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Ahstract-The entanglement of graph states can be calculated by 
adopting Iterative algorithm. The number of inequivalent classes 
of 9-qubit graph states is 440. All 440 local inequivalent graphs 
are classified as two categories: graphs with equal upper LOCC 
entanglement bound and lower bipartite entanglement bound, 
graphs with unequal bounds. The later may display non-integer 
entanglement. After determining the entanglement, the closest 
product state can also be obtained. As for graph states with 
different entanglement values, the closest product states have 
different structural characteristics. The precision of iteration 
algorithm of the entanglement is less than 10.14• 
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I. INTRODUCTION 

The multipartite entanglement plays an important role in 
quantum error correction and quantum computation. Graph 
states are certain pure multipartite quantum states associated to 
graphs [1][2][3] and have important applications in quantum 
error correction[4] and one-way quantum computer[5]. 
However, the quantification of multipartite entanglement is still 
open even for a pure multipartite state. Until now, a variety of 
different entanglement measures have been proposed for 
multipartite quantum states, such as, the (Global) Robustness of 
Entanglement [6], the Relative Entropy of Entanglement [7][8] , 
and the Geometric Measure [9]. Nevertheless, these measures 
are very difficult as they are always defined as the solutions to 
difficult variational problems. Fortunately, these entanglement 
measures are all equal for stabilizer state [10]. It is known that 
the graph state is a subset of stabilizer state. Thus these 
entanglement measures are all equal for graph state. 

The quantification of graph state entanglement is relatively 
simple. In [11], the author gives the upper and lower bounds to 
the entanglement of any graph state by using a simple graphical 
interpretation of these states, but not give the exact 
entanglement values of the graph states which have unequal 
bounds, in order to calculate the exact entanglement values, an 
Iterative algorithm [12] has been proposed. In [12], the author 
gives the exact entanglement values of graph states up to 8-
qubit. This paper will base on [12], calculate the entanglement 
of 9-qubit graph states by adopting Iterative algorithm. 

The paper is organized as follows, in section II, we recall 
the notion of graph state, and its related concepts, the bounds of 
the entanglement, and describe the iteration method. Then in 
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section III we classify all the inequivalent 9-qubit graph states, 
propose the precise values of entanglement and give the closest 
product state. Section IV is devoted to analyze the precision of 
the iterative algorithm. We finish with conclusions. 

A. Graph state 

II. PRELIMINARY 

Graph state is associated with connected mathematical 
graph. A graph G = (V;!) is composed of a set V of n vertices 

and a set of edges specified by the adjacency matrix l, which 
is an nXn symmetric matrix with vanishing diagonal entries 
and lab = 1 if vertices a, b are connected and lab = 0 otherwise. 

The neighborhood of a vertex a is the set of all the vertices 
that are connected to a, can be denoted by N" = {VE V I l", = I} .To 

associate the graph state to the underlying graph, we assign 
each vertex with a qubit, each edge represents the interaction 
between the corresponding two qubits. We denote the Pauli 
matrices at the a -th qubit by X" , Y" , za and identity by fa. The 

graph state related to graph G is defined as 

(1) 

where I.uJ is the joint eigenstate of Pauli operators z" (aE v) 
with eigenvalues (-1)"" , I+)x is the joint + 1 eigenstate of Pauli 

operators Xa (aE V) , andu"h is the controlled phase gate between 

qubits a and b . 

A widely used local operation in dealing with graph states 
is the local complementation (LC) [13], which leaves the 
entanglement properties invariant. LC centered on a qubit a is 
visualized as a transformation of the subgraph of a-th qubit's 
neighbours. Graphically, LC on the qubit a acts as follows: 
One picks out the vertex a and inverts the neighborhood N (a) , 
i.e. vertices in the neighborhood which were connected become 
disconnected and vice versa. 

B. Entanglement bounds 
The entanglement is upper bounded by the local operation 

and classical communication (LOCC) bound Ewcc, and lower 
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bounded by some bipartite entanglement deduced from the 
state, i.e. the "matching" bound Ebi [11]. The inequality for the 
entanglement of a graph state is: 

(2) 

If the lower bound coincides with the upper bound, the 
entanglement of the graph state can be obtained. The 
upper LOCC bound for a graph state is: 

(3) 

Where IAI is the largest number of vertices which any two of 
them being not adjacent [11]. The entanglement is lower 
bounded by the entanglement of a bipartition of the graph. The 
lower bound can be found by "matching" [11]. A convenient 
way of finding the lower bound of the entanglement is to find 
the largest set of nonadjacent edges [12]. 

