experiment will evaluate whether the
hardware management mechanism avoids an application
entering a blocking state, or even crashing due to lack of
resources. Once the memory of the Android reaches half

its capacity, an application sends all files at a specific
folder to the cloud and erases them from Android device
memory, freeing the memory so that the application can
continue to run reliably. After running the experiment, all
the files that were in the folder were successfully stored in
the cloud, showing that the management mechanism is
reacting when the memory reaches is a critical point
(Figure 8 shows the upload of one such file on the cloud).

Figure 8. Azure Interface (showing that a file was
uploaded to the cloud at specific time instant).

More recently [18], we have successfully integrated the
proposed middleware with a WSAN platform, OpenHAB,
for smart home automation (see Figure 9). Data storage is
transferred between the OpenHAB server device and the
cloud according to the monitored conditions.

Figure 9. Experimental setup consists of several
sensors and actuators connected to a RaspberryPI
running OpenHAB. It is also presented a user
interface image showing sensor values in real-time.

4.7 Discussion

The inclusion of this middleware in applications to be
deployed on devices with limited hardware resources (e.g.

11

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

Switching Brains: Cloud-based Intelligent Resources Management for the Internet of
Cognitive Things

A. M. Arsenio and R. Francisco

battery, CPU) brings some advantages for the lifetime of
an application and it avoids the application entering in a
locking status because of lack of resources. However, in
certain applications it is impossible to make gains on all
hardware components as seen in aforementioned
experimental tests. This is the case for applications that
make excessive use of certain hardware components that
require a lot of battery. Although the middleware also
consumes some device’s energy due to higher
communication transmissions, this overhead is often small
when compared with the energy consumption by one
application, or a multitude of them (as it is often the case
for complex robotic brains [19]) that has quite high CPU
processing needs. The downside of this middleware
concerns high transmission times for sending and
receiving messages to/from the cloud. However this
limitation can be overcome with the implementation of
other transport protocols (if the cloud platform allows so).
Even with these restrictions the developed middleware
proves that it can solve some problems that exists in
devices that are limited in terms of resources.

5. Conclusions

Recent technological advances leveraged the introduction
of new concepts applied to the various economic sectors
of our society. WSAN and cloud robotics are emerging
concepts in areas of growing interest. Indeed, the idea of
monitoring several types of parameters in various
environments has motivated significant research works in
these areas. Cloud Computing platforms are a prominent
element that can respond in a more efficient and powerful
way to current challenges.

This paper proposed a state machine based middleware
to manage the transferring of execution flows between
terminal devices and the cloud. The main goal was, using
cloud technology, to address the problem of a device’s
lack of resources such as limited memory and battery. On
a larger scope, the goal was to address the development of
a middleware supporting the flexible, and dynamic,
transferring of execution flows on a cognitive robotic
brain between on-board devices and the cloud.
Experimental evaluation showed that offloading the
execution flows into the cloud does not necessarily
reduces energy consumption (or increases battery
lifetime), because more battery energy may be required
for wireless communications. Experiments indicate
however that using the cloud to solve the lack of device
resources is quite advantageous, due to CPU load
reduction. This may lead to battery with extended
autonomy. But most importantly, it avoids applications
entering in blocking states due to lack of memory. It also
allows running more applications in a simple device that
otherwise would exceed the available resources. The
decision whether to run an application locally or remotely
is done dynamically, according to the status of available
resources, as checked through active monitoring.

This middleware will be most beneficial for
programmers who want to make the most of the available
hardware resources on the devices.

References
[1] Woelffle, H., Guillemin, P., Friess, P. and Sylvie, W.

(2010) Vision and challenges for releasing the Internet of
Things. In Publications Office of the European Union.

[2] Arsenio, A., Serra, H., Francisco, R., Andrade, J., Serrano,
E., Nabais, F. (2014) Internet of Intelligent Things –
Bringing artificial intelligence approaches for
communication networks. In inter-cooperative collective
intelligence: techniques and applications, 495, 1-37,
Springer.

[3] Iera, A., Floerkemeier, C., Mitsugi, J. and Morabito, G.
(2010) The Internet of Things. Guest Editorial. In IEEE
Wireless Communications. 17 (6).

[4] Ren, F. (2011) Robotics cloud and robotics school. 7th

IEEE International Conference on Natural Language
Processing and Knowledge Engineering (NLP-KE).

[5] Guizzo, E. (2011) Robots with their heads in the clouds.
Spectrum, IEEE 48 (3), 16-18.

