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Abstract—For target tracking applications, active ultrasonic
sensors may suffer from inter-sensor-interference when these
highly dense deployed sensors are not scheduled. In this paper, we
propose a dynamic distributed sensor scheduling (DSS) scheme,
where the tasking sensor is elected spontaneously from the sen-
sors with pending sensing tasks in a distributed way via random
competition by using Carrier Sense Multiple Access (CSMA)-
like fashion, and releases the channel immediately when ranging
task is done. Both simulation results and testbed experiment
demonstrate the efficiency of DSS scheme in terms of system
scalability and tracking performance.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been considered as

a promising technique for area surveillance applications [1]

[2] [3], and target localization/tracking is essential for these

applications. Many approaches have been proposed for target

tracking within WSNs [3] [4] [5] [6] [12]. According to target

behavior, most of the previous works can be categorized into

two classes: cooperative [3] [4] [5] [6] and non-cooperative

[7] [12]. A cooperative target is part of the network and emits

certain forms of physical signals that reveal its presence or

report its own identification. In the non-cooperative scenario,

however, there exists no information exchange between the

target and the network infrastructure. Therefore, sensor nodes

need to detect and identify the target actively by emitting

energy and measuring the feedback. Our previous work [7],

a tracking system aiming at non-cooperative targets, utilized

passive infrared sensors for target detection and the active

ultrasonic sensors for ranging.
In non-cooperative tracking systems using ultrasonic sen-

sors, there is severe Inter-Sensor Interference (ISI) when

nearby active sensors work simultaneously at high frequency.

Such interference results in erroneous sensor readings and

leads to unacceptable estimation results. For the active ul-

trasonic sensors, there are two types of ISI, direct ISI and

indirect ISI. Direct ISI occurs when the sound wave propa-

gates directly from a transmitting ultrasonic sensor to another

receiving ultrasonic sensor. Indirect ISI happens when the

sound wave propagates from a transmitter to another receiver

via the reflection or diffusion by other objects (including

the targets). Fig. 1 shows an example of ISI, where Sensor

3’s ranging process periodically collides with that of Sensor

1. Sensor 3 always is interfered by sensor 1 and can not

get accurate measurement signal. An occasional ranging task

Fig. 1. Inter-Sensor Interference in Ultrasonic Ranging

initiated by sensor 2 is interfered by the signal from Sensor

3. Erroneous ranging measurements are even more harmful

than missing the reflected signal, since the target estimator

accepts the measurement with high confidence. Therefore,

sensor scheduling is needed to ensure that, during any time,

only one sensor in an ISI region can work to detect the target.

Sensor scheduling, also referred as sensor selection or

sensor management, concerns turning on the right sensors at

the right time to achieve desirable performance with minimal

energy consumption. Some previous works have addressed

the sensor scheduling problem for different tracking systems

in WSNs [8] [9] [10] [11]. However, most of them mainly

study the tradeoff between tracking performance and energy

consumption. In [8], this problem is formulated as a partially

observable Markov decision process, and Monte Carlo method

is developed using a combination of particle filters for belief-

state estimation and sampling based Q-value approximation

for lookahead. Adaptive sensor activation [9] selects the next

tasking sensor and its associated sampling interval based on

the prediction of tracking accuracy and energy cost. Priority

list sensor scheduling [10] facilitates efficient distributed esti-

mation in sensor networks, even in the presence of unreliable

communication, by prioritizing the sensor nodes according to

local sensor schedules based on the predicted estimation error.

However, all the methods mentioned above can not be applied

directly to the ISI problem for active sensors.

In [12], two sensor scheduling schemes for active sensors

are proposed. In the periodic sensor scheduling (PSS) scheme,

each ultrasonic sensor detects the target in turn, within the

predefined time slots assigned to it. A critical drawback of

this sensor scheduling scheme is the existence of empty

measurement, where a scheduled sensor may not be in the

vicinity of the target. As a result, the system expects lower

tracking accuracy and wastes of energy. Whereas in the
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TABLE I
NOTATION DEFINITIONS

Symbol Definition
| · | | · | represents the cardinality of a set.
V set of the sensor nodes, i.e., V ={1,2,...,|V |}.

