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Abstract— In this paper, we investigate the problem of energy- 
efficient distributed estimation in wireless sensor networks. In an 
inhomogeneous sensing and transmission environment, the 
minimization of total energy is jointly determined by the optimal 
quantization and transmission scheduling. In order to minimize 
the total energy under the mean squared error (MSE) and total 
transmission time constraints, we design a joint algorithm which 
iteratively computes the optimal quantization lengths and 
transmission times. We proved that the algorithm is convergent. 
Simulations show that the iteration converges quickly, and 
significant energy saving can be achieved when compared with 
the uniform quantization and transmission scheme. 

Keywords-distributed estimation, energy efficient, quantizaion, 
transmission scheduling. 

I. INTRODUCTION 
Consider a distributed wireless sensor network (WSN) as 

shown in Fig.1, local sensors cooperate with a fusion center 
(FC) in estimating an unknown parameter in the environment. 
The local sensors are in charge of observation and sending the 
compressed data to the FC, and the FC aggregates the data and 
generates a final estimation. Due to the specific application 
environment, sensor networks face serious energy and 
bandwidth constrains. Thus we must design the best estimation 
scheme under the limited energy and bandwidth. 

Usually the transmission energy consumption is effected by 
two important factors: the length of transmission data and the 
time of the transmission. In [1], the authors derived some 
universal decentralized estimation schemes under the ideal 
channel models. Based on the case of inhomogeneous sensing 
environment and different channel gains, the authors in [2] and 
[3] optimally choose the quantization lengths for all sensors by 
taking into account their local SNRs and the channel gains. 
They set the data length equals to the constellation size in order 
to minimize the delay, although we know that the transmission 
delay is not a severe constraint in sensor networks sometimes. 
Since timely knowledge of the instantaneous noise profiles will 
be too costly to acquire, the authors in [4] provide an energy-
efficient decentralized estimation solution by considering the 
long-term noise variance information. However in their 
transmission model, all the sensors use the same bit rate, which 
implies each sensor’s transmission time is uniquely determined 

  
Figure 1. Sensor network with a fusion center. 

 
by the length of  transmission data.  Therefore, none of   these  
proposed solutions jointly optimize the quantization lengths 
and transmission times, so they remain to be developed. 

The information theory tells us that, the longer time it is 
used to transmit a message, the less energy it needs [5]. When 
the total transmission time is given, there is an optimal time 
scheduling for each sensor. The MoveRight algorithm [7] is 
such an algorithm that can find the optimal scheduling of the 
sensors’ transmission times quickly. In this paper, we will 
extend the MoveRight algorithm to optimize the transmission 
times of all the sensors when the quantization lengths are given. 

In this paper, we propose a variable-length Time Division 
Multiple Access (TDMA) scheme and use the uncoded MQAM 
as the modulation scheme for all the sensors. We first deduce a 
closed-expression of optimal quantization with transmission 
time fixed via convex optimization. Then we merge the 
quantization optimization and transmission time scheduling 
together to form an iterative joint optimization algorithm. We 
do some analysis of the convergence property and show the 
energy saving performance through some simulation results. 

The paper is organized as follows: Section II introduces the 
system model. Section III discusses the quantization and 
transmission scheduling with minimized energy cost. Section 
IV shows the performance of our algorithm via some 
simulation results. Finally we carried out a brief summary in 
section V. This work is supported by National Natural Science Foundation of China,

Grant No.60772093. 
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II. SYSTEM  MODEL 
Consider a WSN with K  distributed sensors deployed to 

estimate an unknown parameterθ . The thk  sensor observes a 
noisy version of θ  given by: 

,k kx nθ= +   1 k K≤ ≤                                  (1) 

where kn  denotes the zero-mean noise with variance 2
kσ . We 

assume that noise variances are independent across sensors. For 
the limitation of bandwidth, each sensor should compress its 
observation kx  to a kL -bit length message km  and send to the 
FC. In this paper we use a uniform quantization scheme with 
nearest-rounding which can be modeled as: 

k k km x= + Δ ， 1 k K≤ ≤              (2) 
here kΔ refers to zero-mean quantization error with 
variance 2 2 (12 4 )kL

k Wδ = ⋅ [6]. [ 2, 2]W W−  is the signal 
range that sensors can observe.  The FC performs the Best 
Linear Unbiased Estimator (BLUE) to recoverθ  :  
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The corresponding MSE is [3]: 