C. Iterative algorithm 
If the lower bound and the upper bound do not meet, we 

will use a systematical Iterative algorithm [12] to calculate the 
entanglement of such graph states. 

For a graph state IG), the measures of entanglement are 
equal, and entanglement can be written as 

E ( I G)) = min-Iogzl(G I ¢)I
z 

= -logz (maxF¢ ) ¢EPro ¢lEPra (4) 

Wherel¢)�1!(J0I0)+hd"ll))is the product pure state, F, =I(GI¢)I' is 
the fidelity between graph state and the product pure state. 
Iterative equation is derived from maximizing F" that is, to 
find the closest product state. 

The product pure state I¢) can also be denoted as 

I¢)= I1(Xjlo)+Yjll)) (5) ] 

Where x] and Yj are complex numbers subjected to Ixl + IYl = I . 

Denote f =(G I ¢), then 

I1 (x/-flj y/j ) . (6) 
i 

Calculation of entanglement is equivalent to maximize f , we 
use Lagrange multiplier algorithm to calculate the extreme, by 
calculation, the iterative equations are 

1 �VTV" 2 
L (-1) I1 zf' 

z 
.* = _v'_�o_' _----: __ k_"..:.. i __ 

J , �"VT 1 2 
L(-l) 
V�O 

I1zf' 
k"i 

Where Zj =!..L , I' = {I, ... ,1,0,1, ... ,I} ,0' = {O, ... ,0,1,0, ... O} . x] 

(7) 

In each step of the iteration, the fidelity does not decrease 
[12]. Starting with any initial complex random vector 
Z = (zp ... , zJ the iterative equations renew each z] successively, 
the fidelity increases until it does not increase any more, this 
may be the case that the fidelity reaches its local maximum. In 
order to find the global maximum, we run the iterative 
algorithm many times with random initial z. After iterating the 
value of z, we can get Xj and Yj' according to Eq.(6) we can 
calculate f , from Eq.(4) we can get the entanglement of graph 
state. 

III. CLASSIFICATION OF THE GRAPH STATES UP TO 9- QUBIT 

The graphs correspond to the 9-qubit graph states have been 
plotted by L.E.Danielsen with the program nauty[14]. The 
number of LC inequivalent graphs up to 9-qubit is 440[15], and 
we number the graph from No 9.1 to No 9.440. These graphs 
can be classified as two categories: Graphs with identical upper 
Loce entanglement bound and lower bipartite entanglement 
bound, and graphs with unequal bounds. 

A. Graph state with equal bound 
The graph states whose entanglement with equal lower and 

upper bounds are listed in Table I. The entanglement of these 
graph states can be calculated with the methods in Ref [11], i.e. 
the entanglement can be determined by confirming upper and 
lower bounds, and we use program to determine the bounds. 

TABLE l. GRAPH STATES WITH EQU AL BOUND 

E I N09. I II 
2 3,4,5,6,9, 11,17,18,22,23 
3 2,8, I 0, 12, 14, 16, 17, 19,20,21 ,25,26,29,32,33,34,35-38,43,45 
3 46,49-51,56,58,61-71,86,87,90-92,94,101,105,106,110,111, 
3 120,132,135,141,142,149,154,157,158,202,253 
4 13, 15,24,30,31 ,34,39-42,44,48,52-55,57,59,60,73-78,80,82, 
4 84,85,88,89,93,95-100,102-104,107-109,112-119,112,123, 
4 124,127-131,133,134,137-140,143-148,152,153,155, 156, 159, 
4 161,162,165,171-187,189-20 I ,203-205,207-211 ,215,216,220, 
4 221,223-226,228-235,23 7 ,239-252,254-256,260,263,266,268, 
4 271,272,280,282,285,287-294,296,298,30 I ,303,306,308,309, 
4 1 313,314,316,317,319,321-330,334,336,337,341,343,346,351, 
4 354,362,367,369,370,373,374,389,391,399,403 



B. Graph state with unequal bound 
For the other graph states, we can not determine the 

entanglement from the upper and lower bounds, but we can 
utilize Eq.(7) to find the closest product state with random 
initial complex numbers for z] (J = 1, ... ,n ) , and then calculate the 
entanglement. The values of entanglement are listed in Table II 
and Table III. The entanglement of graph state is integer or 
noninteger. 