[0, T ] duration that the target in the monitored area.
x(t) position of the target at time t, and t ∈ [0, T ].
xi position of sensor node i, and i ∈ V .
Td die-out time of the ultrasonic wave in a ranging operation.
R sensing range of the ultrasonic sensors.

f(t) function that record the process of the scheduling during
[0, T ], the detailed definition is given in Equation 1 and
f : [0, T ] → V ∪ {0}.

N total number of nonzero element in f(t), means the number
of the selection.

ni the ith nonzero element in f(t), means the ith tasking
node. So i = 1, 2, ..., N , ni ∈ V .

ti time of the ith tasking node selection, i.e, f(ti) = ni.

adaptive sensor scheduling scheme, the next tasking ultrasonic

sensor is selected adaptively according to the state prediction

of the target. In this scheme, each node needs to know the

positions of its neighbors, and the sensor selection process

is very computation intensive, since the current tasking node

takes the complex calculation for node selection. The con-

siderable computation time may cause delay to the next step

sensing, deteriorate tracking accuracy and even lead to target

loss. Meanwhile, due to the distributed nature of WSNs, the

previously mentioned scheduling schemes are less applicable

since scheduling has to be performed in a distributed way to

ensure scalability.

In this paper, we introduce a distributed sensor scheduling

(DSS) scheme for tracking system with ultrasonic sensors

based on the classic CSMA (carrier sense multiple access).

The tasking sensor node is elected spontaneously from the

sensor candidates in a distributed way via random competition.

As soon as the ranging task is done, the channel is released

immediately for other pending sensing tasks. Therefore, the

main feature of the DSS scheme is its effectiveness for large

scale networks and robustness to dynamic topology changes.

The remainder of the paper is organized as follows: Section

II presents the DSS scheme. Sections III and IV evaluate the

scheme with extensive simulation and test-bed experiment.

Finally, conclusions and future work are given in Section V.

II. DISTRIBUTED SENSOR SCHEDULING SCHEME

Typically, each sensor node in WSNs has short sensing

range and the on-board processor is limited both in memory

and processing speed. In our tracking system, each sensor

node is built with one Passive InfraRed (PIR) sensor, multiple

ultrasonic ranging sensors and one processing / communica-

tion board. The sensor nodes only take charge of detecting /

sensing the target and transmitting the sensing results to the

central computer. An Extended Kalman Filter (EKF) is applied

to the central computer to estimate the position of the target.

In this paper, single target tracking is considered and we only

concern how to sense the target efficiently via the sensor nodes

negotiation.

We first define some notations in Table I. The definition of

function f is:

f(t) =

⎧⎨
⎩

i, select node i as the tasking node at time t

0, otherwise

(1)

In order to avoid ISI between ultrasonic sensors, only one

sensor node is tasked to actuate its ultrasonic sensors for range

measurement each time. And the time difference between two

successive measurement epoches should be larger than Td.

Simulation results in [7] reveal that the tracking performance

can benefit from higher sampling frequency. With view to the

existence of empty detection when the scheduled sensor is not

in vicinity of the target, we define another function g(t) to

represent the effective scheduling:

g(t) =

⎧⎨
⎩

1, f(t) �= 0 and ||xf(t) − x(t)|| < R

0, otherwise

(2)

Therefore, the ISI problem could be converted into an

optimization form:

maximum
1

T

∫ T

0

g(t)dt

subject to ti − ti−1 ≥ Td

i = 2, 3, ..., N (3)

In fact, by considering the ranging operation of a sensor

node as the occupation of a shared channel, the ISI problem

among active ultrasonic sensors in WSNs can be converted to

the problem of multiple access in a shared channel. Hence the

schemes for MAC can be used to solve the ISI problem.

A common MAC paradigm is TDMA (time-division mul-

tiple access) which schedules transmission times of all nodes

to occur at different times. The PSS scheme mentioned above

is kind of this fashion. However, TDMA has many disad-

vantages when it is applied to WSNs. First, it often requires

a centralized node to a collision-free schedule. Furthermore,

developing an efficient schedule with a high degree of channel

reuse is very difficult. Second, TDMA needs clock syn-

chronization. Although clock synchronization is an essential

feature of many sensor applications, tight synchronization

incurs high energy overhead because it requires frequent

message exchanges. Third, sensor networks may undergo

frequent topology changes because of time-varying channel

conditions, physical environmental changes, battery outage

and node failures. Handling dynamic topology changes is

expensive, possibly requiring a global change.

