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Abstract—Product codes, due to their relativley large minimum
distance, are often seen as a natural solution for applications
requiring low error floors. In this paper, we show by means
of an ensemble weight enumerator analysis that the minimum
distance multiplicities of product codes are much higher than
those obtainable by other generalized LDPC (GLDPC) construc-
tions employing the same component codes. We then propose a
simple construction of quasi-cyclic GLDPC codes which leads
to significantly lower error floors while leaving the decoder
architecture of product codes almost untouched.

Index Terms—TIterative decoding, product codes, turbo codes,
low-density parity-check codes.

I. INTRODUCTION

Product codes were introduced by Elias in 1954 [1] as a
practical coding scheme capable (in an asymptotic setting) to
achieve an arbitrarily small error probability on the binary
symmetric channel at a code rate bounded away from zero.

Product codes are currently part of the IEEE 802.16 Stan-
dard, which foresees 2-dimensional product codes based on
various combinations of extended Hamming and single parity-
check (SPC) codes!. A proposal for the adoption of product
codes in the Consultative Committee for Space Data Systems
(CCSDS) standard for deep-space mission was presented in
[2]. Product codes have been included also in standards for
power line communications [3].

Although product codes are usually seen as the “block™
counterpart of the original turbo codes [4], they can be seen
also from a different perspective. More specifically, product
codes can be regarded as generalization of Gallager’s low-
density parity-check (LDPC) codes [5], where the SPC check
nodes are replaced by more powerful constraint (check) nodes
(CNs) [6]. Actually, product codes can be regarded as a
structured type of generalized LDPC (GLDPC) codes [6]-[8].

The aim of this paper is to present GLDPC codes as an
alternative construction of product-like codes and to demon-
strate that performance improvements can be already achieved
with simple modifications to the product code structure.

IShortened product codes are foreseen by the IEEE 802.16 Standard,
meaning that part of the information array U is 0-padded. The extended
Hamming codes allowed as component codes have parameters (16,11),
(32,26) and (64,57). The SPC codes allowed as component codes have
parameters (8,7) and (16, 15).
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II. PrROoDUCT CODES
A. Code Structure

The structure of a C = C; x Cy product code can be con-
veniently summarized by the encoding procedure. The &k
information bits are organized in a ko x kp array U (with
k1ky = k). Each row of U is then encoded via an (nq,k;)
binary linear block code C;. The resulting ks x 1y array is then
encoded column-wise through an (no, ko) binary linear block
code C,, leading to an ny X ny array C with the structure

(1)
C - Ukzxkl ‘ Pk2><n1—k1 (1)
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The length and dimension of the product code are n = njne
and k = kq ko, respectively, while its code rate r is the product
of the code rates of C; and Cs, i.e., 7 = (k1/n1)(k2/n2) =
r17ry. The two codes C; and C, are usually referred to as
component codes. It is readily shown that each row of C is
a codeword of C;. Similarly, each column is a codeword of
C,. Typical component codes are short algebraic codes such as
SPC, Hamming, Bose-Chaudhuri-Hochquenghem (BCH) (and
their shortened/extended versions) codes [9]-[11]. The above
description refers to the case of a 2-dimensional product code.
Product codes may be built on arrays of higher dimensions.
However, we will stick to the 2-dimensional case in the
following.

Product codes may be decoded iteratively by means of soft-
input soft-output (SISO) decoding of their component codes
[1], [6], [11], [12], in which case they are often referred to as
block turbo codes (BTCs) or turbo product codes (TPCs).

B. Distance Spectrum

Denoting by d; and ds the minimum distances of C; and
C,, respectively, the minimum distance of the product code is
given by dpi, = dids. In fact, we have dp,;, > dids since
any non-zero codeword C contains at least one row of weight
w, > d; , and each ‘1’ in this row implies in turn a column
of weight w. > ds. Moreover, a weight-d;dy codeword can
be obtained as follows:

o select a weight-d; codeword ¢ e and a weight-dy
codeword ¢@ € Cy; )
o build a ny x n; array C = (c®)Tc®),
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TABLE I
MINIMUM DISTANCES AND MULTIPLICITIES OF SOME SELECTED PRODUCT
CODES (EH = EXTENDED HAMMING CODE, SPC = SINGLE PARITY CHECK

CODE).