After determining the entanglement, the closest product 
state can also be obtained. From calculating the closest product 
states of graph states, we find that ring 5 graph is essential to 
all these graph states with entanglement k+0.9275 (integer k) 
and can be considered as the subgraph, so the closest product 
state of these graph state have a substructure of the closest 
product state of ring 5 graph. Closest product state is supposed 
for ring 5 graph state [16], and it has been shown that the 
entanglement of ring 5 graph state is 

(8) 

Denote product state I¢j) = JPIO)+J1- pej•i 1 1) ,(J = 1, ... ,4 ) 
Where JP=P- ( l- �J =0.4597 , ({JI=�' ({J,=-� , ({J3=3Jr , 

2 ,,3 4 - 4 4 

3Jr ({J4 = -4' The closest product state of ring 5 graph state is . 

(9) 

The graph state set with noninteger entanglement value 
(k+0.9275) is specified by ring 5 graph state, and the 
components of the closest product states can be divided into 
three kinds, such as l±) , I¢j) , l o) or I 1) , where [±)= jzOO)±[I)) .For 
a given graph state, there are many closest product states that 
lead to the same exact value of the entanglement, and they are 
equivalent up to local operation, and we give one form as the 
representation. 

For the graph states with entanglement 3.9275, the form of 
the closest product state is 

I ¢) = 1+) ®31 ¢4) ®21 fA) ®31 0) (10) 
For the graph states with entanglement 4.9275, the form of 

the closest product state is 

(11) 
As for different graph state, the sequence of the 

components may be different, but the numbers of the three 
components are identical. From the closest product state we can 
see that the graph states with noninteger entanglement 
(k+0.9275) indeed have ring 5 graph state as the substructure 
for their product states also have five [¢,) . 

TABLE II. GRAPH STATES WITH NONINTEGER ENTANGLEMENT 

N09. E1 Eu E Ps N09. E1 Eu E Ps 
7 3 4 3.9275 0.64 258 4 5 4.9275 0.69 

27 4 5 4.9275 0.94 262 4 5 4.9275 0.70 
28 4 5 4.5850 0.95 267 4 5 4.9275 0.76 
47 4 5 4.9275 1.00 273 4 5 4.9275 0.72 
72 4 5 4.5850 0.99 275 4 5 4.9275 0.89 
79 3 4 3.9275 0.87 276 4 5 4.9275 0.81 
81 3 4 3.9275 0.90 277 4 5 4.9275 0.83 
83 4 5 4.9275 1.00 278 4 5 4.9275 0.88 

121 4 5 4.9275 0.57 279 4 5 4.9275 0.69 
125 4 5 4.9275 0.62 283 4 5 4.9275 0.80 
160 4 5 4.9275 0.95 284 4 5 4.9275 0.79 
163 4 5 4.9275 0.87 286 4 5 4.9275 0.76 
166 4 5 4.9275 0.64 295 4 5 4.9275 0.78 
167 4 5 4.9275 0.73 300 4 5 4.9275 0.53 
168 4 5 4_9275 0.85 304 4 5 4.9275 0.58 
169 4 5 4.9275 0.86 312 4 5 4.9275 0.78 
170 4 5 4.9275 0.95 315 4 5 4.9275 0.64 
188 4 5 4.9275 0.74 320 4 5 4.9275 0.88 
214 4 5 4.9275 0.74 340 4 5 4.9275 0.56 
218 4 5 4.9275 0.73 342 4 5 4.9275 0.81 
222 4 5 4.9275 0.67 357 4 5 4.9275 0.63 
227 4 5 4.9275 0.98 361 4 5 4.9275 0.56 
236 4 5 4.9275 0.86 364 4 5 5.5124 1.00 
238 4 5 4.9275 0.65 436 4 5 5.8381 0.02 
257 4 5 4.9275 0.67 

