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Abstract

In this paper we develop and test a distributed algorithm providing Energy Consumption Schedules (ECS) in 
smart grids for a residential district. The goal is to achieve a given aggregate load profile. The NP-hard 
constrained optimization problem reduces to a distributed unconstrained formulation by means of Lagrangian 
Relaxation technique, and a meta-heuristic algorithm based on a Quantum inspired Particle Swarm with Lévy 
flights. A centralized iterative reputation-reward mechanism is proposed for end-users to cooperate to avoid 
power peaks and reduce global overload, based on random distributions simulating human behaviors and 
penalties on the effective ECS differing from the suggested ECS. Numerical results show the protocols 
effectiveness.
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1. Intro duct ion

The balance between demand and supply plays a leading
role in smart grids applications and modern technologies
aim to develop energy optimization algorithms able
to provide efficient residential district dispatchment.
Distributed optimization methods in power systems play
a leading role, due to distributed energy generation
and demand, renewables such as photovoltaic resources,
storage devices, with changes in real time. A large
literature has been devoted to decentralized versions
of optimization algorithms applied to power systems,
see, e.g., [15], due to distributed energy generation
and demand, renewables such as photovoltaic resources,
storage devices, with changes in real time. Multi-
agent planning, as in [11], is often formulated as a
combinatorial optimization problem: each agent has its
own objectives, resources, constraints, and at the same
time it has to share and compete for global resources
and constraints. Moreover, new roles in the energy
market are emerging, such as energy aggregators as
intermediate between energy utilities and home users,
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managing uncertanties due to variable customer actions,
metereology and electricity prices. Given the huge
number of agents, the optimization problem is often
computationally intractable in a centralized fashion, and
given the time-varying cost and constraints in energy
demand-response (DR) problems, a fast single-agent
planning algorithm is appealing. In this paper, as in
[6], customers are incentivized to move their loads in
off-peak hours despite their individual needs through
marginal costs, using reputation scores as feedback. In
[6] a cooperative game reduces peak-to-average ratio of
the aggregate load and the Nash equilibria are reached
using centralized information, whereas our approach is
completely distributed. Evolutionary Game theory and
Reinforcement Learning techniques have been applied to
swarm intelligence problems, as in [1, 5, 12, 14].

Starting from a similar approach, we aim to modify
humans behaviors of single houses in the district to
follow a given global load curve. Our focus is on energy
distribution to a residential district, according to the
European Project INTrEPID [9].

In this scenery, the district global load is sensed
by power meters, and using non-intrusive load-
monitoring techniques (NILM, as in [8]) or smart
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plugs, the disaggregated data are available, turning
the “blind”system to a decentralized smart grid [2]. A
centralized unit senses local loads, and communicates
with agents through smart-phone app or similar devices
proposing day-ahead optimal Energy Consumption
Schedules (ECS). Agents may accept the suggested ECS
or not, according to individual needs.

The objectives of our district scheduler are threefold:

1. Following a load profile: act on the system so that
the cumulated district load profile can follow a
given load profile;

2. Solving distributed optimization problems: per-
form energy optimization of the IoT (Internet of
Things) devices (e.g. smart connected appliances)
by distributing computational power on different
energy boxes (“swarm energy management”);

3. Humans in the loop management: leveraging on
“humans”to “close the loop”for no-IoT devices at
home, by providing suggestions to them and tuning
the system behavior accordingly.

From a concrete point of view, see the European Project
INTrEPID [9], the challenges in the real world are (1)
guide cumulated energy consumption for the residential
district, (2) schedule smart appliances in a scalable way,
and (3) work with the legacy system.

Our contribution is twofold. First, we provide a
mathematical formalization of the optimization problem,
decoupling the global constraint through Lagrangian
relaxation as in [10], see Section 2. Second, in Section
3 we design optimal ECS in a distributed fashion at
two levels: at the agent level applying meta heuristic
optimization techniques as QPSOL (Quantum Particle
Swarm with Levy’s Flights) described in [3], in order
to get feasible optimal suggested ECS; at the district
level a reputation-reward mechanism provides incentives
for users leading to an emerging cooperative behavior.
Section 4 describes the numerical results: user habits
have been analyzed to simulate user behaviors, based
on diffusion of appliances and daily cycles for each
appliance. Finally, we draw the conclusions of our study
in Section 5.