Another classic MAC protocol is CSMA, which is a prob-

abilistic protocol. In a nutshell, CSMA verifies the absence

of other traffic before transmitting in a shared channel. It is

popular because of its simplicity, flexibility and robustness.

It does not require clock synchronization and global topol-

ogy information, and dynamic node joining and leaving are

handled gracefully without extra operations. Because of these

features, sensor nodes negotiate with each other using CSMA-

like fashion is our proposed scheme.



The main idea of DSS scheme is that when a node has

a pending ultrasonic sensing request, it checks if there is

already an occupation announced by other node in recent σ
millisecond. If no occupation is recorded, the node broadcasts

its own message to announce occupation in the upcoming σ
millisecond and then conducts target range sensing. Otherwise,

the node waits a bounded random time for next round occu-

pation. Obviously, the minimal σ should be equal to Td . The

detailed procedure is summarized below:

• a) In initial state, all the nodes are in sleep mode;

when a mobile target enters the monitored area, sensor

nodes close to the target will be activated by the PIR

sensor. As the target moves along the trace in the area,

some activated sensor nodes may go back to sleep mode

because the target moves out of its sensing region. Also,

there are some newly activated sensor nodes;

• b) Once a sensor node is activated, it will calculate a

random Tbackoff , and then start its delay timer with

interval Tbackoff . Let

Tbackoff ∈ [Tmin, Tmax] and Tmin = Td

• c) As soon as the node with the smallest Tbackoff triggers

its delay timer, it will broadcast a DETECT message to

the other activated nodes and become the tasking node to

sense the target. Any node that overhears the DETECT

message will immediately give up its declaration as the

tasking sensor node by restarting the delay timer with

a new random Tbackoff . The timerdelay in the tasking

sensor node is also restarted with new random Tbackoff .

Without loss of generality, it is assumed there is no trans-

mission delay between sensor nodes. Therefore, the DETECT

message broadcasted by the selected node can be used as a

locally synchronization signal to make all the activated nodes

start their delay timer at the same time. It is easy to see that the

computation burden is distributed among the activated sensor

nodes and the sensor selection is totally distributed. Another

advantage of the DSS scheme is that each node does not

need to know the positions of its neighboring nodes and thus

conserving the limited memory for other processing.

In theory, it is almost impossible that more than one sensor

nodes broadcast DETECT message at the same time because

the Tbackoff is randomly selected. In practice, however, the

Tbackoff can only be selected from a finite discrete set due to

quantization constraint. For one sensor node, we have

Tbackoff ∈ {T0, T1, . . . , TM−1, TM}
T0 = Tmin, TM = Tmax

Ti − Ti−1 = Δt, i = 1, 2, . . . ,M

where Δt is a constant value denoting the resolution of the

delay timer which depends on the sensor nodes and it equals

to 1ms in our system. In order to avoid the situation that more

than one nodes sense the target at the same time, the node with

the smallest ID will be chosen as the tasking node among the

nodes whose delay timer are triggered simultaneously, and

Algorithm 1 is the pseudo-code for the DSS scheme. The

Algorithm 1 Distributed Sensor Scheduling Algorithm

1: Input: the trace of the target x(t)
2: Output: the sensor scheduling results f(t)
3: Initialization: f(t) = 0, t ∈ [0, T ];
4: //det send means broadcast the DETECT message.
5: //det recv(j) means receive the DETECT message from node j.
6: for target moves in the monitored area do
7: if target moves into the sensing range of node i then
8: sensor i is activated from the sleep mode;
9: end if

10: for each activated node i do
11: generate a random Tbackoff ;
12: start the delay timer with Tbackoff ;
13: wait for det send or det recv(j);
14: if not det send and det recv(j) at time t then
15: stop the delay timer;
16: generate a new random Tbackoff ;
17: start the delay timer with Tbackoff ;
18: set f(t) = j;
19: end if
20: if det send and not det recv(j) at time t then
21: sensing the target;
22: generate a new random Tbackoff ;
23: start the delay timer with Tbackoff ;
24: set f(t) = i;
25: end if
26: if det send and det recv(j) at time t then
27: if i > j then
28: stop the delay timer;
29: generate a new random Tbackoff ;
30: start the delay timer with Tbackoff ;
31: set f(t) = j;
32: else
33: sensing the target;
34: generate a new random Tbackoff ;
35: start the delay timer with Tbackoff ;
36: set f(t) = i;
37: end if
38: end if
39: end for
40: if target moves out of the sensing range of node i then
41: sensor i goes back to sleep mode;
42: end if
43: end for

parameter M denotes the size of candidate set for Tbackoff .