(n, k) C1 Co dmin dmin
(256,121) cH (16,11) | eH (16,11) | 16 19600
(256, 165) eH (16,11) SPC (16, 15) 8 16800
(256, 225) SPC (16,15) | SPC (16, 15) 4 14400
(1024, 676) eH (32, 26) eH (32, 26) 16 1537600
(1024, 806) eH (32, 26) SPC (32, 31) 8 615040
(1024, 961) SPC (32,31) | SPC (32,31) 4 246016

(4096, 3249) eH (64, 57) eH (64, 57) 16 108493056
(4096, 3591) eH (64, 57) SPC (64, 63) 8 20998656
(4096, 3969) | SPC (64,63)) | SPC (64,63) 4 4064256

It can be verified that C satisfies the constraints of all rows
and columns. While the minimum distance of a product code
is known (provided d; and ds are), the characterization of its
complete distance spectrum still represents an open problem.
Let us denote by AWM (s) =1+ 31" AWt and A@ (s) =
1+>0" dy A§2)si the weight enumerator functions (WEFs) of
Cy and Co, respectively, and by A(s) =1+, A;s’ the
WETF of the corresponding product code. Expressing A(s) as
function of A(M)(s) and A(®)(s) represents a very appealing
result. Approaches to solve this problem, which comes out to
be extremely complex, have been proposed in [13]-[15], where
an exact expression of the WEF for the low-weight codewords
and an approximate expression of the WEF for the higher-
weight codewords are developed. It was shown in [14] that the
multiplicity of codewords with minimum (non-zero) Hamming
weight of a product code is equal to the product of the
minimum distance multiplicities of its component codes, i.e.,
Ag,., = A((ill)AEZ). We shall see later that the knowledge of
Ag,,;, provides much of the information needed to characterize
the code performance in the low error rate regimes.

In some cases, the multiplicities of the coefficients of
AM(s) and AP (s) can be conveniently obtained through the
MacWilliams identity [16]. The minimum distance multiplicity
(i.e., the multiplicity of codeword with Hamming weight
equal to code minimum distance) of a Hamming code can be
easily calculated as A3 = (})/3. A thorough analysis of the
parameters for product codes based on extended and shortened
Hamming codes is provided in [10], [17].

In Table I, some product codes based on SPC and extended
Hamming codes are listed, together with their main parame-
ters.” Extended Hamming codes are commonly used in place
of Hamming codes to construct product codes, due to their
larger minimum distance (obtained at the price of a slight rate
loss).

C. Error Floor Analysis

The performance over the additive white Gaussian noise
(AWGN) channel of a (1024,676) product code where both
C; and Cy are (32,26) extended Hamming codes, under
soft iterative decoding with Bahl-Cocke-Jelinek-Raviv (BCJR)
decoding at the component codes [18], is depicted in Fig. 4.

2Note that for all product codes in Table I, C; and Co coincide. This is
however not necessary in general.

The performance is in terms of codeword error rate (CER) vs.
Ey/Ny (where Ey, is the energy per information bit and Ny the
one-sided noise power spectral density) and assumes antipodal
signaling. The maximum number of decoding iterations has
been set to 20. A prediction of the product code error floor is
also shown in Fig. 4. It is based on the union bound (UB) on
the block error probability

Pr< S AZ-Q< 2ir]’iz> @
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where Q(z) = (ﬁ)_l e e~¥"/2dt. For large signal-to-
noise ratios (SNRs) Pp may be approximated by the dom-
inating term that is associated with i = dp;, [19]. For the
(1024,676) product code this truncated UB is depicted in
Fig. 43 The CER performance for the product code under
plain iterative decoding does not approach the truncated UB,
but tends to remain almost one order of magnitude larger.
As noted in [10], [11], a sensible performance improvement
can be obtained by scaling the extrinsic information at the
output of each component decoder. The performance curve
using this weighted extrinsic information (w.e.i.) approach
(with scaling factor set to 0.5) is depicted in Fig. 4. In this
case, at high SNR the CER tightly approaches the error floor
prediction. Indeed, the floor appears at a rather high error
rate, i.e. at CER ~ 10~*. In fact, while for higher error rates
the performance is within 0.6 dB from the random coding
bound (RCB) [5], a lower error rates we observe a remarkable
coding gain loss. According to the error floor prediction, at
CER = 1077 the loss w.r.t. the RCB is nearly 1.5 dB. The
high error floor is due to the huge value of A, , as from
Table I, playing a fundamental role in the truncated UB [17].
We observe that this issue affects product codes in general.
On one side, they exhibit relatively large minimum distances
thanks to the d,;, = dids relationship. On the other hand,
the minimum distance multiplicities are usually very high.