2. Mo del Description
Consider a district with N users, each i-th agent has ni
appliances that are schedulable, like washing machine
(WM), dish washer (DW) and tumbler dryer (TD).
Refrigerator load is also included as background profile.
The state of the multi-agent system is given by x =
(x1, . . . , xN ), i.e., a vector of schedules that each user has
to execute daily in a given time slot, and xi is defined
by the start times of all the ni appliances of user i and
their type (WM, DW, TD) with well-known load profiles.
More precisely xi ∈ [0, 24]ni and x is the global vector

containing all start times of all users. Due to energy
and time constraints, the goal to find a global optimum
of the constrained optimization problem, called primal
problem:

min
x=(x1,...,xN )

N∑
i=1

fi(xi) s.t.

N∑
i=1

gi(xi) = a,

hi(xi) ≤ bi, i = 1, . . . , N

(1)

where a, bi ∈ R and the cost function
∑
i fi is a sum of

weighted norms of three factors: overload, energy cost
and tardiness of the current state x. The first constraint
is the only coupling object: gi denotes the peak profile
of each user and the global load of the district must
attain a given curve a = a(t) depending on time. All the
functions fi, gi, hi implicitly depend on time (they span
a day), discretized in minutes or hours. The inequalities
involving hi are local time and energy (usually 3 kW)
constraints of each user. The Lagrange function is

L(x, µ, λi) =
N∑
i=1

[fi(xi) + λi(bi − hi(xi))] + µ(gi(xi)− a)

(2)
where λi ≥ 0, µ are called Lagrange multipliers. Since λi
can be computed locally, the Lagrange multiplier of our
interest is µ, associated to the only coupling constraint.
From now on, we neglect the local constraints as they can
be included directly in the cost functions fi. As detailed
in [4], the corresponding relaxed dual problem becomes
unconstrained:

max
µ

min
x=(x1,...,xN )

L(x, µ). (3)

The standard algorithm is as follows: given an initial
estimate of µ, each user computes its best ECS x∗i such
that

x∗ = arg min
x
L(x, µ). (4)

Then, x∗ is sent to the central unit, and a subgradient
of minx L(x, µ) as function of µ is available. The central
unit computes and sends to agents at iteration k:

µ(k) = µ(k−1) + α(k−1)

(∑
i

gi(x
∗
i )− a

)
, (5)

where α(k−1) is the step length of the gradient descent
algorithm. Since the Lagrange multiplier µ can be
interpreted as the energy price, in order to decentralize
the given dual problem., we split µ =

∑N
i=1 µi. A

distributed algorithm that can be applied acts as the
previous one with the only difference: agent i solves the
optimization problem

min
xi

fi(xi) + µi (Ngi(xi)− a) , (6)
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where Ngi(xi)− a approximates the global overload∑
j gj(xj)− a. The only computational effort of the

central unit is the gradient descent step for µ. The
latter optimization problem is solved by means of the
population-based metaheuristic method QPSOL, see
[3], that reduces a NP-hard combinatorial optimization
problem to an adaptive algorithm requiring limited
computational power.

Figure 1. The panel displays the communication con-
nections in network model, whereas the computation of
the optimization problem is distributed among the agents
S1, . . . , SN and the central unit has only to provide a
computationally cheap step of gradient descent, as in Eq.
(5).

The underlying idea is to split the optimization
algorithm on 2 time scales: (1) the micro-scale
concerns the improvement along the day of the day-
ahead proposed ECS; (2) the macro-scale involves the
reputation-reward mechanisms of the agents, described
below, and their collective behavior.