Larger M indicates that sensor nodes are less possible to

collide with each other, but the expected backoff time may

be larger and result in sensing latency.

III. SIMULATION RESULTS

We evaluate the proposed DSS scheme with the simulation.

We compare the tracking performance of the DSS scheme with

the PSS scheme.

In the simulation, we model the monitored area as a grid

map. A movement trace of the mobile target is generated with

the Random WayPoint mobility model (RWP) [13]. An estima-

tion error at one point in the trace is defined as the geographic

offset between the estimated position and corresponding true

position

e(t) = ‖x(t)− x̃(t)‖ (4)
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Fig. 2. Simulated Trajectories of PSS and DSS Schemes

where x(t) is the ground truth position vector and x̃(t) is the

estimated position.

The mean tracking error is defined as the averaged error of

all the points in the trace

e =
1

(tK − t0)
ΣK

i=1(ti − ti−1)e(ti) (5)

where t0 and tK are the start time and end time, respectively

and K denotes the total numbers of estimations.

The presented results are averaged over 50 independent

simulation runs for high confidence. The following table

illustrates the default simulation setup:
Parameter Description
Field Area 6× 6m2

Sensing Noise Model N(0, 0.0025)
Number of Sensor Nodes 12, uniformly deployed

Target Velocity U(0.3, 0.7)m/s
PIR range and angle 0 ∼ 3m, ±π

Ultrasonic range and angle 0 ∼ 3m, ±π
Td 30ms
M 15

For the sake of clarity, we assume that the sensing angle

of PIR sensor and ultrasonic sensor are both ±π, i.e., that the

sensing model is a circle.

We compare the PSS scheme with the proposed DSS

scheme. Fig. 2 shows the target moving traces estimated by

PSS and DSS. It can be seen that the estimated trace generated

by DSS is closer to the true one, and the corresponding

tracking error of these two estimated traces are 0.1131m
and 0.0575m, respectively. For a larger network, the tracking

results are shown in Fig. 3. The monitored area is 12× 12m2

with 48 sensor nodes deployed. It can be seen see that the

DSS scheme still performs well under such conditions. On

the other hand, PSS scheme almost lost the target during the

first corner and at the end of the trace because of the empty
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Fig. 4. Impact of Node Number on Tracking Error

detections. The corresponding tracking error of PSS and DSS

are 0.3651m and 0.0534m, respectively.

A. Impact of the number of sensor nodes

We compare the DSS scheme with PSS scheme under a

different setting of sensor quantity, ranging from 6 to 30. Fig.

4 shows that (i) the DSS scheme outperforms the PSS scheme,

and (ii) with the increase number of deployed sensor nodes,

the tracking error for both schemes are reduced, and it seems

the error converge to a constant when the node number is very

large. This is because the uncovered area is large when less

number of nodes are deployed, which leads to high probability

of losing the target. On the other hand, the area coverage is

saturated when the node number is large enough, so that any

more sensor deployment does not help in terms of tracking

performance.
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Fig. 5. Impact of ROI Scale on Tracking Error

B. Impact of the scale of ROI

ROI means the region of interest, i.e. the monitored area.

We compare the performance of both schemes under different

scales of ROI, with same node density. For each scale, we

define the number of nodes by

Nnode = αl2

where α is a density factor, and l is the side length of the

square monitored area. In the simulation, l increases from 6

meters to 30 meters in steps of 3 meters, and α is set to 1/3.

Fig. 5 shows: (i) DSS scheme is very robust to the network

scale (error keeps constant when the network scale increases)

since it only schedules the activated nodes, while the error

with the PSS scheme increases quickly because of the growing

number of empty detections; and (ii) the DSS scheme is

superior to the PSS scheme, especially when the network scale

is very large.

C. Impact of M in distributed sensor scheduling scheme

Fig. 6 illustrates the impact of M to the DSS scheme.