E" = Ewcc, E, = Ebi 

TABLE III. GRAPH STATES WITH INTEGER ENTANGLEMENT 

N09. E Ps N09. E Ps N09. E Ps N09. E Ps 
126 5 0.61 ( 1 ) 333 5 0.77(1 ) 380 5 100(2) 4 12  5 0.56(1 ) 
1 36 5 0.31 335 5 0.85( 1 ) 381 5 0.48( 1 ) 4 1 3  5 0.73 
150 5 0.92( 1 ) 338 5 0.97(2) 382 5 0.60( 1 ) 4 14  5 0.81 (1 ) 
15 1  5 0 76( 1 ) 339 5 0.45(1 ) 383 5 100 4 15  5 0.75(1 ) 
164 5 0 99(1 ) 344 5 0.72( 1 ) 384 5 0.63(1 ) 4 16  5 0.66(1 ) 
206 5 0 97(1 ) 345 5 0.88(1 ) 385 5 0.80( 1 ) 4 17  5 0.57 
2 12  5 0.69(2) 347 5 0.85( 1 ) 386 5 0.62 418 5 0.42(1 ) 
213 5 0.71 ( 1 ) 348 5 0.56(1 ) 387 5 0.98(1 ) 4 19  5 0.95 
217  5 0 81 ( 1 ) 349 5 0.71 ( 1 ) 388 5 0.73(1 ) 420 5 0.45(1 ) 
2 19  5 0 52(1 ) 350 5 0.66(1 ) 390 5 0.45 421 5 0.26(1 ) 
259 5 0 51 ( 1 ) 352 5 0.72(1 ) 392 5 0.52 422 5 0.54(1 ) 
261 5 0.64(1 ) 353 5 0.38 393 5 0.91 ( 1 ) 423 5 0.42(1 ) 
264 5 0.78(1 ) 355 5 0.42 394 5 100 424 5 0.87(1 ) 
265 5 0.74(1 ) 356 5 0.70( 1 ) 395 5 0.66 425 5 0.58(1 ) 
269 5 0 55(1 ) 358 5 0.58(1 ) 396 5 0.62(1 ) 426 5 100 
270 5 0 53(1 ) 359 5 0.41 ( 1 ) 397 5 0.90( 1 ) 427 5 0.62(1 ) 
274 5 0.57 360 5 0.47( 1 ) 398 5 100 428 5 0.46 
281 5 0.34 363 5 0.75(1 ) 400 5 0.82( 1 ) 429 5 100 
297 5 0.50( 1 ) 365 5 0.85(1 ) 401 5 0.41 ( 1 ) 430 5 0.86 
299 5 0.87(1 ) 366 5 0.50 402 5 0.45(1 ) 431 5 100 
302 5 0 80( 1 ) 368 5 100(2) 404 5 0.42(1 ) 432 5 0.28 
305 5 0 85(1 ) 371 5 0.73(2) 405 5 0.48 433 5 0.53 
307 5 0 65(1 ) 372 5 0.95 406 5 0.51 434 5 0.81 
31 0 5 0.57(1 ) 375 5 0.82( 1 ) 407 5 0.55(1 ) 435 5 0.82 
31 1 5 0.42 376 5 0.46(1 ) 408 5 0.91 437 5 0.84 
318  5 0.36 377 5 0.97(2) 409 5 0.96 438 5 0.95 
331 5 0 85(2) 378 5 100 4 10  5 0.70( 1 ) 439 5 0.85(1 ) 
332 5 0 99(2) 379 5 0.86( 1 ) 4 1 1 5 0.78(1 ) 440 5 0.96 



The next graph state set with noninteger entanglement 
(k+0.5850) is specified by [[6, 0, 4]] stabilizer state [12][17], 
the entanglement of the stabilizer sate is 

E = 2 + log2 3 "" 3.5850 (12) 

The closest product state is 

(13) 

For the graph states with entanglement 4.5850, the form of 
the closest product state is 

(14) 

It also has six I¢j) . 
There are two special graph states whose bounds of 

entanglement are 4 � E � 6, i.e. No 9.364 and No 9.436. 

The entanglement of No 9.364 graph state is 5.5124, the 
form of the closest product state is 

(15) 

The entanglement of No 9.436 graph state can't be exactly 
determined, the value of entanglement maybe 5.8381, but the 
successful probability of iteration is very low, which need for 
further research. 

There are some graph states whose entanglements are 
integer 5, and the components of the closest product states 
contain 10) , where IO)�-'-(lO)�ill)) . The forms of the closest product 2 
state are 

(16) 

or 

(17) 

As for different graph states, the numbers of components 
10), I±), 10) or l l) maybe different. 