3. Sw arm Simulat or Description
This simulation studies energy distribution to a city
district managing its total daily power consumption
without power peaks and achieving a given aggregate
load curve. Users should follow utility suggestions and
receive incentives according to their flexibility. This
simulation aims to analyze ways to distribute reward and
loads to obtain the best total power curve, considering
human behaviors and dynamics. Initially users behave
according to some random habits, but they modify
their flexibility to perform suggested schedules and
asymptotically the multi-agent system stabilizes: in
order to encourage users to continue working together,
individual credits are spread throughout the possible
range. The reward and reputation mechanism explained
in what follows aims to give benefits to the most flexible
users, in terms of economical awards, e.g. discounts on
the flat energy tariffs. Every day users compute local
best ECS in a distributed way, according to their needs
and utility constraints, as described in Section 2. In this
Section we focus on the reputation mechanism defining
the emerging learning process. Consider best ECS as
daily input data. Agents actions define local effective
ECS. Two indices evaluate end-users behaviors:

1. reputation depending on start times of effective
ECS;

2. reward depending on the distance between best and
effective (both local and global) load.

Reputation definition. Each agent may accept or
decline ni suggestions, with ni number of appliances.
Denote by x∗i the best (sub)-optimal ECS found for Eq.
6 at the end of each day, and denote by x̂i the effective
ECS decided by user i. Formally, the reputation of user
i along the day is

ri = 1− |x
∗
i − x̂i|
ni

∈ [0, 1], (7)

, where | · | denotes the distance between the best and
effective i-th ECS in terms of start times of appliances,
i.e., reputation decreases as violation rate gets high.

Reward definition. The reward is defined in terms
of credits: each agent may earn up to 24 credits each
day, comparing hourly the best (b) and effective (e)
two quantities: global load and local load. Formally the
credits of user i at hour h is defined as

cih = 1− |glob loadb − glob loade|
glob loadb + glob loade

− |loc loadb − loc loade|
loc loadb + loc loade

.

(8)

At the end of each day, credits ci ∈ [0, 1] are re-
normalized and create rank lists.

Behavior and learning process modeling. Each
agent acts based on his own behavior profile, shaped
according to

1. favorite start times to schedule appliances;

2. relevance given to reward and reputation by means
of the weight parameter αi ∈ [0, 1], to define
reaction to feedback;

3. natural predisposition to follow advice, to set the
violation probability, defined by standard deviation
σi of a Gaussian distribution.

Best ECS for utility are denoted by the start times
vector x∗i and actions are samples from Gaussian
distributions

x̂i ∼ N (x∗i , σ
2
i ), (9)

with mean given by x∗i and standard deviation σi
representing flexibility. i.e. how much the performed start
times are far from the suggested ones. At each iteration,
the normal random variable x̂i representing effective
start times for all appliances of user i is sampled, and
it will be statistically close to the best schedule x∗i as
the standard deviation σi is tending to zero. Profiles
are modeled according to σi that is initially sampled
uniformly in a given interval [σ1, σ2]. For large σi agents
tend to selfish behaviors and do not accept suggested
ECS. Another learning parameter is the weight αi ∈ [0, 1]
each agent gives to reward and reputation as feedback,

3EAI
European Alliance
for Innovation

EAI Endorsed Transactions on 
Cognitive Communications 

01-05 2015 | Volume 01 | Issue 2 | e3



Figure 2. The peak (upper plot) and mean (lower plot)
power load (Watts) of a 5 agents neighborhood is displayed
at the first of the distributed algorithm proposed in Section
2. The red (black) curve represents the district global load
we aim to attain. It has to be compared with the result at
the last iteration displayed in Fig. 3. All agents are flexible
during 10 am-9 pm.

i.e., after each observation period user i evaluates the
linear combination of its mean reputation r̄i and its mean
reward

c̄i : qi = αir̄i + (1− αi)c̄i. (10)

Given the satisfaction threshold ε (in numerical
experiments ε = 0.6), if qi > ε, agent i is satisfied and
there is a certain probability that relaxes decreasing its
standard deviation σi, otherwise it increases according
to a fixed discrete random distribution. In conclusion,
behavior of agent i is defined by the Gaussian probability
density function f = f(x∗i , σi, αi). At each feedback
iteration the behavior parameter σi is updated. Houses
with best and worse reputations and rewards are listed as
another daily feedback, and emerging collective beahvior
is described in Section 4.2.

