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Abstract—Bayesian compressive sensing (BCS) utilizes the prior 

distribution of signal coefficients to reconstruct the original 

signal. The widely used prior is Laplace and Gaussian distributed. 

In this paper, we use the scene of L sets of signal sparse 

coefficients which are statistically related and take advantage of 

Laplace prior and statistically interrelationship among signals to 

propose the Laplace prior based distributed Bayesian 

compressive sensing. We provide the experiment result to 

demonstrating that the proposed method is an effective 

reconstruction algorithm and has a good performance. 

Keywords: Bayesian compressive sensing (BCS); Laplace prior; 

statistically interrelationship; distributed Bayesian compressive 

sensing. 

I. Introduction 

Compressive sensing has received a lot of attentions in 

recent years due to its active theoretical characteristic and its 

practical use in many application areas. Let 
N!x ! be the 

original signal which has a sparse representation in one basis. 

Most of its coefficients are zero for its sparsity. Consider the 

measure system " #y !x n , where 1M $ linear 

measurement y of original signal x is taken with 

the M N$ projection matrix % &1 2, , , N"! " " "! and 

n represents the measure noise. The mapping from y to the 

approximation of x is under-determined, since M N' .

According to the theory of compressive sensing[1-2], with the 

certain condition and reconstruction algorithm, the original 

signal x can be reconstructed accurately even if the number of 

measurement is highly smaller than the number of 

coefficients( M N' ).

The common reconstruction algorithms utilize the sparsity 

of the signal x and constrain the
pl norm of x . The formulation 

is [2]: 

" ( )2
arg min

p p
*" + #

x
x y !x x .          (1) 

With the case of p=0,
0

x is the number of nonzero 

coefficients of x , and it is a NP-hard problem. Thus, the 
common value of p is 1. A number of inversion algorithms 
have been proposed to solve the problem based on (1), 
including linear programming [3] and greedy algorithms [4] [5]. 
Unlike the point estimate of the coefficient in [3-5], the CS 
reconstruction algorithm can also been formulated in a 
Bayesian framework [6] [7]. In [6], the prior of sparse 
coefficients and relevance vector machine (RVM) [8] are used 
to resolve the CS problem. The Laplace prior of sparse 
coefficients is utilized in [7]. The experiment result in [7] 
shows that the reconstruction of Bayesian compressive sensing 
based on Laplace prior is better than BCS proposed in [6]. 

In this paper, we formulate the reconstruction of L sets of 
statistically related signal coefficients using the Laplace prior. 
As will be shown, because of utilizing the statistically 
relationship among the signals, our formulation includes the 

formulation in [7] as a special case ( L =1), and result in the 
less number of total measurement needed by the reconstruction 
of all signals. This statistically related framework has been 
proposed in [8]. But in the literature [8], the algorithm bases on 
the BCS. We will demonstrate with the experiment result that 
the proposed algorithm provides the better reconstruction 
performance than the method in [8] and the separate Bayesian 
compressive sensing based on Laplace prior in [7].    

The rest of this paper is organized as follow: in section II, 
we analyze the distribution hierarchical Bayesian modeling 
based on Laplace prior and propose a reconstruction algorithm 
for this problem. We present the experiment result and analyze 
it in section III. The conclusion is drawn in section IV. 

II. Distribution Bayesian CS Modeling 

In Bayesian framework, all unknowns are modeled as the 
stochastic quantities with the some probability distribution. The 

signal x is assigned the distribution ( )|p ,x , and the 

measurement y is also a random quantity with the 

distribution ( )|p y x . The parameter, decides the distribution, 

and it is called hyperparameter. The reconstruction of 
signal x depends on the determination of the hyperparameter. 
This model is also called hierarchical Bayesian model. 

Assume that the L sets of measurements are performed, 

and they are statistically related. The L sets of measurements 

are represented as ( )
1, ,i i L"

y
!

, where i i i i" #y ! x n . In 

general every measurement vector iM
i !y ! employs a 
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different random projection matrix iM N

i

$!! ! ,

where
i

M represents the number of ith set of measurements. 

in is modeled as iM i.i.d. draws of a zero-mean Gaussian 

random variable with a same unknown 

precision - (variance1 - ). 

     For simplicity but without loss of generality, we assume that 

the sparse basis N"# I , and we can obtain i i i i" "x # $ $ ,

then i i i i" #y ! $ n . Thus the probability distribution of iy is: 

. / . /1| , | ,i i i i ip - - +"y $ y ! $! ,                           (2) 

where a Gamma prior can be given to the precise - . However, 

the estimation of - is not performed well with the greedy 

algorithm and it would make the reconstruction performance 

bad. So we put - a fix value
2

2
0.01*- " y  in the beginning 

of algorithm like in [6]. 