Simulation results indicate that: (i) there exists an optimal Mo,

when M equals to Mo, the tracking error is the minimum;

(ii) when M is larger than Mo, the tracking error increases

with the increase of M because the average sampling period

increases; (iii) when M is smaller than Mo, the tracking

error reduces with the increase of M . The reason for this

phenomenon is that the probability of more than one sensor

nodes triggering their delay timer at the same time increases

with the smaller M . Therefore, only nodes with the smallest

ID will be selected to sense the target, which results in increase

of accumulate error; and (iv) from the simulation results, we

can see

Mo ∝ α (6)
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Fig. 6. Impact of Tbackoff on Tracking Error in DSS Scheme

Equation 6 indicates that the optimal Mo is approximately

proportional to the node density. This is because larger node

density creates chances for more than one sensor nodes

triggering their delay timer at the same time, so M should

be properly chosen according to the node density.

IV. TESTBED EXPERIMENT

A 5.2m×5.2m testbed has been built, as shown in Fig. 7(a)

to support testbed-scale experiments. We mount an overhead

camera right up on the ceiling of the testbed to capture the

experiments or extract accurate positions of interested objects.

Each sensor node is integrated with one main board, one PIR

sensor and three active ultrasonic sensors to realize the track-

ing. The main board, which is mainly composed of Atmel128L

[14] as core unit and CC2420 [15] as communication chip

is used as an communication/computation module. The PIR

sensor can detect the changes of infrared energy radiation from

the environment due to the movement of the target and outputs

a high level signal which is used as an external interrupt

to activate the node. The ultrasonic sensor has a maximum

range of 3m and the effective angle is π/3. All the three

ultrasonic sensor are connected with the main board via UART

connection.

In our experiments, 10 sensor nodes are deployed in the

testbed using 3 × 3 grid form with 2.2 meters displacement.

Specifically, two nodes are placed in the middle of the area to

provide with ±π coverage. The 3 ultrasonic sensors are fixed

on the pipe with two different configurations, to cover either

π/2 or π angle range. The node that covers π/2 is placed at

the corner of the field, and The nodes cover π are placed in

other positions.

In the experiments, a person is considered as the mobile

target to track. Fig. 7(a), taken by the overhead camera, shows

the sensor node deployment and target trajectory. We put



(a) Real human trajectory (b) Tracking result of PSS scheme
in 10 nodes scale

(c) Tracking result of DSS scheme (d) Tracking result of PSS scheme
in 40 nodes scale

Fig. 7. Testbed experiments for PSS and DSS schemes

a sequence of marks on the testbed as the trails to follow.

And the person, put his feet on the marks at one pace per

second, to generate identical target trails for each test. The

estimated trajectories of PSS scheme and DSS scheme are

shown in Fig. 7(b) and Fig. 7(c). Compared with the true

trajectory, we see both estimated trajectories are very close

to the true one. The overall tracking error is about 19cm for

DSS and 28cm for PSS. Due to the relatively small network

scale, using PSS scheme gives enough effective measurements

for target updates. Next we evaluate the number of effective

measurements. The PSS gave us 97 effective measurements

and the DSS gave us 216, which reveals the existence of empty

detection for PSS scheme. When the target moves within the

field, DSS scheme always activates sensors in the vicinity of

the target and thus makes most of the measurements effective.

The PSS scheme, however, emphasizes fairness among sensors

regardless of the target position and yields large number of

empty detections.

We further test the performance of PSS scheme under larger

scale network settings. Besides the 10 deployed sensors, we

add another 30 virtual nodes working around the testbed with

the same deployment and sharing the channel. The tracking

result is shown in Fig. 7(d). Noticeably, the tracking error of

PSS is about 1.15m, which is very large and the corresponding

number of effective measurements is only 27.

V. CONCLUSION

In this paper, we have presented a distributed sensor

scheduling (DSS) scheme, which is inspired by CSMA, for

active sensors in wireless sensor network to solve the ISI

problem. By with the scheme, the computation burden for

each sensor is reduced significantly and the scalability can

be guaranteed. It has been demonstrated that tracking with

DSS scheme outperforms the PSS scheme, especially when

the network is very large. There are several issues remaining

for future study, our scheme focuses on the effective measure-

ment only with the consideration of the target presence. In

addition, the DSS scheme selects the node with the smallest

ID when there is a collision, and this may lead to accumulated

error. The research to develop more impactful strategies is

under way. More efficient sensor scheduling scheme could

be designed with the estimation/pridiction techniques such as

EKF, unscented Kalman filter and particle filter. Tracking and

adaptive sensor scheduling for multiple targets using multiple

modalities are our future study.
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