Despite of this problem, product codes have been often
regarded as a natural solution for applications requiring low
error floors [20], [21]. Product codes have been frequently con-
sidered for many applications also thanks to the possibility of
implementing efficient decoder architectures see for instance
[22].

ITI. PRODUCT CODES AS INSTANCES OF GLDPC CODES
A. Tanner Graph Representation of GLDPC Codes

An LDPC code is conveniently represented in a graphical
fashion by means of a bipartite graph (or Tanner graph [6])
with two disjoint sets of nodes, namely, the variable nodes
(VNs) and the CNs, such that each edge is only allowed to
connect a VN with a CN. In the Tanner graph of an LDPC
code, the VNs have a one-to-one correspondence with the
encoded bits and the CNs with the parity-check equations.

3We remark that the truncated UB does not represent an upper bound to the
block error probability but only an approximation in the high SNR regimes.
Moreover, the bound of (2) holds under maximum likelihood (ML) decoding,
while numerical results are provided for iterative decoding only.



Fig. 1. Tanner graph of a length-9 product code where both component
codes C; and Cz have length 3. Each VN is checked by a C; code and by
a C2 code. Note that the dimension of the length-9 product code depends on
the dimensions of C1 and Cs.

Therefore, the parity-check matrix of an LDPC code coincides
with the adjacency matrix I' of its Tanner graph. A Tanner
graph is called sparse if the density of its adjacency matrix,
defined as the fraction of non-zero elements in I', is smaller
than one half. As a consequence, the Tanner graph of an LDPC
code is sparse. In the Tanner graph, the degree of a node is
defined as the number of edges incident on it, and the girth
g of the graph is defined as the length of its shortest cycle.
Note that a degree-n CN of an LDPC code may be interpreted
as a length-n SPC code, as it checks the parity of the 7 VNs
connected to it.

Even prior to the discovery of turbo codes, GLDPC codes
were introduced by Tanner in 1981 [6]. Analogously to an
LDPC code, also a GLDPC code is represented by a sparse
Tanner graph with a relatively small number of edges. A
GLDPC code generalizes the concept of an LDPC code in
that a degree-n2 CN may in principle be any (7, k) linear block
code, where 7 is the code length and k the code dimension.
Such an (7, k) code is usually referred to as component
code and the corresponding CN as an (72,k) CN. An (7, k)
CN has n connections towards the VNs and accounts for
n—k >1 linearly independent parity-check equations. A
binary sequence is a codeword for the GLDPC code if and
only if each CN recognizes one of its local codewords. In [6]
regular GLDPC codes (also known as Tanner codes) were
investigated, these being GLDPC codes where the VNs have
all the same degree and the CNs are all linear block codes of
the same type.

Product codes introduced in Section II admit a very simple
representation in terms of Tanner graph. According to this
representation, product codes may be regarded a special sub-
class of GLDPC codes. The Tanner graph of a product code
comprises 2niny edges, a set of n = nino VNs and a set
C = Cy UC; of ng + ny CNs such that |Cy| = ny and
|C2| = ny. Each of the ny CNs belonging to C'y has degree n
and imposes the n; — ky constraints of the component code C;
to its neighboring VNS, whereas each of the n; CNs belonging
to Cy has degree no and imposes the ny — ko constraints of
the component code Cs to its neighboring VNs. Each VN is
connected to a constraint node in C7 and to one in Cy (in
fact, each bit in the array C of (1) has to fulfill both a row
and a column constraint), and therefore all VNs in the graph
have degree 2. Note that all the n; VNs corresponding to the

bits in a generic row of C are connected to a unique CN in
C and that each of these VNs is connected to a specific CN
in Cy. Similarly, all the no VNs corresponding to the bits in
a generic column of C are connected to a unique CN in Cs
and each of these VNs is connected to a specific CN in (.
As a result, it is readily shown that the Tanner graph of any
product code possesses a girth g = 8. For example, in Fig. 1
the Tanner graph of a simple product code of length n = 9,
where both C; and C, are length-3 SPC codes, is depicted. The
graph has nine VNs and six CNs. For ease of representation,
the three CNs belonging to C; and the three CNs belonging
to Cy are drawn above and below the VN, respectively. The
adjacency matrix of the product code in Fig. 1 is equal to

111000000
000111000
000000111
100100100
010010010
001001001

It is easy to check that the graph has girth g = 8.