( )
1

2

2 2
1

1=E
K

K
k k k

D θ θ
δ σ

−

=

⎛ ⎞
− ≤ ⎜ ⎟+⎝ ⎠

∑   

                       
1

2 2
1

1
4 12k

K

L
k k Wσ

−

−
=

⎛ ⎞
= ⎜ ⎟

+ ⋅⎝ ⎠
∑    .               (4)      

 
Considering the possible errors in actual transmission, 

when the bit error rate (BER) is below a certain threshold, the 
total MSE will be one constant factor increase when compared 
to the benchmark measure [3]. Thus in the following, we will 
use D to denote the MSE due to BER for convenience. 

Assume the observation noise to be Gaussian distribution, 
then the noise variance can be modeled as follows: 
           2

k kzσ γ α= + ，1 k K≤ ≤  ,                                   (5) 
here γ denotes the minimal observation noise power 
throughout the entire network; α  refers to the variance of 
each sensor’s noise power. 2

1~kz χ  is chi-squared distribution 
with degree 1. 

III. QUANTIZATION AND TRANSMISSION SCHEDULING WITH 
MINIMIZED ENERGY COST 

We assume the sensors send data to the fusion center with 
MQAM (constellation size kb ) at an identical transmission 
symbol rate B , then the transmission time for the thk  sensor to 
send the kL bits data is k ( )k kT L Bb= , and the transmission 
energy [3] is given by: 

         ( )0
4 2( , ) 2 1 ln
3
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k k k f k k
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E L b N N G

b p
= − ,               (6) 

here k
bp  is BER and :k kG d κ=  is the path-loss, where κ is the 

path-loss constant and kd  is the transmission distance. If we 
substitute kb  with k( )k kb L BT= , (6) becomes 
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The total amount of required transmission energy is: 
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3.1 Problom Formulation 
Our goal is to minimize the total energy under the target 

MSE performance and total transmission time constraints. 
This leads to the following optimization problem: 
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where 2
k kzσ γ α= + , if k

bp ’s in (7) are the same for all 
sensors,  problem (9) can be simplified: 
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Quantization based on the instantaneous noise profile is an 

energy-efficient scheme. However it may causes costly extra 
energy consumption since frequent training/update is needed. 
Thus we will exploit an alternative way, in which only the 
long-term information of the noise profile is considered:  
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where 1: [ ]T
Kz z=z  with ( )p z  refers to the associated 

distribution of observation noise power. The inequality above 
can be simplified as [4]:   
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， then problem (10) can be 

translated to the following problem with a modified MSE 
performance constraint: 
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3.2 Optimal Solution 
In problem (12), since the two sets of variables 1{ }K

k kL =  
and  1{ }K

k kT =  couple with each other in the objective function, it 
is difficult to work out a closed-form solution in a 
mathematical way. Fortunately, 1{ }K

k kL =  and 1{ }K
k kT =  belong to 

two independent constraint sets, so it may work if we optimize 
one set of variables with the other fixed. When both sets of 
variables are optimized, an iterative algorithm can be 
developed to jointly optimize (12). 

 
A. Optimizing 1{ }K

k kT =  while 1{ }K
k kL =   are  given 

While 1{ }K
k kL =  are invariable, optimization problem (12) 

can be simplified as the following: 
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Noting that in (13), inequality constraint 
1

K
kk
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=

≤∑  has 
been converted into equality constraint, for it can be proved 
that the best time scheduling follows

1

K
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we can prolong any sensor’s transmission time to make 

1

K
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=

=∑ , the energy will be lower.  Besides, it is assumed 

kL >0, k∀  in (13) because if some kL =0, obviously the 
optimal kT =0. So the sensors whose kL = 0 has been removed. 