4. Numerical Results

4.1. Micro-scale simulation

In this numerical experiments, using MATLAB software
we run the simulator for small residential neighborhoods,
i.e., N = 5, N = 10 agents and through QPSOL and
Lagrangian relaxation described in Section 2, few
iterations are sufficient to get a significant reduction of
the global overload, as shown in Fig. 2. The output of

Figure 3. The peak (upper plot) and mean (lower plot)
power load (Watts) of a 5 agents neighborhood is displayed
at the last iteration (t = 10) of the distributed algorithm
proposed in Section 2. The red (black) curve represents the
district global load we aim to attain. All agents are flexible
during 10 am-9 pm.

Figure 4. The panel displays the average overload (over
10 samples), i.e., the distance between best and effective
global load, as function of algorithm iterations.

such distributed algorithm are the daily suggested ECS,
and the macro-scale simulator deals with the learning
process acting on human decisions for ECS. In what
follows we describe in detail the proposed algorithm on
the micro-scale, i.e. performing during the day on the
micro-time scale.
State of the system:
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• ECS of all users is a vector x = (x1, . . . , xN );

• Lagrange multipliers, i.e. energy prices of all users
µi, i = 1, . . . , N .

Input:

• Cost function f =
∑N
i=1 fi depending on overload,

energy cost and tardiness;

• Constraint functions gi, i = 1, . . . , N denoting the
peak profile of each user, leading to the global
constraint displayed in Eq. (1); constraint function
hi, i = 1, . . . , N ;

• Global mean load profile a = a(t) and local peak
load profile bi = bi(t), i = 1, . . . , N depending on
time;

• Gradient descent step α ∈ (0, 1);

At each iteration k:

• Each agent i = 1, . . . , N solve the optimization
problem

min
xi

fi(xi) + µi (Ngi(xi)− a) ,

by means of a methaeuristic algorithm QPSOL, see
[3] for further details;

• Each agent sends its estimate x∗i to the central unit;

• The central unit update the global Lagrange
multiplier µ as

µ(k) = µ(k−1) + α(k−1)

(∑
i

gi(x
∗
i )− a

)
,

where α(k−1) = α/(k − 1) is the gradient descent
step, decreasing as the iteration is large. Then,
the central unit updates the local energy prices,
i.e. Lagrande multipliers such that

∑
i µi = µ, as

follows

µ
(k)
i = F (µ(k), x∗i )

where F is a function decreasing with the load of
agent i with ECS x∗i . An example for F is a line
F (µ(k)) = 1− µ(k), where µ(k) actually depends on
x∗i .

Output:

• Each agent knows its daily optimal ECS x∗i (∞);

• The central unit knows the final Lagrange mul-
tipliers µi(∞) and the approximated global opti-
mal state x∗(∞) = (x∗1(∞), . . . , x∗N (∞)) solving
the NP-had constrained optimization problem dis-
played in Eq. (1).

Figure 5. The upper plot shows the maximum (blue) and
minimum (red) difference in percentage (converging to
20%) between best and effective total load varying the
number of houses from 15 to 500. The plot below refers
to necessary time to the district to reach a stable state
(3− 6 months) and a stable difference between the two
loads, compared to the number of houses from 15 to 500.