In summary, the closest product states of graph states 
with noninteger entanglement have indispensable component 
I¢j) , but for graph states with integer entanglement, the closest 
product states do not contain I¢j) , but 10) . 

For some special graph states, direct application of iterative 
algorithm fails, the entanglement and closest product states for 
these graph states can also be obtained, but the iteration 
algorithm should be modified, we explain in the next section. 

IV. PRECISION OF ITERATION 

In order to verify the effectiveness of iterative algorithm, 
we concentrate on the precision of iteration for calculating the 
entanglement of graph states whose lower and upper bounds do 
not meet. Let Ll = IEo"m"" - E'h,"" I be the computational error of the 
iteration, where Emu",,', is the entanglement determined by 
iteration, E'h,u'Y is the exact value of entanglement [16] proposed 
in the former section. We give the successful probabilities of 
achieving the precision within Ll:O; 10-14 for some reasonable 
rounds of iteration with random initial conditions. From the 
actual numerical calculations, we can see that a precision of 
10-14 is limited by the computer for our iterative algorithm. 

For all graph states presented in Table II and Table III, 
the entanglement of a part of them can be calculated by 
applying algorithm directly, and the successful probabilities ( P, ) 
are listed in Table II and Table III. The round of the iteration is 
set to 150, in order to calculate the successful probability, we 
run the algorithm 100 times for each graph state to count the 
number of algorithm that achieves the precision Ll :0; 10-14 • 

For the other part of graph states, direct application of 
iterative algorithm fails, and the values of entanglement 
calculated by iteration are all greater than the upper bounds or 
uncertain. The reason is that the iterative equations (7) are 
correlated [12], thus to obtain the maximal fidelity, we should 
omit some of the equations and use these remain equations for 
iteration. In calculation, we set one or two Zj to random 
numbers that do not change in the iteration. Since we don't 
know the exact number of equations that are correlated, we 
calculate all possible choices of fixing Zj . The successful 
probabilities are shown in Table II and Table III, notation (1) 
behind the successful probabilities indicates that we omit one 
of the equations. After a series of calculations, the successful 
probabilities shown in Table II and III are the best. 

After modifying the iterative equations, the closest 
product states can also be obtained. The only difference is that 
if we omit an iterative equation, there will be two arbitrary 
components in the closest product states, and omit two, there 
will be four arbitrary components. That is because we set one 
or two Zj to random numbers. 

For the graph states with entanglement 4.9275, omitting 
one iterative equation, such as No 9.27, 9.150, the form of the 
closest product states is 

(18) 

Where V is an arbitrary component. 
For the graph states with entanglement 5, such as omitting 

one iterative equation, the forms of the closest product states 
are 

(19) 

or 



(20) 

For the graph states with entanglement 5, such as omitting 
two iterative equations, the form of the closest product states is 

(21) 
In summary, for the graph states whose entanglement 

calculated by modified iterative equations, the structural 
characteristics of closest product state remain the same, the 
only difference is containing arbitrary components which are 
reasonable. For graph states with noninteger entanglement, the 
closest product states contain I¢>j ) , as for integer entanglement 

graph states, the closest product states contain 10) . 

V. CONCLUSIONS 

The entanglement of 9-qubit graph states can be determined 
by two steps. First, we confirm the upper and lower bounds, if 
the upper and lower bound equal, then the entanglement is the 
bound; second, if the two bounds unequal, we need adopt 
iteration algorithm to find the closest product state, then 
calculate the entanglement. The precision of the iteration 
algorithm can be less thanlO-14. For some special graph states 
the iteration algorithm can not be directly applied, because the 
iterative equations may correlate with each other, in order to 
calculate the entanglement, we should omit one or two iterative 
equations. The entanglement values for the 9-qubit graph states 
maybe integer or noninteger, the feature of the closest product 
states to the graph states with noninteger entanglement is that it 
has I¢>j ) as the indispensable components, for graph states with 

integer entanglement, the closest product states do not 
contain l¢>j ) , but 10) . For a given graph state, there are many 

local equivalent closest product states, they all lead to the same 
exact value of the entanglement. In all the cases of unequal 
bounds, the entanglement may be equal to its upper bound 
(integer) or between the bounds (noninteger). 9-qubit graph 
state appears two new structures comparing to 8-qubit graph 

state, one can be determined, but the other need further 
research. 
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