Since the objective function in (13) exactly meet the four 
conditions of MoveRight Algorithm [7], we can solve problem 
(13) by resorting to this packet-scheduling algorithm. 

In problem (13), all the data can be considered to have 
arrived at time 0. Let kS  be the start time of the thk  sensor’s 
transmission, 1 0S = , K KS T T+ = . We further assume 

1KS T+ =  for expression convenience. The MoveRight 
algorithm optimize 1{ }K

k kT =  via stepwise iterations. The pseudo 
code of the algorithm is: 

__________________________________________________ 
Algorithm 1:
MoveRight( ) 
1 Initialize  i =0, 0 1kS k= − , 1

i i i
k k kT S S+= − , k∀ . 0

1KS T+ = . 
2 Repeat   
3      1i i= + ;          
4      for 1: 1k K= −   do 
5            adjust    1

1
i
kS −
+  to 1

i
kS +  with 1 1

1
i i

k kT T− −
++  fixed. 

6            update   1
1

i i i
k k kT S S −

+= − . 

7            update   1 1
1 2 1

i i i
k k kT S S− −
+ + += − . 

8      end for 
9 Until  i

kT  = 1i
kT −  for all 1:k K= . 

————————————————————————— 
B. Optimizing 1{ }K

k kL =  while 1{ }K
k kT =  are given 

Problem (12) can be translated into the following 
quantization optimization problem with 1{ }K

k kT =  fixed: 
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where  M  is the same as defined in (11). 

 
The objective function and the constraints are both convex 

(if we ignore the integer requirement on kL ), it is thus a 
convex optimization  problem. Form the Lagrangian as:  
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The relevant KKT conditions are given as: 
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0kL = , k∀ . When M K≥ , this case is the optimal solution, 
which means when D  becomes so large that M K≥ , the MSE 
performance constraint can be satisfied even if all the sensors 
remain silent. We can also prove that if M K< , then 0λ > , 
otherwise it will conflict with the constraint in (14). 

When 0λ > , (17) can be translated to :  
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If kL =0, then kμ = 
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can also prove that kG Bλ≥ ⇒ kL =0,  otherwise kL >0 ⇒  
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Without loss of generality, we assume 1KG + = ∞ and 

1 2 1K KG G G G +≤ ≤ ≤ < = ∞ . Equation (20) leads to: 
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where * *( , )K λ  is a solution of (21). The next theorem 
demonstrates that * *( , )K λ  is the unique solution. 

Theorem I: Assume that * *( , )K λ  is a solution of (21), 
and 1 1( , )K λ  is a solution of (21)’s first equation, 

(1) If *
1K K< , then 

1 1 1KG Bλ+ < . 

(2) If *
1K K> , then 

1 1KG Bλ≥  . 
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Theorem I not only proves the uniqueness of * *( , )K λ , but 
also provides us a way to search * *( , )K λ  quickly: we can 

design a binary search algorithm for both K and λ  with the 
complexity of ( log )O N K , where N  is the complexity of 
searching λ  with a fixed K . 

When we got  * *( , )K λ , the optimal kL  is given as: 
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It’s worth noting that the optimal kL  in (22) is a real 

number, which is the theoretically optimal lower bound. In the 
actual application, we can round kL  up to the closest integer 
that is larger than kL . 
 
C. Iterative Optimization of  1{ }K

k kL =  and  1{ }K
k kT =   

Since the two sets of variables 1{ }K
k kL =  and 1{ }K

k kT =  are 
coupled in the objective function of problem (12), one possible 
way to find out the joint optimal solution is brute-force search, 
however the exponential-level complexity is obviously 
unfeasible for large size sensor networks. Thus we resort to an 
iterative algorithm which converges at least to a stationary 
point of the total energy, and yields the optimal solution of  

1{ }K
k kL =   and  1{ }K

k kT = . The joint iterative algorithm goes like 
this: at every iteration step, we first optimize 1{ }K

k kL =  with 

1{ }K
k kT =  fixed, then optimize 1{ }K

k kT =  with the solved 1{ }K
k kL = . 