The coefficients i$ is assigned the Laplace prior with the 

parameter 0 [7]. This Laplace distribution is shared by all 

signals, and the L signals are statistically related in this sense. 
That is: 

. / . / . /| 2 exp
N

i ip 0 0 0" +$ $         (3) 

However, this model of Laplace prior cannot be used directly, 
since it is not conjugate to the Gaussian distribution in (2). To 
solve this problem, the hierarchical prior is employed. Letting 

the
,i j1 represent the jth sparse coefficient of the ith signal, we 

first assign the zero-mean Gaussian random distribution with 

the non-zero precise . /1, , Nr r"r ! to i$ :

. / . /,
1

| | 0,
N

i i j j
j

p r1
"

" 2$ r !                (4) 

After that, secondly we use the following hyperprior on jr :

. / . / . /| |1, 2 2 exp , 0, 0
2

j

j j j

r
p r r r

0
0 0 0 0

3 4
" 5 " + 6 67 8

9 :

(5) 

We have known that the L signals share the Laplace 

distribution in the (3) and the parameter0 . Consequently, in 

the hierarchical model we assume that the Gaussian distribution 

on i$ in (4) is shared by the L signals. It is important to note 

that the hyperparameters . /1, , Nr r"r ! and 0 are shared 

among the all signals. We use the data from all L sets of 

measurements ( )
1, ,i i L"

y
!

to learn the common 

hyperparameters r and0 . This makes it possible to reduce the 

number of total measurements. 

   In the final, we have . / 1p 0 0;  and based on the above, 

we can get 

. / . / . /
2

,
0

| | | exp
2

N

i i i jN
j

p p p d
0

0 0 0 1
#< 3 4

" " +7 8
9 :

=>$ $ r r r

(6) 

   This hierarchical model includes three stages. The hyperprior 

in (4) and (5) result in the Laplace distribution . /|ip 0$ in (6). 

We have completed the formation of the signal model. 
Having defined the prior, we carry out the Bayesian inference 

by computing the posterior . /, , , |i ip 0 -$ r y . The type-II 

maximum likelihood approach (or evidence maximization) is 
used to perform the Bayesian inference in this paper. In order 
to complete our inference procedure, we decompose the 

posterior . /, , , |i ip 0 -$ r y as

. / . / . /, , , | | , , , , , |i i i i ip p p0 - 0 - - 0"$ r y $ r y r y  (7) 

The . /| , , ,i ip 0 -$ r y is a multivariate Gaussian 

distribution . /| ,i i i? @$! with the parameters like: 

T

i i i i-"% & ! y                , (8) 

. / 1
T

i i i-
+

" #& ' ! !    ,       (9) 

where . /11 , ,1 Ndiag r r"' ! .

       Now we utilize the posterior . /, , | ip - 0r y to compute 

the hyperparameters. Exploiting 

. / . / . / . /, , | | , ,i ip p p p0 - 0 - 0;r y y r r ,

we estimate the hyperparameters by compute the maximum of 

the joint distribution . / . / . /| , ,ip p p0 - 0y r r , or 

equivalently its logarithm 

. / . / . / . / . /
1

1

1

, log | , | |

1 1
log log log

2 2 2 2

L

i i i i

i

L
t

i i i i j

i j

p p p p d

N r

0 - 0 0

0 0
0

"

+

"

"

3 4
" + + # + +7 8

9 :

= >

= =

r y $ $ r r $

C y C y

"

                                                                                               , (10) 

with
1 1 T

i i i- + +" #C I ! ' ! . There are two approaches to 

maximize . /,0r" with respect tor and0 .

1) Iterative Solution: We respectively differentiate (10) 

with respect to r and0 , set the results to zero and have 



. /2 2

, ,1
4

2

L

i j i jjinew

j

L L L
r

L

0 ?

0
"

+ # # # @
"

=
  ,    (11) 

. /2 1
new

jj

N

r
0

+
"
=

                                               ,      (12) 

where ,i jj@ is the jth diagonal component of the @ of the ith 

signal and ,i j? is the jth component of% of the ith signal. We 

note
newr is the function of the ( )

1i i N"
%

!
and ( )

1i i N"
&

!
. At 

the same time, ( )
1i i N"

%
!

and ( )
1i i N"

&
!

are the functions 

of
new

r . An iterative algorithm is performed among (8), (9) and 

(11).
new0 is get from 

newr in (12). The all hyperparameters 

are estimated through the above iterative procedure.  

      However, the iterative solution has a limitation that it needs 

a . /3NA operation. It makes that the approach is very slow 

when it is applied to a large-scale problem. So a fast algorithm, 

similar to [9], is utilized in the following. 