We point out that there exist other classes of codes that
may be seen as simple special instances of GLDPC codes.
Among them, we mention expander codes constructed on
sparse bipartite graphs investigated, for instance, in [23], [24].
Here, each node in the bipartite graph is associated with a
binary linear code, and each edge with an encoded bit, such
that a binary word is a valid codeword for the expander code
if and only if each node in the graph recognizes a valid local
codeword. Using a procedure identical to that described in [25,
Sec. IV-A], such an expander code may be always represented
as a GLDPC code where all VNs have a degree 2.

It is worthwhile observing that the concept of GLDPC
code may be generalized even further by allowing the VNs
as well as the CNs to be of any generic linear block code
types. The obtained code structure is known to be a doubly-
generalized LDPC (D-GLDPC) code, and allows a higher
design flexibility, especially in terms of code rate [26]-[28]. A
degree-n VN may in principle be any (7, 15) linear block code,
where 7 is the code length and k the code dimension. Such a
VN is associated with k£ encoded bits of the D-GLDPC code. It
interprets these bits as its local information bits and interfaces
to the CN set through its n local code bits. Local encoding
at the VNs may be either systematic or non-systematic. Note
that a D-GLDPC code whose VNs perform a local systematic
encoding may be interpreted as a punctured expander code
(or as a punctured GLDPC code), where the punctured bits
are those associated with the local parity bits of each VN.
This interpretation is however limited to the case where all
VNs of the D-GLDPC code are in systematic form and does
not hold for the iterative decoders.

B. Structured and Unstructured Ensembles of GLDPC Codes

For product codes, it follows from the Tanner graph struc-
ture that the density of the adjacency matrix I' is equal
to 2/(ny + n2) and thus decreases with the lengths of the



component codes, which define the degrees of the CNs. More
generally, longer GLDPC codes of lower density can be
obtained not only by increasing the length of the component
codes but by increasing the number of VNs and CNs while
keeping the component codes and variable node degrees fixed.
We distinguish between ensembles of structured and unstruc-
tured codes. Consider the construction of a GLDPC code of
length n, where the CN set is composed of a mixture of two
component code types C; and Cs of equal length ny =no =n
and each symbol is protected by two component codes. The
regular Tanner graph of such a code has n VNs of degree two
and |C| = n/ni1+n/ne = 2n/n CNs of degree 7. The density
of T' is equal to 7/n and decreases with the number of VNs.
The corresponding ensemble of unstructured GLDPC codes is
defined by the set of Tanner graphs that can be obtained by
all (2n)! possible permutations of edges. The design rate of
the ensemble is equal to » = ry + 79 — 1.

Alternatively, a small Tanner graph called protograph [29]
can be used as a template for the construction of longer
GLDPC codes [30]. The adjacency matrix of a protograph
is called its base matrix B and the adjacency matrix I' of
a GLDPC code can be derived from this base matrix by
replacing each 1 in B by a permutation matrix and each 0
by an all-zero matrix. For example, the base matrix

(11111111111 1111

B_111111111111111 @

represents a compact regular protograph for the case n = 15.
More generally, starting from a size 2 x n all-one base matrix
B, an ensemble of length n regular protograph-based GLDPC
(PG-GLDPC) codes can be defined by the set of Tanner graphs
resulting from the 27n(n/n)! possible choices of permutation
matrices. By this construction each node in the protograph is
replicated n/n times and the edges are permuted among these
replica in such a way that the structure of the original graph is
preserved. The resulting PG-GLDPC codes form therefore an
ensemble of structured codes of design rate » = r; + ro — 1.

Also the structural properties of product codes can be
captured by means of protographs. Using the Tanner graph
of a product code as protograph, we can obtain ensembles of
PG-GLDPC codes with flexible blocklengths n. On the other
hand, after reordering of columns, the adjacency matrix I' of
a product code can be considered as a particular instance in a
regular PG-GLDPC code ensemble as introduced above. For
example, the reader may verify that a reordered version of
the matrix I" in (3) can be derived from a 2 x 3 all-one base
matrix B by replacing each one by a permutation matrix of
size three. Examples of quasi-cyclic regular PG-GLDPC codes
in comparison with product codes are presented in Section V.