The process repeats until the total energy converges to a 
stationary value. The pseudo code is as follow: 
__________________________________________________ 
Algorithm 2:
Joint_Optimization( ) 
1 Initialize 0

1{ }K
k kL = , 0

1{ }K
k kT = ,  i=0; 

2   repeat 
3       i=i+1 
4       for  k = 1:K  do  
5            Update ( )

1{ }i K
k kL =  use (21) based on ( 1)

1{ }i K
k kT −

= . 
6       end for 
7       for  k = 1:K  do 
8           Update ( )

1{ }i K
k kT =  use MoveRight based on ( )

1{ }i K
k kL =  . 

9       end for 
10     Calculate ( )iE  based on ( )

1{ }i K
k kL =  and  ( )

1{ }i K
k kT = . 

11 until ( ) ( 1)i iE E ε−− <  for given tolerance  ε  . 

a) Convergence property:  The conclusions of part A 
and B show that line 4~6 and 7~9 in algorithm 2 can  both 
reduce the total energy consumption, so ( )iE  is the non-
increasing function of iteration times i . As ( )iE  has a lower 
bound (optimal value), ( )iE will converge to a stationary-value. 

b) Convergence speed: There are two plans in each 
iteration step: updating ( )

1{ }i K
k kL =  first or updating ( )

1{ }i K
k kT =  first. 

Their convergence speeds and performance will be 
distinguished in the following simulation result. 



IV. SIMULATION 
The performance of the algorithm applied in this paper will 

be evaluated by energy saving in percentage when compared  
with the uniform quantization and transmission scheduling 
scheme (UQTS). From the MSE performance constraint (11), 
the average length each sensor need is log( )L K M= . In the 
UQTS, we set quantization length L , and transmission time 
T T K= . In the following simulations the number of sensors 
is set to be 100K = , The kd  in k kG d κ=  is generated by 
uniform distribution, ~ [1,10]kd U . We know the higher 
coefficient κ  is, the larger the variance of kG  becomes. 

Fig.2 shows the convergence performance of Algorithm2. 
With M =50 and κ =3.5, the energy saving converges to 
73.45% after 20 iterations. It can be seen that, updating 

( )
1{ }i K

k kL =  first converges faster than updating ( )
1{ }i K

k kT =  first. 
Therefore, in application updating quantization length can be 
done before that of transmission time. Considering the limit of 
actual computational capacity, 3-4 iterations can provide 
desirable convergence performance. 
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Figure 2. The convergence performance of Algorithm 2. 
 

Fig.3 shows the energy-saving performance of the three 
ways in MSE change. Here we setκ =3.5. According to Fig.3, 
as MSE increases, optimization performance of quantization 
length is rising while that of transmission time goes down due 
to the decreasing of average quantization length L . Yet the 
performance of iterative joint optimization keeps rising. 
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Figure 3.  Percentage of energy saving w.r.t different MSE. 

Finally with / 8M K= , κ changes within 1~6. We know 
the higher κ  is, the more heterogeneous the channel gains 
become. Fig.4 shows that all the three algorithms perform 
better when the channel gains become more heterogeneous. 
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Figure 4.  Percentage of energy saving w.r.t different κ . 

 

V. CONCLUSION 
Our paper provided a solution to the energy-efficient 

distributed estimation under the constraints of a target MSE 
performance and total transmission time. We derived a closed-
expression of optimal quantization scheme under a fixed 
transmission scheduling. Combining our optimal quantization 
scheme with MoveRight algorithm, we designed an algorithm 
which optimizes quantization and transmission jointly. The 
joint algorithm will shut off the sensors suffering from poor 
channel quality, optimally choose the quantization lengths and 
transmission times for the active sensors through an iterative 
way. Simulation results show that the algorithm works well in 
the heterogeneous sensing and transmission environment, and 
more than 60% energy can be saving when compared with the 
uniform quantization and transmission scheme. 
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