2) Fast Algorithm: Considering that . /,0r" dependents 

on the hyperparameter
jr , ( )1, ,j N! ! , we can get  

1

, , , , , , ,

T T T

i k i k i k j i j i j i j j i j i j

k j

r r r- +
+

B

" # C C # C C " # C C=C I C

                                                                                               , (13) 

where
,i jC is the jth column of i! , and

,i j+C is the 

contribution to iC without ,i jC . Applying the above 

determination, the correspond parts in (12) can be written as 

1 1

, , , ,1 1

, 1

, , ,1

T

i j i j i j i j

i i j T

j i j i j i jr

+ +
+ ++ +

+ +
+

C C
" +

#C C

C C
C C

C
,                       (14) 

1

, , , ,1 T

i i j j i j i j i jr +
+ +" # C CC C C .                         (15) 

  Using the equation (14) and (15) and regarding 

. /,0r" as the function of
jr , we can get 

. / 1

, ,

1

1
lo g

2 2

L
t

i j i i j i k

i k j

r
0+

+ +
" B

3 4
" + # #7 8

9 :
= =r C y C y"

2

,

1 , ,

1 1
log

2 1 1

L
i j j

j

i j i j j i j

q r
r

r s r s
0

"

3 43 4
# # +7 87 87 87 8# #9 :9 :
=

. / . /j jl r+" #r"                                                     (16) 

where . /jl r is

2

,

1 , ,

1 1
log

2 1 1

L
i j j

j

i j i j j i j

q r
r

r s r s
0

"

3 43 4
# +7 87 87 87 8# #9 :9 :

=

and j+r is r without the jth component. ,i js and ,i jq are defined 

as

1

, , , ,

T

i j i j i j i js +
+" C CC ,    

1

, , ,

T

i j i j i j iq +
+" C C y  .            (17) 

The maximum of . /r" with respect to
jr is the same as the 

maximum of . /jl r . Differentiating . /jl r  with respect to jr ,

we obtain 

. /
. /

2

, ,

2
1 , ,

1

2 1 1

L
j i j i j

ij j i j j i j

dl r s q

dr r s r s
0

"

D E
F G" + # +
F G# #H I

=    .     (18) 

In order to simplify the zero-finding procedure in (18), an 

approximation that , 1j i jr s JJ  is used in here. This 

approximation has been found to be valid numerically e.g., 

typically
, 20*1i j js rJ [9]. Therefore, setting the equation 

(18) to be zero and getting the approximate result as 

. / . / . /
2

2 2

, , , , ,1 1 1
2 1 2 1 4

2

L L L

i j i j i j i j i ji i i

j

L s L s L s q s
r

L

0 0 0 0

0
" " "

D E D E D E+ # # # + # +H IH I H IK
= = =

                            if . /2 2

, , ,1
0

L

i j i j i ji
s q s0

"
D E# + LH I=     (19) 

0jr "        otherwise.                                                          (20) 

      The data from all the signals are used to update
jr , and 

other processes of this fast algorithm, which is respectively 

performed on each signal, are same as those in literature [7]. 

III. Experiment Result 

In this section, we present the experiment results 

with 2L " signals of length 512N " . Each signal has 20 

spikes in 20 random locations. The spike denotes the 

coefficient which is non-zero and realized of the unit variance 

Laplace distribution. The non-zero coefficients of the two 

signals have the same locations and random amplitudes 

consistent with identical Laplace distribution. The 

measurement matrix i! is constructed by first obtaining a 

iM N$ matrix with i.i.d. draws of a zero-mean Gaussian 

distribution . /0,1! , and then the rows of matrix i!  are 

normalized to unit. We add a zero-mean white Gaussian noise 

with standard deviation 0.005 to the measurement. In the Fig.1, 

the number of measurements is set
1 2 50M M" " , and in the 

Fig.2, the number of measurements changes from 40 to 70 in 

step of 1.  
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Fig.1. Reconstruction of the signals with Laplace prior. (a),(b)Signals. 

(c),(d)Reconstruction by separate Laplace based CS. (e),(f) 

Reconstruction by distributed Laplace based CS. 

      Fig.1 (a) and (b) is the two original signals with the Laplace 

prior. The reconstruction result with the BCS based on Laplace 

prior is presented in Fig.1(c) and (d). Because of the number of 

the measurement is smaller than quantity needed for precise 

reconstruction, the reconstructed signals are heavily noisy. 

Since the two signals are not statistically independent, the 

distributed Laplace based CS can utilize this interrelationship 

and obtain the almost perfect reconstructions [see Fig.1(e)(f)]. 

     To compare the reconstruction performance of distributed 

Laplace based CS with MT-BCS[8] and Laplace based CS[7], 

in the second experiment we use the same dataset as Fig.1 and 

represent the probability of successful reconstruction as a 

function of the number of measurements (average 1000 trails). 

It is clear that our proposed method outperforms other methods.  

The separate Laplace based CS do not utilize the statistically 

relationship between the signals, so it gets the most poor result. 

MT-BCS and our method both take advantage of the 

statistically relationship of the original signals. However, our 

proposed method utilizes the Laplace prior of the signals and 

MT-BCS bases on the Gaussian prior. Thus our method 

represents the best reconstruction performance. 

IV. Conclusions 

In this paper, we formulate the reconstruction of L sets of 

statistically related signal coefficients using the Laplace prior. 

Because of utilizing the statistically relationship among the 

signals, our formulation includes the formulation in separate 

Laplace prior based CS as a special case ( L =1), and result in 

the less number of total measurements needed by the precise 

reconstruction of all signals. Our proposed method takes 

advantage of the Laplace prior, and performs better than 

another distributed Bayesian compressive sensing MT-BCS 

based on the Gaussian prior. We demonstrate that the proposed 

method outperforms the method in [7] [8]. 
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