The ensemble definitions can be extended to irregular graphs
in which the node degrees are not fixed. In the structured case
this is achieved by means of a base matrix B with columns
and rows of different weights. As a particular example, the
shortened product codes, achieved by a zero-padded informa-
tion array, can be described by such an irregular base matrix,
which results from a removal of the columns associated with

the padded symbols. In the case of unstructured irregular
ensembles, the degrees of VNs and CNs are then considered
as random variables and characterized by their degree distri-
butions, which define the fractions of edges incident to VNs
and CNs of a certain degree.

IV. PERFORMANCE OF GLDPC CODE ENSEMBLES
A. Weight Distribution of GLDPC Codes

As for product codes, the derivation of the WEF for a
specific GLDPC code represents a very hard task. The problem
may be somehow circumvented by computing the average
WEEF for the finite-length GLDPC code ensemble. As an ex-
ample, let us consider the case of a regular GLDPC ensemble
with n degree-2 VNs and m CNs, all of the same type. Let us
denote the WEF of the generic CN by A()(s). Moreover, let
us assume that the CN set is divided into two disjoint subsets
with m/2 CNs each, such that every VN is checked by one
CN in the first subset and by one CN in the second subset.
Taking an approach similar to that described in [31] within the
context of LDPC codes, it is possible to show that the average
WEEF of the GLDPC ensemble, denoted by A(s) = >, A;s',
is such that

1 m/2 J))2
i - (coeff( (A )Els)) /2. s) )
(7)

where coeff(g(z),z!) denotes the coefficient of x! in the
polynomial g(x), and where A; = EA; denotes the expected
number of codewords of Hamming weight [ for a code
randomly drawn from the ensemble with uniform probability.
The average WEF can be then used together with the UB (2)
to obtain an upper bound on the expected block error prob-
ability over the ensemble. For instance, in Fig. 2 the UB for
such a GLDPC unexpurgated ensemble whose Tanner graph
has 1024 VNs and 64 CNs based on the (32,26) extended
Hamming code is compared with the truncated UB for the
(1024, 676) product introduced in Section II. Note that this
product code belongs to the considered GLDPC ensemble. At
high SNRs, the average UB of the GLDPC code ensemble
is affected by low-weight codewords, for which the average
multiplicity A; is small, but not yet zero. In other words, the
average performance of the GLDPC ensemble at high SNRs is
dominated by a subset of codes with bad distance properties.

Instead of considering the expected WEF over the whole
GLDPC code ensemble, we may restrict the analysis to an
expurgated ensemble using again a technique similar to that
described in [31]. Given the probability p; = A;/ (?) that a
weight-l binary sequence of length n is a codeword, an upper
bound to the cumulative probability function for the minimum
distance of a code randomly picked in the ensemble is given by

D
Pr{dmn < D} < (’l‘)pl 2 F(D).
=1

Let us define § as the maximum positive integer such that
F(5) < 1/2. Then, for a code randomly picked in the
ensemble we have a@ £ Pr{dy, < d} < 1/2, meaning
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Fig. 2. UBs and Divsalar bound [32] on the expected block error probability
of a GLDPC code with 1024 degree-2 VNs and 64 CNs based on the
(32,26) extended Hamming code, randomly selected in the unexpurgated
and expurgated ensembles, vs. the truncated UB for the (1024, 676) product
code based on the same component codes.

that a fraction of at least 1 — «a > 1/2 of the codes in the
ensemble has minimum distance larger than §. Let us denote
by A’(z) the average WEF over the subset of bad codes in the
ensemble (i.e., the expected WEF for a code randomly picked
in the subset of codes for which dy,i, < §), and by A”(z) the
WEEF for the good codes (i.e., the expected WEF for a code
randomly drawn in the subset of codes for which dy;, > 6).
The coefficient A; may be expressed as

A =ad]+ (1 -a)A}
so that, for [ > § we can write
A// _ /Il B CYA;
! 11—«

l-«a

which is maximized by choosing A} = 0 and o = 1/2 (recall
that o < 1/2). It follows that we can upper bound the expected
multiplicity of codewords of weight [ > ¢ for a code randomly
chosen among the the good codes as [l{’ < 2A;. For our
example GLDPC ensemble, the first non-zero coefficient of
A"(z) is the coefficient of 2'®, meaning that the minimum
distance of any GLDPC code among the expurgated ensemble
is lower bounded by 16.