4.2. Macro-scale simulation

Software used for the development of macro-scale
simulation is GAMA-platform [7], an agent-based,
spatially explicit, modeling and simulation platform.
Models are written in the GAML agent-oriented
language, so that each house is considered to be an agent.
We consider a district composed by N = 100 houses
and a scheduled annual load for each resident about
1200− 1400 kWh.
Each agent at the beginning of the day will decide which
and how many appliances would like to program. All
houses compute the best load profile and decide to follow
it or not. At the end of this process they send to central
unit their data so that it can assess their behavior and
spread credits.
Appliances are distributed according to the following
percentages: 99% of houses have a WM, 70% have a DW
and 30% have a TD. There are also some differences
between user habits and families. These are modeled
varying the maximum number of possible daily cycles
for each appliance. In particular 40% of residents will
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use every appliance no more than once a day, 50% no
more than twice and 10% no more than three times a
day. Some exceptions are considered. Some users have
also the ability to generate energy with solar panels, but
they cannot share it with their neighbors.
Each agent acts based on his own behavior profile. This
is shaped according to user reaction to the following
different topics:

• Favorite times to schedule appliances: three time
areas are identified as favorite and are shared
with different probability. These regions are late
afternoon, early morning and middle hours of the
day.

• Relevance given to reward and reputation:agents
can perceive feedback in several ways, in particular
someone could give more importance to reputation,
someone else to reward and other one could
consider equally significant these two parameters.

Figure 6. The charts are two examples of the values
assumed by the total effective load (red) and the total best
load (green) in the different hours of the day. The plot on
the left represents the situation when the simulation starts,
while in the right one the situation is stabilized.

• Natural predisposition to follow advice: there are
three possibilities also in this case and agents
are splint according on their tendency to take
an active part in the multi-agent distributed
system. Some users are interested in satisfy utility
demands, other instead prefer not to schedule their
appliances and finally some other try to balance
these two trends.

Profiles are spread according to certain probability
distributions and there is a little probability that agents
change a specific profile during simulation. Moreover this
classification is not so hard and some exceptions are
taken into account.

Every day agents receive suggestions on load coming
from the central unit and they are rewarded based

on how they follow these advices. The purpose of the
implemented optimization is to reduce the difference
between the cumulative effective ECS and the cumulative
best one. During simulation users learn to follow
suggestions, in line with their behavior profile. The
learning process depends on relevance that they give to
reward and reputation. If they decide to not take the
advice, they will schedule appliances in their “favorite
times”.

The energy utility awards prizes according on
behaviour of agents and on credits that each user
obtained in a fixed period. During the day time each
agent can gain a maximum of 24 credits, one for hour.
At any time, credits depends both on individual behavior
and cumulative conduct. Rewards are redistributed
according to rank list to encourage users to continue
working together and following advice. Who does not
consider the suggestions is doubly penalized, while
virtuous people are rewarded even further. In this way
concentrations of agents with the same score are avoided.
Agent reputation is defined by rate of advice violation
and run in range [0, 1]. Violation rate changes depending

Figure 7. The picture displays houses in a district using the
software Gama. The red houses are the ones with effective
ECS slightly different from the suggested ECS, whereas the
green houses are the more reliable and energy efficient.
The used software allows a dynamic visualization as the
iterations of the algorithm run.

on how they move from suggestion and increases with
the hours difference between appliance best scheduling
and effective scheduling.

Residents received periodic feedback on their conduct:

• Mean reputation in these days (from the previous
feedback) in relation to best reputation. In fact
reputation is a parameter for comparison with the
other agents.

• Mean reward obtained in these days.

In simulations the time between a feedback and the
following one is set to one week. This feedback can
influence user behavior and system evolution. Outcomes
show that this development tends to reach stable mean
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values of violation and reward and so system finds a
balance, after a lot of days.

The system evolution stabilizes in the presence of
perturbative phenomena on the input parameters, i.e.,
differences between effective and best ECS. Using default
value of parameters we can reach a mean percentage
difference (over the best load) between the best total
load and the effective total load converges to 20% as in
Fig. 5 (upper plot).

Varying the number of houses, the difference between
effective and best load profile stabilizes starting from 100
houses in the district, as shown in Fig. 5 (the bottom
chart). From numerical simulations with our setting
(N = 100 houses), convergence time varies between 3
and 6 months. Reported values are the average over 10
simulations with the same number N of homes. Variance
is greater if we consider few houses, while stabilization
time increases with N .