[6] Grosky, W., Kansal, A., Nath, S., Jie, L. and Zhao, F.
(2007) SenseWeb: An infrastructure for shared sensing,
IEEE MultiMedia, 14 (4), 8-13.

[7] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R. and Ng, A. (2009) ROS:
an open-source Robot Operating System. ICRA workshop
on open source software. 3(2).

[8] Metta, G., Fitzpatrick, P. and Natale, L. (2006) YARP: Yet
Another Robot Platform. International Journal of
Advanced Robotic Systems 3(1).

[9] Broxvall, M., Seo, B. and Kwon, W. (2007) The PEIS
kernel: A middleware for ubiquitous robotics. In Proc. of
the IROS-07 Workshop on Ubiquitous Robotic Space
Design and Applications.

[10] Kranz, M., Rusu, R., Maldonado, A., Beetz, M. and
Schmidt, A. (2006). A player/stage system for context-
aware intelligent environments. In Proc. UbiSys, 6, 17-21.

[11] Rusu, R., Maldonado, A., Beetz, M., Kranz, M.,
Mosenlechner, L., Holleis, P. and Schmidt, A. (2006)
Player/stage as middleware for ubiquitous computing. In
Proc. of the 8th Annual Conference on Ubiquitous
Computing (Ubicomp 2006).

[12] Cote, C., Brosseau, Y., Letourneau, D., Raıevsky, C. and
Michaud, F. (2006) Robotic software integration using
MARIE. Int. Journal of Advanced Robotic Systems 3(1).

[13] Hunziker, D., Gajamohan, M., Waibel, M. and D’Andrea,
R. (2013) Rapyuta: The roboearth cloud engine. IEEE
International Conference on Robotics and Automation.

[14] Francisco, R. and Arsenio, A. (2014) Intelligent multi-
platform middleware for wireless sensor and actuator
networks. In Proc. of the 1st International Conference on
Cognitive Internet of Things Technologies, Italy.

[15] Mohamed, N., Al-Jaroodi, J. and Jawhar, I. (2009) A
review of middleware for networked robots. Int. Journal of
Computer Science and Network Security, 9(5), 139-148.

[16] Mohamed, N., Al-Jaroodi, J. and Jawhar, I. (2008)
Middleware for robotics: A survey. 2008 IEEE Conference
on Robotics, Automation and Mechatronics.

[17] Balasubramanian, N., Balasubramanian, A. and
Venkataramani, A. (2009) Energy consumption in mobile
phones: a measurement study and implications for network

12
EAI Endorsed Transactions on

Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

applications. Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference.

[18] Francisco, R. (2014) Flexible, multiplatform middleware
for wireless sensor and actuator networks. MsC Thesis,
IST-UTL.

[19] Arsenio, A. (2005) Development of neural mechanisms for
machine learning. International journal of neural systems,
15 (1), 41-54.

13
EAI Endorsed Transactions on

Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e4

Switching Brains: Cloud-based Intelligent Resources Management for the Internet of
Cognitive Things

	R. Francisco1 and A.M. Arsenio2,0F
	Abstract
	1.1 WSAN and Robotics: New Concepts for Robotic Brains and Bodies
	1.2 Cloud Robotics
	2.1 WSAN Middleware
	2.2 Robot Middleware
	2.2.1 ROS
	2.2.2 YARP
	2.2.3 PEIS Kernel
	2.2.4 Player/Stage
	2.2.5 Mobile and Autonomous Robotics Integration Environment (MARIE)
	2.2.6 RoboEarth Cloud Engine (Rapyuta)
	2.2.7 Discussion
	Figure 1. System Architecture and its Components.
	3.1 Middleware Requirements
	Figure 2. Detailed Architecture.
	3.2 Applications
	3.3 Cloud Platform Services
	3.4 Manager Module
	Figure 3. Management and Cloud state machines.
	3.5 Cloud (Client) Module
	3.6 Cloud (Server) Module
	3.7 Transparent Implementation
	4.1 Metrics and Experimental Setup
	4.2 Energy Consumption
	Figure 4. Energy Consumed, with and without cloud.
	4.3 CPU Load
	4.4 CPU Load – Heavy Processing
	Figure 5. CPU Load with and without cloud.
	Figure 6. CPU Load in exhaustive case, with and without cloud support.
	4.6 Cloud Storage for Wireless Sensors
	Figure 7. BIOPLUX motion bracelet.
	4.7 Discussion
	References