The average UB for the expurgated ensemble is provided
in Fig. 2, together with an even tighter upper bound on the
block error probability derived in [32]. Interestingly, for the
good codes forming the expurgated ensemble, the multiplicity
of codewords of weight 16 is remarkably lower than that of the
product code. This is the reason for the huge gap in the error
floor performance between the average UB for expurgated
GLDPC ensemble and the truncated UB for the product code.
Note also that any such GLDPC code whose Tanner graph
has girth ¢ > 8 must belong to the expurgated ensemble,
as its minimum distance is necessarily lower bounded by
16. In fact, according to the simple tree bound presented in
[6, Theorem 2], the minimum distance d,;, of any GLDPC

code C with VN degree 2 and g > 8 is lower bounded as
dmin > d + d(d — 1) = d?, where d is the minimum distance
of each component code. We will show later how to build
explicitly a Tanner graph fulfilling this condition.

The design of finite-length GLDPC codes (LDPC codes as a
special case) has often benefited from asymptotics. Asymptotic
tools allow to predict, on a statistical basis, the performance
offered by an LDPC code randomly drawn from an ensemble
with given characteristics, in the limit where the codeword
length tends to infinity. Examples of asymptotic tools of
common use are the decoding threshold [33] (related to the
waterfall performance, see also Sec. IV-B) and the critical
exponent codeword weight ratio [34] (related to the error floor
performance), briefly reviewed next.

Let us consider a sequence of unstructured or structured
GLDPC code ensembles. All the ensembles in the sequence
share common features: for example, VN degree profile, CN
types and distribution in the unstructured case, protograph
in the structured case. Each ensemble in the sequence is
associated with a codeword length n. The expected number
of codewords of linear weight wn of a length-n GLDPC
code randomly picked in the corresponding ensemble of the
sequence may be expressed as EA,, ~ %" for large
n. The function G(w) is known as the growth rate of the
weight distribution or as the spectral shape of the ensemble
sequence [31]. The critical exponent codeword weight ratio,
here denoted by w*, is defined as

w'=inf{w > 0: G(w) > 0}.

If w* = 0 then a length-n GLDPC code randomly picked
in the corresponding ensemble of the sequence exhibits an
exponentially large number of small linear-sized codewords.
Therefore, it has bad minimum distance properties with high
probability, even for very large n. On the other hand, if
w* > 0 then the expected number of linear-sized codewords
of normalized weight 0 < w < w* for a length-n code picked
in the corresponding ensemble tends to zero exponentially
as n tends to infinity. It turns out that GLDPC codes with
good minimum distance properties should be searched for
in (structured or unstructured) ensembles characterized by
w* > 0, that is by good spectral shape behavior.

A complete solution for the spectral shape of unstructured
GLDPC ensembles has been developed in [35], [36], while a
complete analysis of G(w) for small values of w in unstruc-
tured ensembles is available in [37]. For structured GLDPC
ensembles based on protographs and for GLDPC ensembles
where each VN is checked by a CN of one type and by a CN
of another type we refer to [38] and [25], respectively.

B. Iterative Decoding of GLDPC Codes

Decoding of GLDPC codes is based on the belief-
propagation principle, and is performed through iterative mes-
sage passing over the Tanner graph. Each decoding iteration
consists of an exchange of messages between the VNs and
the CNs. In a first half-iteration, extrinsic log-likelihood ratios
(LLRs) are sent from the VNs to the CNs along the edges of
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Fig. 3. Tanner graph of a BBC with (7,4) Hamming component codes. The
nodes are grouped according to the time instant at which the code symbols
are generated.

the graph. Each CN interprets the received soft messages as an
a priori information and generates the corresponding extrinsic
LLRs: to this purpose, the same SISO algorithms employed at
the component codes of a product code (such as BCJR [18]
or other trellis-based decoding) are used. In a second half-
iteration, extrinsic LLRs are sent back from the CNs to the
VNs. Each VN interprets the received soft messages as an
a priori information and generates the corresponding extrinsic
LLRs. At the end of each iteration, the a posteriori probability
information is calculated for each encoded bit, and a hard
decision is taken. If the obtained binary sequence is a valid
codeword, then a success is declared. Otherwise either a new
iteration is started or, if a maximum number of iterations has
been reached, a decoding failure is declared.

The belief propagation threshold is a measure for the asymp-
totically achievable performance of iterative decoding. It is the
worst case channel parameter for which the decoding error
probability converges to zero with the number of iterations
for a specific class of codes. For the computation of such
thresholds, the probability density functions (PDFs) of the
messages exchanged in the decoder can be tracked as function
of the iterations (density evolution [33]).