In what follows, we describe in detail the algorithm
iterations we propose on the macro-scale, i.e. perfoming
along days and stabilizing after weeks or months.
Input:

• The number of appliances of each agent ni, i =
1, . . . , N ;

• The initial reputation of each agent ri ∈ [0, 1], i =
1, . . . , N ;

• The initial reward of each agent i for every time
slot (hour) h, i.e. cih ∈ {0, 1}, i = 1, . . . , N, h =
1, . . . , 24;

• Weight parameter αi ∈ [0, 1] that is the relevance
each agent gives to reward and reputation to define
its reaction to feedback,

• Standard deviation σi, i = 1, . . . , N for Gaussian
distribution N (0, σi) modeling predisposition to
follow advice. Such value is initially sampled from a
Uniform distribution in a preset range σi ∈ [σ1, σ2];

• Behavior satisfaction threshold ε (in numerical
experiments we choose e.g. ε = 0.6). It is a weight
that defines a tradeoff between the reputation and
the reward, thus it is a real value in (0,1). For any
other value in (0,1) there is no significant change
in the results.

At each day/iteration k:

• Each agent decides how many appliances to
program, between 1 and ni;

• Each agent computes the best load profile based

on the suggestions received from utility x
∗(k)
i (see

micro-scale algorithm);

• Each agent decides to follows the suggestion or not,

performing the effective schedule x̂
(k)
i . Its decision

is based on its behavior characteristics:

x̂
(k)
i ∼ N (x

∗(k)
i , σi)

• reputation and rewards are updated and are given
to agents as feedback

r
(k)
i = 1− |x

∗(k)
i − x̂(k)i |

ni
∈ [0, 1]

c
(k)
ih = 1− |glob loadb − glob loade|

glob loadb + glob loade

− |loc loadb − loc loade|
loc loadb + loc loade

.

and the total credits can be at most 24 and
then they are normalized in [0, 1], defined as c̄i =∑
h cih/|

∑
h cih|;

• each agent reacts evaluating

q
(k)
i = αir̄

(k)
i + (1− αi)c̄(k)i .

If qi > ε, agent i is satisfied and relaxes decreasing

its standard deviation σ
(k)
i , otherwise it increases,

i.e.
σ
(k)
i = F (σ

(k−1)
i , q

(k)
i ).

Output:

• Asymptotic rewards and reputations
c̄i(∞), ri(∞), i = 1, . . . , N ;

• Global load attained by the residential district
depending on effective schedules ECS x̂ =
(x̂1, . . . , x̂N ), approaching the optimal suggested
ECS x∗ = (x∗1, . . . , x

∗
N ).

5. Conclusions
In this paper we provide a mathematical model and a
simulator of an energy distribution system applied to a
residential district. Once end-users compute local optima
in a distributed way, human decisions are modeled and
a reputation-reward mechanism is performed on large
numbers. Numerical results prove the efficiency of our
algorithm: on the macroscale with few houses (150) the
difference between best and effective ECS converges to
20%, and with an average time of 3 months the district
stabilizes. Moreover, the approach will be verified on the
field with real devices and application in the INTrEPID
project pilot.

Future research may be devoted to apply Lagrangian
Relaxation methods also to the macro time-scale,
updating individual energy prices each day, as a function
of the difference between best and effective ECS.
Another advance is to develop asynchronous versions
of the proposed algorithms adapting optimal ECS to
asynchronous end-users decisions. Finally, a further

7

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on 
Cognitive Communications 

01-05 2015 | Volume 01 | Issue 2 | e3



extended model we are going to study aims to to recover
who is not cooperative: few residents, who are not usual
to comply with the advice, are free to plan their load
as they prefer, but they will have penalties in place of
awards. On the contrary, the rest of users will have to
compensate for the total load receiving a higher reward.
This more adaptive system aims to attain the global load
curve more precisely, considering and involving agents
habits and schedules predictions.
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