In general it is difficult to express the input/output transfer
functions of the component decoders in an analytical way, so
that Monte Carlo methods are typically applied for empirical
threshold evaluation. In case of unstructured ensembles, the
message PDFs along different edges can be averaged over
the ensemble and density evolution is reduced to a single-
parameter problem. Furthermore, Gaussian approximations of
the PDFs are frequently used in practice to simplify the
calculations. In this case, a graphical representation of the con-
vergence behavior by means of Extrinsic Information Transfer
(EXIT) charts [39] can be a convenient tool not only for
threshold evaluation but also for component code matching.
As special role plays the binary erasure channel (BEC), for
which an exact density evolution analysis can be performed
analytically and is equivalent to an EXIT chart analysis [27].
For structured ensembles, however, multi-dimensional transfer
functions are required for the characterization of the com-
ponent decoders [40] and a graphical visualization becomes
difficult. For other channels the threshold computation for
structured ensembles is therefore still an open problem.

Consider a GLDPC code ensemble based on (15,11) Ham-
ming component codes as defined by the base matrix (4). Its
BEC threshold is equal to €¢* = 0.4678, which is equivalent
to the threshold of the corresponding unstructured ensemble
because of the regular structure of both the protograph and
the component Hamming codes. For the AWGN channel the
density evolution threshold can be evaluated by Monte Carlo
methods as (Fy/Np)* = 0.86 dB [41], while an EXIT chart
analysis results in (E},/No)* = 0.75 dB or (E/Ny)* = 1.04
dB, depending whether the mean or the SN R of the PDFs is
fitted at the output of the component decoder [30].

C. GLDPC Convolutional Codes

An example of specially structured ensembles of GLDPC
codes are braided block codes (BBCs) [41], [42], which can be
defined by means of an infinite, diagonally shaped array. Each
code symbol in this array is protected by one horizontal and
one vertical component code. BBCs may be interpreted either
as a convolutional code version of product codes or, if sparsity
is introduced into their structure, as GLDPC convolutional
codes. Figure 3 shows the Tanner graph of a BBC with (7,4)
Hamming component codes.

Analogously to block codes, an ensemble of GLDPC con-
volutional codes can be constructed from a protograph. Such
PG-GLDPC convolutional codes can be described by means
of a convolutional protograph with base matrix

Bmcc
B[foo,oo] = y

where m.. denotes the memory of the convolutional codes
and the component base matrices B;, 1 = 0, ..., m., describe
the edges from the VNs at time ¢ to the CNs at time ¢ + <.
Ensembles of protograph based BBCs can be derived by using
the Tanner graph of a BBC as a protograph [43]. Using the
Tanner graph in Fig. 3 as an example, the component base
matrices can be identified as

B _[1111000 B _ 0000100
11000111 " " ~1Jlo1o00000|

B,_ 0000010 B. _[0000001
2710010000 3710001000

A density evolution analysis of such PG-GLDPC convolutional
codes shows a dramatic threshold improvement compared to
the corresponding block code counterparts [43]. In fact, for the
BEC it can be shown that the convolutional code thresholds
under belief propagation decoding are equal to the block
code thresholds under optimal maximum a posteriori (MAP)
decoding. For the ensemble based on (15,11) Hamming
component codes, the threshold is improved from £* = 0.4678
to €* = 0.5277, while the Shannon limit is at £* = 0.5333.



V. QuaAsi-CycLic GLDPC CODES AS ALTERNATIVE TO
ProDUCT CODES

A way of constructing structured quasi-cyclic (QC) GLDPC
codes was presented in [30]. The code construction is based on
the expansion of a GLDPC protograph by means of circulant
permutation matrices. Although the approach of [30] is general
and permits do construct both regular and irregular types
of GLDPC codes, we present next a simple deterministic
design for regular QC GLDPC codes. The construction aims at
producing a QC GLDPC with parameters as close as possible
to those of a target product code. The proposed approach
requires only that the component codes of the target product
code share the same coded block size, i.e. that ny = ny = n.
Thus, we will indicate as C; and Co the component codes of
the target product code with parameters (7, k1) and (7, ko)
respectively. The construction starts by building the adjacency
matrix of the QC GLDPC with the following form

ﬂoﬂoﬂo... ﬂO ,60

,80 61 52 . 57‘1—2 Bﬁ—l (6)
being 5 a N x n circulant permutation matrix obtained by
the right rotation (by 1 position) of the I« identity matrix,
with 8 = I «7.* The first “block” row (i.e., the first row of
circulants) of I' is associated to the n CNs based on Cq, the
second “block” row to the . CNs based on Cs.

Interestingly, the above-proposed construction provides the
same girth of the product code, g = 8, and therefore guarantees
that the minimum distance of the GLDPC code is lower-
bounded by that of the target product code. To see this, we first
note that the adjacency matrix (6) is free from cycles of length
4. This is due to the fact that there are no identical columns
in I'. Moreover, regular block-circulant matrices with column
weight 2 admit only cycles with lengths multiple of 4 (see
Cor.2.1 in [44]). Hence, we obtain a first lower bound on g as
g > 8. The bound is actually met with equality. To show this,
it is sufficient to combine the first two “block™ columns (i.e.,
the first column of circulants) of I and to compare the result
with a combination of the third and the fourth “block™ column
of I'. The combination of the first two block columns brings
to [0 (8°+ 3] ", while the combination of the third and the
fourth block column is given by [0 (57 + 63)]T. It is easy
to check that there are 7 columns in [0 (3° + ﬁl)]T which

have an identical column in [0 (52 + 3%)] "5 This means that
there are sets of 4 columns in I' that are linearly dependent,
and hence that there are cycles of length 8.

The QC GLDPC code parameters are given by n = @2,
k > mn—(n(n— k1 +n—kz2)). Hence, the final code rate may
be slightly less than that of the target product code. As an
example, if we assume that the two component codes are both
a (32, 26) extended Hamming code, we would obtain a product
code with parameters (1024, 676) (the code rate is 0.66), while
the GLDPC would have n = 1024 and k > 640 (hence, the

T =

HpY, 8L, ..., 71} forms a cyclic multiplicative group of order fi.
3(8%24-B3) is a cyclic rotation of (89+31), i.e. (32+63) = 32(3°+61).

; : : T
‘O (1024,676) Product Code, BCJR

| =©~(1024,676) Product Code, BCJR, w.e.i.

| —Random coding bound (1024,676)

- == Product Code Truncated Union Bound }

| -A—(1024,640) QC GLDPC

B Random coding bound (1024,640)

Shannon limit
5 BPSK, rate 0.625

Iterative decoding threshold -
unstr. GLDPC ensemble

25 3
E,/N, (dB)

Fig. 4. Performance of the (1024, 640) QC GLDPC code, compared to that
of the (1024, 676) product code based on the (32,26) extended Hamming
code. 20 iterations.

code rate is > 0.625). In both cases we have d,,,;,, > 16. For
the unstructured regular GLDPC ensemble with VN degree
2 and CNs based on the (32,26) extended Hamming code,
the EXIT chart threshold can be evaluated as (E,/Np)* =
1.41 dB, while the Shannon limit for the binary-input AWGN
channel is at E, /Ny = 0.82 dB.

The (1024, 640) QC GLDPC code performance are depicted
in Fig. 4 in terms of CER vs. E,/Np, and are compared
to those of the (1024,676) product code based on the same
component codes. Since the QC GLDPC possesses a slightly
lower code rate (0.625 vs 0.66), the RCBs for both (1024, 640)
and (1024, 676) codes are provided. Hence, when comparing
the codes one shall take into account a penalty of ~ 0.1 dB
for the GLDPC code due to its lower rate. Accounting for that,
the performance of the two codes in the waterfall region are
nearly the same (we consider as reference curve for the product
code the one obtained using the w.e.i. approach). However, as
expected, the GLDPC code exhibits a coding gain at lower
error rates w.r.t. the product code. At the last simulation point
the GLDPC code achieves a CER = 10~¢ without signs of
floor at E,/Ny = 3.2 dB, while the product code would
require (according to the error floor estimation) nearly 3.75
dB for the same error rate. The decoding complexity of the
GLDPC code is equal to that of the product code and its QC
structure allows linear complexity encoding.

VI. CONCLUSIONS

It can be observed that the special structure of product
codes leads to large minimum distance multiplicities. In this
paper, we demonstrated that these large multiplicities have a
significant negative influence on the error floors of product
codes. We presented an overview on the concept of GLDPC
codes and pointed out additional degrees of freedom that
can be used in the construction of product-like codes. As a
practical example, employing the same component codes we
proposed a simple QC GLDPC code construction as alternative



to product codes. This construction shows that with simple
modifications to the product code structure it is possible to
design GLDPC codes with the same minimum distance but
much lower minimum distance multiplicity, resulting in lower
error floors while leaving the decoder architecture almost
untouched.
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